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Introduction

In 1905, an English genius puzzlist Dudeney [2] proposed the “Round Table
Problem,” as follows:

“Seat the same n persons at a round table on (n— 1)(r—2)/2 occasions so that no
person shall ever have the same two neighbours twice. This is, of course, equivalent to
saying that every person must sit once, and only once, between every possible pair.”

This problem may look easy at a first glance, but one will soon find it quite
difficult to solve. Dudeney [3] declared that he had found a subtle method for solving
all cases of », but he died without publishing it. To the authors’ knowledge, solutions
are known only for the cases of n=p+ 1 and n=2p, where p is any prime number [5].

In this paper, we give a solution of the round table problem for the case of
n=p*+1, where k is any positive integer, by using a cyclic permutation of the
projective linear group PGL(2, p*).

Preliminaries

To begin with, we will give some basic concepts on the projective linear group
PGL(2, p*) [1]. Let p be a prime and k be a positive integer. We consider a Galois field
GF[p"]. Following the usual notation, we denote

q=p*, K=GF[q], K*=K—-{0}.
We denote by PG(1, ¢) the one-dimensional projective space over K. The (g+1)
points in PG(1, g) may be represented by the ¢ symbols [1, x], where x runs through
GFlg], and the additional symbol [0, 1]. We think of PG(l, g) as the set KU {c0}
where oo is the image of [0, 1] under the bijection [x,, x,]<x,/x,. We put
K*=KuU {0} hereafter.

The projective linear group PGL(2, g), that is PGL(2, p*), is defined as a
permutation group over K*, whose elements are given by

x-(ax+p)/(yx+9), xeK', o, B,y, 6K, adxpy.
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Thus, the number of elements in PGL(2, q) is (g+1)g(g—1). It is known that
PGL(2, ¢) constitutes a triply transitive group over K*. Let

f(n=r*—ar—>b, aeK, bek*

be a minimum polynomial for the extended Galois field GF[¢?] over K. Then, the
sequence of points x,, x;, X,, - - - generated by

x;=(ax;_; +1)/bx;_; = P(x;_,), j=1,2,3, --. )

runs through all points of K* once and only once, and returns to the starting point x;,.
This can be proved as a special case of Singer’s theorem [4]. We call this sequence
fundamental cyclic sequence by the permutation P, and denote it by

X=(x0’ xla Xz, MY xq) . (2)

And P is called generating permutation of the fundamental cyclic sequence X.

Some properties of cyclic sequences

For the fundamental cyclic sequence X in Equation (2), we define the induced
cyclic sequence sX+¢ by
sX+t=(sxo+1t, 5x+1, 58X, +1, -+, sx,+1), seK*, tek. 3)

Of course, we regard sx,+¢ follows sx,+¢. Every point in the fundamental cyclic
sequence by P is represented by

X;=P(x;- ) =P(P(x; )= P(x; )= =Pl(x)), j=0,1,2,.¢.
Then, the points in the induced cyclic sequence sX + ¢ are written as
sPi(xp)+t, j=0,1,2,---,q.
Define a permutation R by
R(x)=sx+1, xeK*.
Then, by using the relations
sPi(xy)+t=[RP'R™'IR(xy)=[RPR™'J’R(x,), j=0,1,2,---,¢,

the generating permutation for sX +¢ is given by RPR™!. So, in this connection, we
call both fundamental cyclic sequence and induced cyclic sequence simply cyclic
sequence, if no confusion occurs.

LEMMA 1. Let sandt run through all the elements in K* and K respectively, and
generate q(q— 1) cyclic sequences sX+t from X. Let y,, y;, ¥, be any three points in K*.
Then the ordered triple {y,, y,, y,} appears once and only once in some cyclic sequence
. as consecutive points.

