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Let S, S*, K and C be the classes of univalent, starlike, close-to-convex and
convex functions. The class Q of quasi-convex univalent functions has been defined
and studied in [1]. A function fis analytic in the unit disc E with f(0)=0 and f’(0)=1
belongs to Q if and only if there exists a convex univalent function g such that for ze £
and ¢(0)=0, g'(0)=1,
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It is also established in [1] that feQ if and only if zf"e K. The geometric
interpretation of f e Q is that zf’ maps each circle | z|=r<1 onto a simple closed
curve whose tangent rotates, as 6 increases, either in the counterclockwise direction or
clockwise direction, in such a way that it never turns back on itself so much as to
completely reverse its direction. It has been shown in [1] that the class C of convex
functions forms a proper subclass of Q, and Q itself is included in K.
Waadeland [6] proved that every starlike m-fold symmetric function g, with
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Since g=zf" is starlike if f:
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is convex, it follows that
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In order to extend this result to O, we need only to extend Waadeland’s result to
K and then use the relationship between Q and K. However this was done by
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Pommerenke [3] and so (2) is true for f € Q.

In [2], Livingstone has shown that if Fe C, $* or K, then f defined for z€ E by
f(2)=4[zF(z)]’ is also in the same class for | z| <1/2. The constant 1/2 cannot be
improved. We prove this result for the class Q.

THEOREM 1. Let FeQ and for z€E, define f(z)=3%[zF(2)]'. Then fe€Q for
|z| <1/2. The constant 1/2 is best possible.

Proof. Since FeQ, there exists a function G e C such that for ze E,
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P >0.
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Let g(z) =4[zG(2)], and consider
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Now
[z{(zF (2))}') =zF "(2)+ 2F '(z)+z[zF ""(2) + 3F "(2)]
=(zF'(z)) + F'(2)+z[(zF '(2)) ] +zF "(2)
=z((zF '(2))) + (zF '(z)) +zF "(z)+ F '(2)
=z((zF'(2))) +2(zF '(2)y
Let zF '(z)= H(z), then from (3), we have
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Since H e K, Livingstone’s results show that 1(zH(z))’ € K for | z| < 1/2. Thus for
lz|<1/2,
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i.e., feQ for | z| <1/2. The function f(z)=z/(1—z) shows that 1/2 is best possible.
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The following result for the calss Q follows on the similar lines as in [7] for the
class C.

THEOREM 2. Let f€Q with f(z)=z+ ). a,z", and g(z) <f(z). Then for all n,
n=2
5,32)< f(2),

where
o]

S(2)=z+ ) bz* and g(z)=z+ ) bz*.
k=2

k=2

(“<” means ‘“‘subordinate to”).

Robertson [4] introduced the class C; of convex functions in one direction. These
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are the functions for which the intersection of the image region with each line of a
certain fixed direction is either empty or one interval. He has also shown that if f has
real coefficients, then f € C if and only if zf” € T, where T is the class of typically real
zf”, that is the functions with real coefficients.

THEOREM 3. If feQ in E and has real coefficients, then it is convex in one
direction.

Proof. Let Q(R), K(R) and C,(R) be the classes of functions which are in Q, K
and C, respectively having real coefficients.

Let f € Q(R). This implies that zf” € K(R). But K(R)=T. Hence zf’ e T and so
fe€C(R). Thus it follows that Q(R) = C,(R).

Remark. From the Theorem 3 and the results in [4], the following results follow

immediately.
1. Let feQ(R). Then (f(z)/z)>1/2 for zeE and f(z)/z is subordinate to
(14+2)7 L

2. LetfeQ(R)and f(z)=z+ ), a,z". Then

n=2

re

0
1+]|a,lr <Re{f(re )}<1+|a2|r

14+2ayr+r*~ 0= 1—r2

3. Let feQ(R). If f maps |z|=r onto contour C, whose length is L(r), then
L(r)<2nr/(1—r?). The equality is obtained for f(z)=z/(1—z).
4. Let feQ(R). Then for zeE,

(@ larg (f(2)/2)| = arcsin|z],
(i) l|argf'(z)| <2 arcsin |z|.
5. Let feQ(R) for ze E. Then so is the function

Fo)= j JMd0=2+ 3, ma,
0 n=2

where ¢(r) is any real function monotone increasing in the interval (0, 1) and the
movements sequence {4,} is given by

1
#n=L td@),  p=1.
It is well known [5] that
/@) zf'(z) 1
e >0 Re >—
1@ fla 2
i.e., every convex function is starlike of order 1/2. It is natural to ask if such a

relationship exists between Q and K. The following example shows that this is not in
fact the case.

Example. Take f(z)=z, g(z)=2z/(1—az); 1/2<a<1/\/2. Then

R in E,
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')y
Re———==Re(l —a)?
e 70 e(l-w)*>0, zeE,
but
Re /@) =Re(1 —az)
9(2)
and so
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! 1 1
InfRer(z)<-1— for —<a< , zeE.
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