On a Subclass of Close-to-Convex Functions

by

K. INAYAT NOOR

(Received February 20, 1980)

Let S, S*, K and C be the classes of univalent, starlike, close-to-convex and convex functions. The class Q of quasi-convex univalent functions has been defined and studied in [1]. A function f is analytic in the unit disc E with f(0) = 0 and f'(0) = 1 belongs to Q if and only if there exists a convex univalent function g such that for $z \in E$ and g(0) = 0, g'(0) = 1,

$$\operatorname{Re}\frac{(zf'(z))'}{g'(z)} > 0. \tag{1}$$

It is also established in [1] that $f \in Q$ if and only if $zf' \in K$. The geometric interpretation of $f \in Q$ is that zf' maps each circle |z| = r < 1 onto a simple closed curve whose tangent rotates, as θ increases, either in the counterclockwise direction or clockwise direction, in such a way that it never turns back on itself so much as to completely reverse its direction. It has been shown in [1] that the class C of convex functions forms a proper subclass of Q, and Q itself is included in K.

Waadeland [6] proved that every starlike m-fold symmetric function g, with

$$g(z) = z + \sum_{k=1}^{\infty} b_{mk+1} z^{mk+1}$$

satisfies

$$|b_{mk+1}| \le {2/m+k-1 \choose k}, \quad k=1, 2, \cdots.$$

Since g = zf' is starlike if f:

$$f(z) = z + \sum_{k=1}^{\infty} a_{mk+1} z^{mk+1}$$

is convex, it follows that

$$|a_{mk+1}| \leq \frac{1}{mk+1} {2/m+k-1 \choose k}$$

$$\simeq \frac{1}{m\Gamma(2/m)} k^{2/m-2}.$$
(2)

In order to extend this result to Q, we need only to extend Waadeland's result to K and then use the relationship between Q and K. However this was done by

Pommerenke [3] and so (2) is true for $f \in Q$.

In [2], Livingstone has shown that if $F \in C$, S^* or K, then f defined for $z \in E$ by $f(z) = \frac{1}{2}[zF(z)]'$ is also in the same class for |z| < 1/2. The constant 1/2 cannot be improved. We prove this result for the class Q.

THEOREM 1. Let $F \in Q$ and for $z \in E$, define $f(z) = \frac{1}{2} [zF(z)]'$. Then $f \in Q$ for |z| < 1/2. The constant 1/2 is best possible.

Proof. Since $F \in Q$, there exists a function $G \in C$ such that for $z \in E$,

$$\operatorname{Re}\frac{(zF'(z))'}{G'(z)} > 0.$$

Let $g(z) = \frac{1}{2}[zG(z)]$, and consider

$$\frac{(zf'(z))'}{g'(z)} = \frac{\left[z\{(zF(z))'\}'\right]'}{\left[(zG(z))'\right]'}.$$
(3)

Now

$$[z\{(zF(z))'\}']' = zF''(z) + 2F'(z) + z[zF'''(z) + 3F''(z)]$$

$$= (zF'(z))' + F'(z) + z[(zF'(z))']' + zF''(z)$$

$$= z((zF'(z))')' + (zF'(z))' + zF''(z) + F'(z)$$

$$= z((zF'(z))')' + 2(zF'(z))'$$

Let zF'(z) = H(z), then from (3), we have

$$\frac{(zf'(z))'}{g'(z)} = \frac{((zH(z))')'}{((zG(z))')'}.$$

Since $H \in K$, Livingstone's results show that $\frac{1}{2}(zH(z))' \in K$ for |z| < 1/2. Thus for |z| < 1/2,

$$\operatorname{Re}\frac{(zf'(z))'}{g'(z)} > 0,$$

i.e., $f \in Q$ for |z| < 1/2. The function f(z) = z/(1-z) shows that 1/2 is best possible.

The following result for the calss Q follows on the similar lines as in [7] for the class C.

THEOREM 2. Let
$$f \in Q$$
 with $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$, and $g(z) \ll f(z)$. Then for all n , $S_n(\frac{1}{2}z) \ll f(z)$,

where

$$S_n(z) = z + \sum_{k=2}^{n} b_k z^k$$
 and $g(z) = z + \sum_{k=2}^{\infty} b_k z^k$.

("«" means "subordinate to").