Proof: The fact that y,, y,, y, appear in some cyclic sequence as consecutive
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points means that one can choose s (e K*), ¢t (eK), and j (0<j=<¢) so that the
following equations hold:

Yo=sPI(xp)+1,

yi=sP*(xo)+1,

Ya=5PI*?(xy)+1.
Here, sPJ(x,)+1 is a linear transformation of x,, and the total number of such linear
transformations obtained by varying s, ¢, j is (g+ 1)g(¢ — 1). Hence, if we prove s=y,
t=t, and j=j" from the relation

sPIx)+t=5Pi(x)+1, xeK*,

then (g+ 1)g(g—1) points of sPi(x)+¢ constitute a triply transitive group and the
lemma holds.
First, let

sPIi(x)+t=5Pi(x)+t =00 .
Then, Pi(x,)= P’ (x,)= oo and j=j holds. Next, let P(x,)=0. By the equality
sPi(x,)+t=5Pi(x,)+1 ,
we get t=¢". From this, s=s" is easily obtained. Q.E.D.
For a cyclic sequence X, we define inverted cyclic sequence X, as a sequence in
which the order of X is inverted. The inverted cyclic sequence of X in Equation (2) is

X=(-xq5 xq-—la xq—Zs sty X, xO) .

LEMMA 2. Let X be a fundamental cyclic sequence generated by
xJ=P(XJ_1)=(an_1 + 1)/bx1_l .

If we get an induced cyclic sequence sX+t from X, then its inverted cyclic sequence is
given by

sX+t=—sX+salb+t. 4

Proof. Since X is generated by P(x)=(ax+1)/bx, X is generated by
P~ Y(x)=1/(bx—a). Let

R(x)=—x+a/b,
then
P Y(x)=RPR (x).
This means that the inverted cyclic sequence X is induced by R, and X is given by

X=—X+alb.
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Thus, we obtain
sX+t=sX+t=—sX+salb+t.
Q.E.D.

Solution of the round table problem for n=p*+1

By Lemma 1 and Lemma 2, we can easily get a solution of the round table
problem for n=p*+ 1. Running s and ¢ through K* and K respectively, we construct,
from a fundamental cyclic sequence X, g(¢— 1) induced cyclic sequences

sX+t, seK*, tek. ®)

For each cyclic sequence sX+1, its inverted cyclic sequence —sX+sa/b+t is also
contained in Equation (5) as a different cyclic sequence. Therefore, if we remove one
from each pair of mutually inverted cyclic sequences, the remaining g(g—1)/2 cyclic
sequences constitute a solution of the round table problem.

The proof is almost self-evident. For any three points y,, y;, ¥, in K*, one of the
ordered triples {y,, 1, ¥»} and {,, y1, yo} appears once and only once in the g(g—1)/2
cyclic sequences. , )

In order to obtain a solution explicitly, we will find all pairs of mutually inverted
cyclic sequences in Equation (5). Let w be a primitive root of GF[ p*], and express the
elements of K by

0, °, o', @?, -, w72,
Then, from a cyclic sequence X, we obtain the following ¢ cyclic sequences:
sX, sX+0°, sX+o!, sX+aw?, -, sX+o? %, (6)
Since
—s=(p—1s,

any two cyclic sequences in Equation (6) are not mutually inverted when p >2. Their
inverted cyclic sequences are represented by

—sX, —sX+0°, —sX+o', —sX+a?, -, —sX+w?7%.

Here, the order of inverted cyclic sequences is not necessarily same as the order of the
original cyclic sequences in Equation (6). Thus, if we suitably select (¢ —1)/2 elements
in K*, and let s run through these elements, g(¢—1)/2 cyclic sequences

sX, sX+o°, sX+o!, sX+aw?, -, sX+wi™?

constitute a solution of the round table problem for n=p*+1.
Since

o V2= _1 ,

the elements of K* are expressed as
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ta, tol!, to?, -, T2,

THEOREM 1. Let p be an odd prime, k a positive integer, and put q=p* and
n=gq+1. Take a cyclic permutation of order n from the projective linear group PGL(2,
q), and let X be the fundamental cyclic sequence generated by it. Then, g(q—1)/2 cyclic
sequences of

o'(X+1), 0Zi<(q-3)2, tekK

constitute a solution of the round table problem for n persons, where  is a primitive root
of GF[p"].

For p=2, the relation s= —s holds, and two mutually inverted cyclic sequences
always appear in a pair in Equation (6). And if sxs’, sX+¢ and s’X+ ¢ are never
mutually inverted for any 7 and ¢’. Therefore, if s runs through all the elements in K*
and ¢ runs through just a half of the element of K, we can remove every one of the
mutually inverted cyclic sequences. But, this is still quite tedious and we will continue
our considerations a little further.

