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In this paper we shall give some remarks on /-partitions of a set of positive
measure and ideals l A which extend an ideal 1.

Let k be a regular uncountable cardinal number. An ideal over « is a set I of
subsets of x satisfying the following conditions:

(1) ¢el,

(2) xél,

(3) if Xeland YS X then Yel,

(4) if Xeland Yelthen XU Yel

An ideal I over x is nontrivial if, for all a <k, {a}€l. And an ideal I over «x is
said to be k-complete, if I satisfies the following condition:

If A<k and {X,|a<i}<I, then () X,el.
a<i
Throughout this paper, an ideal means a nontrivial k-complete ideal over «. Let I
be an ideal. We set I" ={X |X cx and X¢/} and say X has a positive measure or is a
set of positive measure if Xel *. A set Z<I™ is said to be an almost disjoint family
with respect to I, if Z satisfies the following condition:

If X, YeZand X#Y then XnYel.

If the cardinality of every almost disjoint family with respect to /is less than 4, I is said
to be A-saturated. Let 4 be a set of positive measure. An I-partition of 4 is a maximal
almost disjoint family W of subsets of 4. When W, and W, are I-partitions of A, we say
that W, is a refinement of W,, and denote it by W, < W,, if for every X €W, there is
Ye W, with XS Y. An ideal I is said to be precipitous if whenever 4el* and
W, (n<w) are I-partitions of A4 such that

W02W122Wn2 (Yl<(l)),

there is a sequence of sets

X02X12'2Xn2 (n<w)
such that for each n<w X,e W, and () X,# J.
n<ow

It is already known that if I is a x *-saturated ideal then [ is precipitous. (see [2])
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§1. I-partitions

LEMMA 1. Let A be a set of positive measure.

(1) If W, and W, are I-partitions of A, then there is an I-partition W of A such that
W<W, and W< W,.

(2) If Wis an I-partition of A and o<k, then W,={X—u l Xe W} is also an I-
partition of A.

Proof. Iisnontrivial k-complete, so (2) is obvious. Hence we have only to prove
(1). We can easily get the following propositions:

(1) If Zisan I-partition of 4 and X" is an I-partition of Xe Zthen () X’isan/-
XeZ
partition of A.

(i) If Z is an I-partition of 4 and X is a subset of 4 with Xel* then
Zy={XnY|XnYel" and YeZ} is an I-partition of X.
Hence we get that for all Xe W,

Wyx={XnY|XnYel* and Ye W,}

is an Fpartition of X, and W= (J W,y is an I-partition of 4. Moreover
XeW;

W= ) Wyx=|J) {XnY| X~ Yel*and YeW,)

XeW, XeW,;

={XNY|X~Yel"and XeW, and Ye W,}.
This means W< W, and W<W,. R

PROPOSITION 2.  Let I be a k-saturated ideal over k. Then if Ae 1™ and {W,}
are I-partitions of A such that

n<w

’W()ZW12"'ZW,,Z"' ,
then there is a sequence of sets with
X2X, 2 2X,2---

such that X,,e W, for eachn<wand | () X ,| =x. (| X| denotes the cardinality of X)
n<w

Proof. Let Ael" and W, (n<w) be I-partititons of A such that W,> W, >
©2W,=---. By Lemma 1. (2), we have for each a <k W,, (n<w) are I-parti-
tions of 4 such that Wy, > W,,>--- > W,,> - - -. Since [is k-saturated, Iis precipitous.
Hence there is a sequence X,,2X;,2 - 2X,,2X,.,,2 - - - such that for each n<w
X..€W,,and () X,,# . By the definition of W,, there is an X, € W, with X,, = X s

noe —
n<w
and such and X, is unique. Let X, e W, X,, < X,and X, ;€ W, ., X, ;1. X, .. Then
we have X, 2X,,,. Because of W,>W,,, thereis a Ye W, such that Y= X,,,. But
since X,2X,,;,and Y2X,,,,, we get X,=Y. Hence X,2X,.,. Thus we get for each
a <k thereis a sequence X,2X, 2+ 2X,2- - - such that foreach n<w X, € W, and
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( ﬂ X,) N (k—a)# . Since [ is k-saturated, we have | W, | <k for alln<w. Set Y be

n<w

the set of all sequences {Y,},<, such that Y,2Y,2---2Y,2--- (¥,eW,), then
| Y| <k, because x is a regular cardinal. Assume that for each {Y,},<,€ Y,| () Y,|<

k. Then there is a B <k such that for all {Y,},<,€Y n<o
(N Ynk=P=2
n<w

a contradiction. W

Let I be an ideal over x. Then we say f is an I-functionif dom (f)el". Let Ael™.
Then we say f :4—k be an unbounded /-function if {« l f(x)<y}elforall y<k. An
ideal I is said to be weakly normal if for each A €™ there is a minimal unbounded /-
function f with dom(f)<= A4, where a minimal unbounded /-function means an
unbounded I-function f such that there is no unbounded I-function g with
dom (g) =dom (f) and g(e) < f(«) for all xedom (g). A collection F of I-functions is
said to be closed under restrictions if for each I-function g with g< f € Fwe have ge F.