Robertson [4] introduced the class C_1 of convex functions in one direction. These

are the functions for which the intersection of the image region with each line of a certain fixed direction is either empty or one interval. He has also shown that if f has real coefficients, then $f \in C$ if and only if $zf' \in T$, where T is the class of typically real zf', that is the functions with real coefficients.

THEOREM 3. If $f \in Q$ in E and has real coefficients, then it is convex in one direction.

Proof. Let Q(R), K(R) and $C_1(R)$ be the classes of functions which are in Q, K and C_1 respectively having real coefficients.

Let $f \in Q(R)$. This implies that $zf' \in K(R)$. But $K(R) \subset T$. Hence $zf' \in T$ and so $f \in C_1(R)$. Thus it follows that $Q(R) \subset C_1(R)$.

Remark. From the Theorem 3 and the results in [4], the following results follow immediately.

- 1. Let $f \in Q(R)$. Then (f(z)/z) > 1/2 for $z \in E$ and f(z)/z is subordinate to $(1+z)^{-1}$.
 - 2. Let $f \in Q(R)$ and $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$. Then

$$\frac{1 + |a_2|r}{1 + 2|a_2|r + r^2} \le \operatorname{Re}\left\{\frac{f(re^{i\theta})}{re^{i\theta}}\right\} \le \frac{1 + |a_2|r}{1 - r^2}$$

- 3. Let $f \in Q(R)$. If f maps |z|=r onto contour C_r whose length is L(r), then $L(r) \le 2\pi r/(1-r^2)$. The equality is obtained for f(z) = z/(1-z).
 - 4. Let $f \in Q(R)$. Then for $z \in E$,
 - (i) $|\arg(f(z)/z)| \le \arcsin|z|$,
 - (ii) $|\arg f'(z)| \le 2 \arcsin |z|$.
 - 5. Let $f \in Q(R)$ for $z \in E$. Then so is the function

$$F(z) = \int_{0}^{1} f(tz)d\phi(t) = z + \sum_{n=2}^{\infty} \mu_{n}a_{n}z^{n},$$

where $\phi(t)$ is any real function monotone increasing in the interval (0, 1) and the movements sequence $\{\mu_n\}$ is given by

$$\mu_n = \int_0^1 t^n d\phi(t) , \qquad \mu_1 = 1 .$$

It is well known [5] that

$$\operatorname{Re} \frac{(zf'(z))'}{f'(z)} > 0 \implies \operatorname{Re} \frac{zf'(z)}{f(z)} > \frac{1}{2} \text{ in } E,$$

i.e., every convex function is starlike of order 1/2. It is natural to ask if such a relationship exists between Q and K. The following example shows that this is not in fact the case.

Example. Take
$$f(z)=z$$
, $g(z)=z/(1-\alpha z)$; $1/2 < \alpha < 1/\sqrt{2}$. Then

$$\operatorname{Re} \frac{(zf'(z))'}{g'(z)} = \operatorname{Re} (1-\alpha)^2 > 0, \quad z \in E,$$

but

$$\operatorname{Re} \frac{zf'(z)}{g(z)} = \operatorname{Re}(1 - \alpha z)$$

and so

Inf Re
$$\frac{zf'(z)}{g(z)} < \frac{1}{2}$$
 for $\frac{1}{2} < \alpha < \frac{1}{\sqrt{2}}$, $z \in E$.

References

- [1] INAYAT NOOR, K. and THOMAS, D. K.; On quasi-convex univalent functions, Int. J. Math. & Math. Sc., 3 (1980), p. 255-266.
- [2] LIVINGSTONE, A. E.; On the radius of univalence of certain analytic functions, *Proc. Amer. Math. Soc.*, 17 (1966), 352-357.
- [3] POMMERENKE, Ch.; On the coefficients of close-to-convex functions, Mich. Math. J., 9 (1962), 259–269.
- [4] ROBERTSON, M. S.; On the theory of univalent functions, Ann. Maths., 37 (1936), 374-408.
- [5] STROHHÄCKER, E.; Beiträge zur theorie der schlichten funktionen, Maths. Zeit., 37 (1933), 356-380.
- [6] WAADELAND, H.; Über k-fold symmetrische sternförmige schlichte abbildungen des Einheitskreises, Math. Scand., 3 (1955), 150-154.
- [7] BASGOZE, T., FRANK, T. L. and KEOGH, F.; On convex univalent functions, Can. J. Math., 22 (1970), 123-127.

Mathematics Department Kerman University Iran