Let X=(o0, x;, X;, - - -, X,) be a cyclic sequence generated by the permutation P,
which is defined in Equation (1). Then we have

x;=alb, x,=0, Xy +x,=afb. @)
If we assume
Xj+xq+1_j=a/b (8)
and use the relations
Xj41=P(x;)=(ax;+1)/bx;,
xq—j=P_l(xq+1-j)= 1/(bxy41-j—a),
we obtain
Xj41+x,-;=alb.

Thus, by mathematical induction, Equation (8) holds for j=1, 2, ---, [(g+1)/2],
where [z] denotes the largest integer not greater than z.

From the above argument, for the case of p=2, two cyclic sequences X+ ¢ and
X+t+a/b (or, more generally, s(X+¢) and s(X+t+a/b)) are mutually inverted.
Therefore, let a/b be a base of K, then the elements of K are classified into two classes,
one of which contains a/b in its polynomial representation. Thus, if ¢ runs through
one of the above classes and s through K*, g(¢—1)/2 cyclic sequences of the form
sX+1 constitute a solution of the round table problem for n=2F+1.

Especially, if we substitute aX/b by X, Equation (8) becomes

Xj+xq+l_j=l . (9)

We call a cyclic sequence having this property normalized cyclic sequence. It is easily
shown that the permutation by which the normalized cyclic sequence is generated is
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given by
{x+(b/a*)}/x .

Now, if we express the elements of Galois field by using the minimum
polynomial, they are classified into two classes according as the unit is contained in its
polynomial representation or not. So, by the above results, we obtain the following
theorem:

THEOREM 2. Let k be a positive integer, q=2% and n=q+1. Take a cyclic
permutation of order n from the projective linear group PGL(2, g), and construct a
normalized cyclic sequence X from it. Let w be a primitive root of GF[2¥], and let t run
through 2*~* values of

t=w(5k_2wk_2+5k_3a)k_3+ tee +51(U+50) )

where §;, j=0, 1,2, - - -, k—2, are either 0 or 1. Then, the q(q—1)/2 cyclic sequences
(X+1), i=0, 1, 2, ---, g—2, constitute a solution of the round table problem
Sfor n=2%41.

Examples

Example 1. n=5 (by GF[2%)).

Let g=2? and construct the extended Galois field GF[¢?] from GF[q]. Let w be a
primitive root of GF[g] and let »® +w+ 1 be a minimum polynomial for GF[g], then
we can take

f=r*+r+o

as a minimum plynomial for GF[¢?]. Therefore, a=—1, b= —w? and P(x)=
(x—w?)/x. Let x,= oo and construct a normalized cyclic sequence X. Then we have

X=(0, 0°, ', »? 0).

Take 0 and w' as two values of ¢ in Theorem 2, we obtain the following six cyclic
sequences as a solution of the round table problem for n=>5:

(X +0)= (00, 0°, @', w?, 0),
0 (X+0)=(00, @', 0?, 0° 0),
(X +0)= (o0, 0?, «°, w!, 0),
(X +w)=(w0, v?, 0, 0°, »'),
o' (X +w)=(w, o°, 0, ®', »?),
o (X+o)=(w0, o', 0, v?, 0°).

If we denote 0, 1, 2, — oo instead of w°, ', w?, 0, respectively, the above sequences are
represented by
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which correspond to

given by Dudeney [2].

Example 2.

n=9, 17, 33.

Since we can easily obtain solutions of the round table problem for n=9, 17, 33
by the same procedure as in Example 1, we only list the minimum polynomials for
GF[2", (k=3, 4, 5), the normalized cyclic sequences X ’s, and the subsets of K which
give 2¥~1 values of ¢ in Theorem 2.

For n=9:

Minimum polynomial=w?+w+1,

—_ (o 2 5 3 1 4 6
X_(wawaw9w’wawsw9w,0)’

4 values of t={0, o', w?, w*}.

For n=17:

Minimum polynomial =w*+w+1,

X=(00, @°, @3, 02, 0%, w'3, w*, W3, 7, ©°, W'°, W', WS, W?, W', W', 0)

8 values of 1=1{0, w', 0?, @, ©°, 0®, ©°, '}

For n=33:

Minimum polynomial=w’*+w+1,

X=(00, 0°, ®*%, »'S, 0?°, »'°, @
0®, o5, o', 02, 0B, 08, 0?7, 0%, w

13

3

0?2, 03, o', o', v, 0, W°, 0, 0)

16 values of t={0, w!, 0?, 0*, w*, w® o, ®°, w2, 03, ©'°, W?°,

Example 3.