If I is precipitous, then every nonempty collection of /-functions which is closed
under restrictions has a minimal element (see [2]).

PROPOSITION 3 ([2]). If I if a precipitous ideal, then I is weakly normal.

Proof. We show that, if I is an ideal such that every nonempty collection of I-
functions which is closed under restrictions has a minimal element, then I is weakly
normal.

Let 4 be a set of positive measure. Set

F,={f | f is an unbounded I-function with dom ()= 4} .

Let g be an I-function such that g < f for some f € F,. Assume that g is not unbounded.

Then there is y<xk with {a|g(a)sy}¢1. Hence {oz] f(x)<y}¢ 1 This contradicts f
is unbounded. Thus we get F, is a collection of I-functions closed under restrictions.
Hence F, has a minimal element. This means / is weakly normal. W

§2. Length of an increasing sequence of ideals

Let I be an ideal over k and AeI*. We set
I|[A={X|Xck and XnAdel}.

1 | A is an ideal which extends 1. It is known that if I is A-saturated, then I | A is also A-
saturated.

PROPOSITION 4. (1) If I is precipitous, then so is 1 | A.

(2) If Iis an ideal such that every nonempty collection of I-functions closed under
restrictions has a minimal element, then so is I | A.

(3) If Iis weakly normal, then so is I| A.

Proof. (1): Let I be a precipitous ideal and AeI*. If Se(I|A)*, then SN A¢1.
Hence SN Ael™. Let WbeI| A-partition of Se (/| A)*. Then for any distinct elements
X, Yof Wyweget XnA¢l, YnA¢Iland X nA)n(YnA)= (XnY)nAel Set
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W,={XnA4 | Xe W}. Then we get W 4 is an I-partition of S N 4. Assume W ,isnot an
I-partition of S A. Then there is a T¢ 1 such that TSN A4 and (XnA) N T=
(TnX)n Aelforall Xe W.Since T¢ Tand T=T n A, we get T¢ I| A. Hence thereisa
Tsuch that Tc S, Te(I | AT and TnXel | A for all X e W. But this contradicts W is
an I| A-partition of S. Now let {W,},-,, be I| A-partitions of Se(I |A)* such that
Wo=W,> ---=W,>---. Then {W,,},., are I-partitions of SN A such that

WoazWi4=---=W,,>"--. Since I is precipitous, there is a sequence of sets
XonA2X,nA=2---2X,nA=2--- with X,n4eW,, for each n<w and
()| (X,nA)#. Thus if X,2X,2---2X,2- -, then the proof is complete. Let
n<w

X, 22X, for some n<w. By hypothesis there is a Ye W, with Y2 X, ,,. So we have
X,2X,110 A4, Y2X,,,nA¢I|A and X, # Y. But this contradicts X,, Ye W,
There are some equivalent definitions of precipitous ideals. We can see another
proof based on one of them in [3].
(2): Let I be an ideal satisfying the assumption of (2), 4el*, and F be a
nonempty collection of 1 | A-functions closed under restrictions. Set

FlA={f14]|feF},

where f [ 4 is a function with dom (f | 4)=dom(f)n4 and f | A< f. Since for
each fe Fdom (f)¢I| A4, we have dom (f | A)=dom (f) n A¢1. Hence f | Aisan I-
function. Let g be an /-function with g < '} 4 for some feF. Then g is an I |A-function,
because dom (g9) N 4=dom (g) ¢ /implies dom (g) ¢ I | A. Hence we get g € F, because of
gsflA=feF. Itisclear that g=g | 4. So ge F | A. Hence F [ 4 is a nonempty
collection of I-functions closed under restrictions. Therefore, by assumption, F | 4 has
a minimal element 4, which is clearly also a minimal element of F,

(3): LetIbe weakly normaland 4el*. Assume that [ ] A is not weakly normal.
Then there is a sequence of unbounded / | A-functions

fo>fis> > f>- (n<w),

where f, > £, .| means dom (f,) 2dom (f,,,) and f(«) > f,+1(a) for all eedom (£, . ,).
Then we have a sequence of I-functions

SolA>fi} A> - >f 1 A>--- (n<w).

For each n<w, £, is an unbounded /| 4-function, so we get {«| f,(x) <y} 1| 4 for all
y<k. Hence we have

{a| (i 1)@ <y} ={a|f(® <y} nAel
forally <x. Thismeansf,} A (n<w) are unbounded I-functions, a contradiction. [l

Next we shall give a remark on the length of the increasing sequence of ideals
which extends .

LEMMA 5. Let I be an ideal and be AclI*, Bel™. Then we have
(1) I|A=I|Biff AnB¢I, A—Beland B—Ael.
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(2) I|BgI|A iff there is a C< B such that C¢1, B—C¢land I|A=I|C.

