Note on Free Subsets

by

Nobuo Kubota

(Received November 17, 1980)

In this note we shall give some remarks on free subsets.

If X is a set, |X| denots its cardinality, and if X is a set and κ is a cardinal, we set:

$$[X]^{<\kappa} = \{Y | Y \subset X \text{ and } |Y| < \kappa\}.$$

Let κ , λ be cardinals. We say Fr (κ, λ) iff for all $f: [\kappa]^{<\omega} \to [\kappa]^{<\omega}$ there is $X \subset \kappa$ such that $|X| = \lambda$ and for all $s \in [X]^{<\omega} f(s) \cap X \subset s$. If Fr (κ, λ) , we say that κ has a free subset of cardinality λ . Let κ be a cardinal. We say $J(\kappa)$ iff for all $f: [\kappa]^{<\omega} \to \kappa$ there is $X \subset \kappa$ such that $|X| = \kappa$ and $f''[X]^{<\omega} \neq \kappa$. If $J(\kappa)$, we call κ a Jonsson cardinal.

PROPOSITION 1. Let κ , λ be cardinals. Fr (κ, λ) iff for all $f: [\kappa]^{<\omega} \to [\kappa]^{<\omega}$ there is $X \subset \kappa$ such that

- (1) $|X|=\lambda$,
- (2) for all $s \in [X]^{<\omega}$ if $f(s) \cap X \neq \phi$ then $f(s) \cap s \neq \phi$.

Proof. From left to right is obvious. We shall prove right to left. Let $f: [\kappa]^{<\omega} \to [\kappa]^{<\omega}$. We define a function $g: [\kappa]^{<\omega} \to [\kappa]^{<\omega}$ as follows:

$$g(s) = f(s) - s \ (s \in [\kappa]^{<\omega}).$$

Then by hypothesis there is $X \subset \kappa$ such that $|X| = \lambda$ and for all $s \in [X]^{<\omega}$ if $g(s) \cap X \neq \phi$ then $g(s) \cap s \neq \phi$. By definition of g for all $s \in [X]^{<\omega}$ $g(s) \cap s = (f(s) - s) \cap s = \phi$. So for all $s \in [X]^{<\omega}$ we must have $g(s) \cap X = \phi$. Hence we have for all $s \in [X]^{<\omega}$,

$$f(s) \cap X \subset (g(s) \cup s) \cap X = (g(s) \cap X) \cup (s \cap X) = \phi \cup s = s$$
.

This means $Fr(\kappa, \lambda)$.

PROPOSITION 2. If not Fr (κ, κ) , then not Fr (κ^+, κ^+) .

Proof. Let not Fr (κ, κ) . For each γ such that $\kappa \leq \gamma < \kappa^+$, we have $f_{\gamma} : [\gamma]^{<\omega} \to [\gamma]^{<\omega}$ such that for all $X \subset \gamma$, $|X| = |\gamma| = \kappa$ there is $s \in [X]^{<\omega}$ such that $f_{\gamma}(s) \cap X \neq \phi$ and $f_{\gamma}(s) \cap s = \phi$. Define $f : [\kappa^+]^{<\omega} \to [\kappa^+]^{<\omega}$ as follows:

$$f(s) = \begin{cases} f_{\gamma}(s - \{\gamma\}), & \text{if } s \in [\kappa^{+}]^{<\omega} \text{ and } \gamma = \max(s) \\ \phi, & \text{otherwise.} \end{cases}$$

Assume Fr (κ^+, κ^+) . Then there is $X \subset \kappa^+$ such that $|X| = \kappa^+$ and for all $s \in [X]^{<\omega}$ if

 $f(s) \cap X \neq \phi$ then $f(s) \cap s \neq \phi$. Since cardinality of X is κ^+ , there is $\alpha \in X$ such that $\kappa \leq \alpha < \kappa^+$ and $|X \cap \alpha| = |\alpha| = \kappa$. Let Y be $X \cap \alpha$. Then there is $t \in [Y]^{<\omega}$ such that $f_{\alpha}(t) \cap Y \neq \phi$ and $f_{\alpha}(t) \cap t = \phi$. But since $\max(t \cup \{\alpha\})$ is α , $f(t \cup \{\alpha\}) = f_{\alpha}(t) \not\ni \alpha$. Hence $f(t \cup \{\alpha\}) \cap X \neq \phi$ and $f(t \cup \{\alpha\}) \cap (t \cup \{\alpha\}) = \phi$. But this contradicts $t \cup \{\alpha\} \in [X]^{<\omega}$. So not Fr (κ^+, κ^+) .

Next is easily proved by model theoretic definitions of Fr (κ, κ) and $J(\kappa)$. (see Devlin [1]). Here we give another proof by Proposition 1.

PROPOSITION 3. If Fr (κ, κ) , then $J(\kappa)$.

Proof. Let $f: [\kappa]^{<\omega} \to \kappa$. Define $g: [\kappa]^{<\omega} \to [\kappa]^{<\omega}$ as follows.

$$g(s)=\{f(s)\}\ (s\in [\kappa]^{<\omega})\ .$$

Then there is $X \subset \kappa$ such that $|X| = \kappa$ and for all $s \in [X]^{<\omega}$ if $g(s) \cap X \neq \phi$ then $g(s) \cap s \neq \phi$. Hence for all $s \in [X]^{<\omega}$ if $\{f(s)\} \cap X \neq \phi$ then $\{f(s)\} \cap s \neq \phi$, so $f(s) \in s$. Assume that for each $\alpha \in X$ there is $s \in [X]^{<\omega}$ such that $f(s) = \alpha$. If $\alpha \in X$, $s \in [X]^{<\omega}$ and $f(s) = \alpha$, then $f(s) = \alpha \in s$. Let Y be $X - \{\alpha\}$. Then $|Y| = |X| = \kappa$ and for all $s \in [Y]^{<\omega} f(s) \neq \alpha$. So $f''[Y]^{<\omega} \neq \kappa$. If there is $\alpha \in X$ such that for all $s \in [X]^{<\omega} f(s) \neq \alpha$. Then $f''[X]^{<\omega} \neq \kappa$. Hence $J(\kappa)$.

Reference

 DEVLIN, K. J.; Some weak versions of large cardinal axioms, Annals of Mathematical Logic 5 (1973).

> Department of Mathematics Rikkyo University Ikebukuro, Tokyo Japan