(1)21, (1)24, 0)28, w

n=10 (by GF[3%)).

30}

19 2 7 30 21
, W7, W7, W, W, W,

25 17
, W, W,

We shall take again normalized cyclic sequences, though it is not obligatory for
p>2. Take w® +w+2 as a minimum polynomial for GF[3?] and P(x)=(x—w’)/x as a

generating permutation of the fundamental cyclic sequence, then we have
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14

(00, @°, 0°, W', 03, w*, w°, w?, w’, 0).

X=

From this sequence, we obtain the following 36 cyclic sequences as a solution of the

round table problem for n=10:

et aitea e tayeayealtateTatm ey
. n o & »n © o © o - O
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0
1
2
3

(00, w
(o0, w',
(00, w?,
(00, w?,
=(oo
(o0,
(o0,
(o0,
(o0,
(o0,
(o0,
(o0,
(o0,
(o0,
(o0,
(o0,
(o0
(o0
(o0,
(o0,
(00,
(00,
(o0,
(o0,
(00,
(o0,
(o0,
(00,
(o0,
(o0,
(o0,
(o0,
(o0,
(o0,
(o0,

o®(X+0)
o'(X+0)
w*(X+0)
w*(X+0)

(X 4+ w®)= (o0,
o' ( X+ o)

26, 28, 50.
Since we can easily obtain solutions of the round table problem for n

n=

Example 4.

26, 28, 50
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by the same procedure as in Example 3, we only list the minimum polynomials, the
generating permutations P(x)’s, and the normalized cyclic sequences X’s.

For n=26:

Minimum polynomial=w?+ 3w+ 3

P(x)=(x—aw?¥)/x

X=(OO, wo, 0)2, wl4, CDZZ, wls, COIS, wlg’ COZO, COS, wlz, 0)7, wl7
C06, wlﬁ, wll, wls’ w3’ 0)4, wlo’ COB, COI, w9’ le (023, 0)

For n=28:

Minimum polynomial =w?+ 2w+ 1

P(x)=(x—?Y)/x

X=((X), 0)0, wlS’ CU23, wlo’ 0)19, CO25, (03, (017, COZO, Cl)16, (1)7,
CUQ, ws, w13’ w12, w14, C()S, (1)1, CU4, wls’ wZZ’ w2’ wll,
CO24, CO6, le’ O)

For n=>50:

Minimum polynomial = w? + 6w+ 3

P(x)=(x—a*")/x
X=(00, 0°, 0, 0, 0%, 0%, ¥, %2, B, ©°, WP, W WP, Wb

>

H

, W7, W7, W, W, W, W,
(1)23, 0)16, CO35, COZ, 0)27, C()13, 6046, 607, 6()8, CU37, wlS, 6032, wlO’ CO39,
6040, C!)l, Cl)34, (1)20, 6045, wlZ’ 0)31, 0)24, CU4, (1)44, (06, (1)18, CO38,
6()22, (,05, le, (()11, CO14, 0)19, CU17, 6047, 0)
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Appendix. Schedules for n=13~25

Mr. Henry H. Dudeney [2] declared in his book that a solution of the round table
problem was possible for any number of persons and he had recorded schedules for
every number up to 25 persons inclusive and for 33. However, he did not give any
method for solving the problem and only showed schedules for every number up to 12
persons inclusive. It seems that a solution of the problem is possible for any number
of persons, because a schedule for any small number of persons can be obtained either
by some theoretical method or by the method of trial and error. One of the authors,
G. Nakamura, collects some schedules for small numbers of persons. In this
appendix, we give schedules for every number from 13 to 25 persons. The schedules
are obtained by Kiyasu-zen’iti for 13 persons, by G. Nakamura for 15, 16, 19, and 22
persons, by K. Koba for 17 persons, by Y. Kushida for 21, 23, and 25 persons. The
schedules for 14, 18, 20, and 24 persons are easily obtained by an elementary method.
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In order to introduce a simple expression, we first give known schedules for 5 and
6 persons. A schedule for 5 persons is given by

S jw [N = o o
ol |w N |k |
w N e o s |w
[ L= Y P (VOO [CR P

LU i (= B (VU § )

Except the first column, every number descends in cyclical order. So, we briefly
express this schedule by

0 1 2 3 4
0 1 3 4 2 ---C.S.