Proof. (1):LetassumeI|A=I|B.IfA—B¢I,thenA—B¢I|AandA—BeI|B,
a contradiction. Hence we have A — Bel, and then 4 n B¢ 1. Similarly B—A4el.

Assume A " B¢ I, A—Beland B—Ael. Then Xel|Aiff XnAel ButXn A=
Xn({(AnB)u(A—B)=(Xn(4nB)) u(Xm(A—B)).SoXeI'Aifme(AmB)eI.
Similarly Xe|B iff X n (4~ B)el. Hence we get XeI| A iff Xel|B. Thus I|A=
1|B.

| (2): Assume C<B, C¢l, B—C¢l and I|A=1|C. Then we have I|B<I|C,
because X N BeIimplies X n CeI. From (1) we get I| B#1| C. Hence I| BE 1| A. Next
let us assume / | BglI | A. It suffices to observe the following 4 cases:
(i) An Bel,

(i) AnB¢l, A—Beland B—Ae€l,

(i) AnB¢land A—B¢l,

(ivy AnB¢I, A—Beland B—A¢L.
Assume the case (iv) occurs. Then if we set C=4 N B, then we have C< B, C¢l,
B—C=B—(AnB)=B—A¢l Andweget AnC=An(ANnB)=An B¢, A—C=
A—(AnB)y=A—Bel and C—A=¢el. Hence from (1) we get /| 4=1I|C. Next
we shall prove that only the case (iv) occurs. If (i) occurs, then we have 4 el | B and
A¢ 1| A, acontradiction. If (ii) occurs, then from (1) / | A=1| B, a contradiction. If (iii)
occurs, then we have 4—B¢I| A, because (4—B)nA=A4— B¢l But A—Bel|B,
a contradiction. Hence only (iv) occurs. W

If Iis an ideal over x and Z is an almost disjoint family with respect to I such that
w<|Z| <k, then we can construct a sequence of ideals of the form / | A such that

Igl|dys - SI4, 5+ (@<]|Z|)

in the following way:
Set y=|Z|, Z={X,|a<y} and
’ A= X;— U X,
B<v 6<a
for each a<y. Since
A,2X,— | Xs=X,— | X.nX,)¢I, then A4,¢1.
o<a i<a

And

Aa—Aa+1=<U X;— U Xé)‘(U Xp— U Xa)

B<y d<a B<v d<a+t1

=<U Xp>ﬁXa— U X,=X.— U X, ¢I.

B<y s<a 9<a
Hence from Lemma 5.(2) we get I| A, S1|A4,,.
To the contrary we have
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PROPOSITION 6. Let I be a A-saturated (A< k) ideal over k. If there is a sequence
of ideals such that

Il|dos - SI|4,5  (a<p),
then we have pu<A.

Proof. Assume pu> /. We shall construct a sequence of sets of positive measure
such that

By2B,2---2B,2 - (a<l)

and B;— B, ¢ I forall f<ocand I| 4,=1| B, for all « < 1. Then we can easily construct a
set of cardinality 4 and of pairwise disjoint sets of positive measure from {B, ] a<A}.
But this contradicts / is A-saturated.

We shall construct B, (x<A) by induction.

Let a=y+1. By hypothesis of induction, we already get {B‘,|5Sy} such that
I|4,=1|B,5I|A,.,. Hence from Lemma 5.2) there is B,,1SB, with B,,,¢1,
B,—B,, ¢land I|A4,,,=1|B,,,.

Let o be limit. We already get {B;|f <o} such that I|d;=I|B,&1|A, and
B;— By, ¢1 for each f<a. Hence for each f<a there is a Cy such that C;< By,
By —Cy¢Iand I[ Aa=1| C;. Then from Lemma 5.(1) we have 4, n Cy¢l, A,— Cyel
and Cy—A,el. Hence () (A4,—Cgel, because of a<i<k. Let us define

B<a

Dy=A, ~ Cy. Then from Lemma 5.(1) we have I| Dy=1| C;. Now define B,= () D,.
B<a

Then we get
B,=()Ds= () (4,0 Cp=) (Aa—(Aa—cﬂ»=Aa—ﬂU (A4, —Cp¢l.

B<a B<a B<a
And 4,—B,= | ) (4,—Cp)el, so A,— B,el Moreover B,— A,= ¢ € I. Therefore we
B<a .
have I|A4,=I|B,. Let be f<a. Since B,= () (4, C,), we get B, C,. And
o<a
By—B,=2B;—Cy¢ Iimplies B;— B, ¢ 1. Hence for all f <o B;— B, ¢ 1. This completes
the proof. W ;

From the remark of [1] we have that an ideal I over k is k-saturated iff every ideal
over k extending 7 is the ideal of form 7 | A. Hence we have

COROLLARY 7. Let I be a k-saturated ideal over k. If there is a sequence of ideals
such that

IghE elL,s - (a<p)

then we have p<i.
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