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In this note we shall give some remarks on free subsets.
If X is a set, |X| denots its cardinality, and if X is a set and « is a cardinal, we
set:

[X]<*={Y|YCX and |Y|<&}.

Let #, A be cardinals. We say Fr (x, 2) iff for all f: [£]<*—[x]<“ there is X C«
such that |X|=2 and for all s € [X]<® f(s)NX Cs. If Fr (x, 4), 'we say that « has a
free subset of cardinality 2. Let & be a cardinal. We say J(x) iff for all f: [¢]<*—«
there is X C« such that |X|=« and f"/[X]<“+#£&. If J(x), we call £ a Jonsson cardinal.

PROPOSITION 1. Let «, 2 be cardinals. Fr (x, 2) iff for all f: [g]<*—[k]<“ there
is X Ck such that

O |1X|=4,

) forallse[XI:®if f(s)NXH#¢ then f()NsF¢.

Proof. From left to right is obvious. We shall prove right to left. Let f:
[£]<*—[x]<®. We define a function g: [¢]<“—[]< as follows:

g(s)=rf()—s (s € [£]<).
Then by hypothesis there is X C« such that | X|=2 and for all s e [X]<*if g(s)N X+~ ¢
then g(s)Ns#¢. By definition of g for all s € [X]<* g(s)Ns=(f(s)—s)Ns=¢. So
for all s € [X]<* we must have g(s) N X=¢. Hence we have for all s € [X]<¢,

fEONXCEEUINX=(g)NX)U(sNX)=gUs=s.
This means Fr («, 2).

PROPOSITION 2. If not Fr (x, k), then not Fr (c*, £*).

Proof. Let not Fr (x, £). For each y such that £<y<«*, we have f;: [r]<*—
[7]< such that for all X C7, |X|=|r|=« there is s € [X]<* such that f,(s)N X +#¢ and
f:(s)Ns=¢. Define f: [k*]<*—[£*]<* as follows:

fo={ 6D, s €T and r=max(s)
P, otherwise.
Assume Fr (¢*, £*). Then there is X C«* such that |X|=«* and for all s € [X]<* if
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S)NX+¢ then f(s)Ns+#¢. Since cardinality of X is «*, there is a € X such that
rZa<«* and |XNa|=|a|=k. Let ¥ be XNa. Then there is ¢ € [Y]<® such that
f(O)NY+#¢ and f(1)Nt=¢. But since max (tU{a}) is a, fEU{a)=f() 3 a.
Hence f(tU{a})NX+#¢ and f(tU{a})N(tU{a})=4¢. But this contradicts t U{a} €
[X]<“. So not Fr (x*, £*). ,

Next is easily proved by model theoretic definitions of Fr (x, £) and J(x). (see
Devlin [1]). Here we give another proof by Proposition 1.

ProrosiTioN 3. If Fr (k, &), then J(x).
Proof. Let f:[g]<*—>k. Define g: [£]<*—[£]<* as follows.

g@)={f()} (s e [£]**).
Then there is X C« such that |X|=« and for all s € [X]<* if g(s)N X #¢ then g(s)N
s#¢. Hence for all s € [X]<* if { f(s)} N X+~ ¢ then {f(s)} N s+ ¢, so f(s) € 5. Assume
that for each a € X there is s € [X]<“ such that f(s)=a. Ifa€ X, se[X]<* and f(s)=
a, then f(s)=a €s. Let Y be X—{a}. Then |Y|=|X|=« and for all s € [Y]<“f(s)+*
a. So fU[Y]<“#k. If there is @ € X such that for all se[X]<“f(s)=a. Then
f[X1%°#«. Hence J(x).
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