(C.S.: 0+1+2+3+4>0)

where C.S. means cyclical shift. Another schedule for 5 persons is

0 1 2 3 4 0 2 1 4 3
0 1 3 4 2 0 3 1 2 4
0 1 4 2 3 0 4 1 3 2

which is equivalent to the previous schedule. It is seen that 0 and 1 are repeated down
the column and the other numbers descend in cyclical order. Thus, we briefly express
this by
0 1 2 3 4 ---2cC.S.
0 2 1 4 3 ---2¢C.S.
(C.S.: 23+4>2)

(0 and 1: repeaters)

A schedule for 6 persons is given by

01 2 5 3 4 01 3 4 5 2
0 2 3 1 4 5 0 2 4 5 1 3
0 3 4 2 5 1 0 3 5 1 2 4
0 4 5 3 1 2 0 4 1 2 3 5
0 5 1 4 2 3 0 5 2 3 4 1

In this case, the number 0 is repeated down the column and the other numbers
descend in cyclical order. So, we express this by

01 2 5 3 4 ---2C.S.
0 1 3 4 5 2 =---C.S.

(C.S.: 152+3+4>5+1)

(0: repeater)
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14

15

16

Solution of the Round Table Problem for the Case

4 11 6 9 8 7 10 5 12

10 8 7 11 4 3 12 1 6

9 10 5 3 12 7 8 1 11

11 5 10 1 9 6 12 3 7

o |o |o |o |o jo

NN N N NN

1
5
6
8
4
3

3
9
4
7 1 3 12 9 6 4 11 10 5
8
1

12 4 11 8 7 9 6 10 5

of (p*+1) Persons

--- C.S.
--- C.S.
--- C.S.
-—- C.S.
--- C.S.
--- C.S.

(C.S5.: 2+3+4+5>6>7>8>9>10>11+12+2)

(0 and 1: repeaters)

3 9 5 7 13 6 8 4 10 2

12 -—

6 5 10 1 13 12 3 8 7 4

1 ——

9 1 2 8 13 5 11 12 4 6

10 -—--

LS RV (-

12 10 7 2 13 11 6 3 1 8

[ J—

3

2 6 12 9 13 4 1 7 11 10

8 -

o |o |Jo |o |o |o

L= O, T B - (VOIS [l

1

5 2 4 3 13 10 9 11 8 12

A—

3

(C.S.: 0+1+2+3+4>5>6>7>8+9>10+11+12+0)

(13: repeater)

14 4 13 5 12 6 11 7 10 8 9 0

0

3 14 6 11 13 4 7 10 12 5 8 9

11

6 9 8 7 10 5 12 3 14 O

13

9

8 3 14 10 7 11 4 13 0

12

5

12 0 6 11 9 14 3 4 13

10

13

4 9 8 12 5 11 0 7 10

14

o e e e e e

LSRN LS DR [CRE TSR [ [N

7

6
8
6
4

10 0 8 9 13 5 12 14 3

Lo N (VLI LN LV I

11

14

(C.S.: 2+3%4>5+6>7+8+9+10>11>12>13>14+2)

(0 and 1: repeaters)

3 12 5 10 7 8 9 6 11 4

13 2

C.s.
C.s.
C.s.
C.s.
C.s.
c.s.

15

13

6 9 5 10 4 11 8 7 12 3

1 14

15

12

2 13 1 14 5 10 9 6 8 7

11 4

15

11

12 3 5 10 13 2 6 9 14 1 7 8

15

10

11 4 6 9 1 14 7 8 2 13

12 3

15

1 11 7 5 2 10 8 4 14 13 9 3 12

15

o o |©o |o |o o |o

8 10 5 13 2 1 14 4 11 3 12 9 6

15

(C.5.: 122+3+4+5+6>7>8+9>10+11>12+13>14>15>1)

(0: repeater)

C.s.
c.s.
C.s.
c.s.
c.s.
C.s.
C.s.

c.s.
c.s.
c.s.
c.s.
c.s.
c.s.
c.s.
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n=17
n=18
n=19
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2 3 4 5 6 7 8 9 10 11 12 13 14

IKENO

15 16

1 7 12 13 9 3 11 6 14 8 4 5 10

16 15

7 1 8

6 5 2 4 13 15 12 11 9 16

10 14

12 8 1 15 10 11 3 14 6 7 2 16 9 5 13

13 6 15 1 3 9 10 7 8 14 16 2 11 4 12

9 5 10 3 1 13 15 2 4 16 14 7 12 8 11

w

2 11 9 13 1 12 5 16 4 8 6 15 14 10

o |lo o |o |o |jo |o |o

@ |~ oY [ S (W IN

11 4 3 10 15 12 1 16 5 2 7 14 13 6 9

(C.S.: 0+1+2+3+4>5+6-7+8+9+10+11+12+13+14>15+16-0)

15 3 13

5 11 7 9 17 8 10 6 12 4 14

16

13 6 9 10 5 14 1 17 16 3 12 7 8 11

15

14

C.s.
C.s.
C.s.
c.s.
C.s.
C.S.
C.Ss.

- C,
- C.
-—-cC.

2
4
11 9 5 15 16 4 10 17 7 13 1 2 12 8 6
12 1 3 10 11 2 17 15 6 7 14 16 5 8

13

- C.

15 14 8 4 1 11 17 6 16 13 9 3 2 10

12

- C.

1 10 13 15 8 3 17 14 9 2 4 7 16 12

11

-—C.

4 6 1 9 15 12 17 5 2 8 16 11 13 14

10

- C.

o |o |Jo |o |0 |o |o |o

0 (N oy b e N e

= W jun | o

7 2 6 3 5 4 17 13 12 14 11 15 10 16 9

- C.

(C.S.: 0+1+2+3+4>5+6->7+8+9+10+11+12+13+14>15+16~0)

(17: repeater)

3 18

14 7 12 9 8 13 6 15 17 4 5 16 10

11

13 11 10 14 7 0 15 6 18 3 4 17

12

14 16

5 0 17 4 15 6 9 12 18 3 10 11

13

0
5 16 8
7
9

12 16

5 6 15 13 8 3 18 0 4 17 11 10

14

11 10 0

12 9 4 17 13 8 5 16 18 3 14 7

15

13 8 0

14 7 17 4 11 10 18 3 6 15

9 12

16

15 6 11

10 5 16 3 18 8 13 0 9 12

14 7

17

17 4 13

8 7 14 5 16 0

6 15 11 10

9 12

w &~ o [N o o

18

e Gl Gl el L el L Ll L

3 18 4

17 5 16 6 15 7 14 8 13 9 12 10

(C.S.: 2+3+4->5+6>7+8+9+10+11+12+13+14+15+16->17+18+2)

(0 and 1: repeaters)

17 3 15 5 13 7 11 9 19 10 8 12 6 14 4 16

18

15 6 11 10 7 14 3 18 19 1 16 5 12 9 8 13

17

13 9 7 15 1 2 14 8 19 11 5 17

18 4 12 10

16

11 12 3

1 14 9 6 17 19

2 13 10 5 18 16 7

15

15 18

6 8 16 17 7 19

12 2 3 11 13 1 4

14

18 14

11 2 4 9 16 19

3 10 15 17 8 5 1

13

13 18 8 4 3 9 17
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1

8 2 7 3 6 4 5 19 14 15 13 16 12 17 11
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(C.S.: 0>1+2>3+45>5+6+>7+8+9+>10+11+12+13+14+15+16-+17+18~+0)

(19: repeater)

S.
S.
S.
S.
S.
S.
S.
S.

c.s.
c.s.
c.s.
c.Ss.
C.Ss.
C.s.
c.Ss.
c.Ss.
c.s.

--- C.S.
--- C.S.
--- C.S.
--- C.S.
--- C.S.
--- C.S.
--- C.S.
--- C.S.
--- C.S.



n=21
n=22
n=23

Solution of the Round Table Problem for the Case of (p*+ 1) Persons

(C.S.: 152+3+455+6>7+8+9+10+11>12+13+14+15>16+17+18+19+20->21-+1)

(0 and 22: repeaters)

0 19 2 17 4 15 3 16 5 14 7 12 9 10 11 8 20 6 13 18 1 --- C.S.
O 19 10 9 20 5 14 11 8 13 6 15 4 12 7 1 18 3 16 17 2 --- C.S.
0 19 4 15 8 11 12 7 16 3 1 18 5 14 9 10 13 6 17 2 20 =--- C.S.
O 19 6 13 12 7 18 1 5 14 20 11 8 17 2 &4 15 10 9 16 3 -—— C.S.
0 19 8 11 16 3 5 14 13 6 2 17 10 9 18 1 20 7 12 15 4 ---C.S.
O 19 20 10 9 1 18 11 8 2 17 12 7 3 16 13 6 4 15 14 5 --- C.S.
0 19 12 7 5 14 17 2 10 9 3 16 15 4 8 11 1 18 20 13 6 --- C.S.
0 19 14 5 9 10 4 15 18 1 13 6 8 11 3 16 20 17 2 12 7 =---C.S.
0 19 16 3 13 6 10 9 7 12 20 4 15 1 18 17 2 14 5 11 8 ---C.S.
O 19 18 1 17 2 16 3 20 15 4 14 5 13 6 12 7 11 8 10 9 --- C.S.
(C.S.: 1+2+3+4>5+6>7+8+9->10+11+12+13+14+15>16>17-18>19+1)
(0 and 20: repeaters)
O 21 2 19 4 17 6 15 8 13 10 11 12 9 14 7 16 5 1 20 3 18 --- C.S.
O 21 4 17 8 13 12 9 16 5 20 1 3 18 7 14 11 10 2 19 6 15 =--- C.S.
0 21 15 6 9 12 3 18 5 16 11 10 17 4 2 19 8 13 14 7 20 1 ---C.S.
0 21 8 13 16 5 3 18 11 10 19 2 6 15 14 7 1 20 9 12 17 4 --—- C.S.
0 21 10 11 20 1 9 12 19 2 8 13 18 3 7 14 17 4 6 15 16 5 --- C.S.
0 21 9 12 18 3 6 15 10 11 1 20 13 8 4 17 16 5 7 14 19 2 --- C.S.
O 21 3 18 6 15 9 12 8 13 5 16 2 19 20 1 17 4 14 7 11 10 --- C.S.
O 21 20 1 19 2 18 3 17 4 16 5 15 6 14 7 13 8 10 11 9 12 --- C.S.
0 21 7 14 2 19 16 5 9 12 4 17 18 3 11 10 6 15 20 1 13 8 --- C.S.
0 21 16 5 11 10 4 17 20 1 15 6 8 13 3 18 19 2 12 9 7 14 --- C.S.
(C.S.: 1+2+3+45+6>7+>8+9>10-11+12->13+14+15>16>17+18+19+20+21+1)
(0: repeater)
0 21 22 2 19 4 17 6 15 8 13 10 11 12 9 14 7 16 5 18 3 20 1 =—--
0 21 4 17 8 13 12 9 16 5 20 1 3 18 7 14 11 10 15 6 22 19 2 -——
0 21 15 6 10 11 16 5 1 20 17 4 2 19 8 13 22 14 7 9 12 3 18 -—-—
0 21 8 13 16 5 19 2 6 15 3 18 11 10 14 7 1 20 9 22 12 17 4 =——
0 21 10 11 20 1 9 12 19 2 8 13 18 3 22 7 14 17 4 6 15 16 5 --=
0 21 14 7 5 16 12 9 19 2 10 11 3 18 17 4 8 13 1 20 22 15 6 -—
0 21 12 9 3 18 15 6 8 13 20 1 22 11 10 &4 17 16 5 2 19 14 7 =
0 21 16 5 11 10 22 17 4 12 9 6 15 1 20 7 14 2 19 18 3 13 8 =—--
0 21 18 3 5 16 8 13 11 10 19 2 1 20 4 17 7 14 15 6 12 9 22 —--
0 21 20 1 19 2 18 3 17 4 22 16 5 15 6 14 7 13 8 12 9 11 10 ---
0 21 2 19 6 15 20 1 11 10 17 4 16 5 8 13 14 7 3 18 22 12 9 =—m-m

19

C.s.
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c.s.
c.s.
C.s.
c.s.
c.s.
c.s.
c.s.
c.s.
c.s.
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(C.S.: 0>12+34>5+6+7+8>9>10+11+12+13+14>15>16+17+18+19-20+21+22+0)

(23: repeater)
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19 4 6 17 12 11 24 7 16
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(0 and 24: repeaters)

(C.S.: 192+3+4+5+6>7+8+9+10+11+12>13+14>15+16+17+18+19+20+21+22+23~1)
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