Length of an Increasing Sequence of Ideals

by

Nobuo Kubota

(Received March 10, 1981)

In this paper we shall give some remarks on I-partitions of a set of positive measure and ideals $I \mid A$ which extend an ideal I.

Let κ be a regular uncountable cardinal number. An ideal over κ is a set I of subsets of κ satisfying the following conditions:

- (1) $\phi \in I$,
- (2) $\kappa \notin I$,
- (3) if $X \in I$ and $Y \subseteq X$ then $Y \in I$,
- (4) if $X \in I$ and $Y \in I$ then $X \cup Y \in I$.

An ideal I over κ is nontrivial if, for all $\alpha < \kappa$, $\{\alpha\} \in I$. And an ideal I over κ is said to be κ -complete, if I satisfies the following condition:

If
$$\lambda < \kappa$$
 and $\{X_{\alpha} \mid \alpha < \lambda\} \subseteq I$, then $\bigcup_{\alpha < \lambda} X_{\alpha} \in I$.

Throughout this paper, an ideal means a nontrivial κ -complete ideal over κ . Let I be an ideal. We set $I^+ = \{X | X \subseteq \kappa \text{ and } X \notin I\}$ and say X has a positive measure or is a set of positive measure if $X \in I^+$. A set $Z \subseteq I^+$ is said to be an almost disjoint family with respect to I, if Z satisfies the following condition:

If
$$X, Y \in \mathbb{Z}$$
 and $X \neq Y$ then $X \cap Y \in I$.

If the cardinality of every almost disjoint family with respect to I is less than λ , I is said to be λ -saturated. Let A be a set of positive measure. An I-partition of A is a maximal almost disjoint family W of subsets of A. When W_1 and W_2 are I-partitions of A, we say that W_1 is a refinement of W_2 , and denote it by $W_1 \leq W_2$, if for every $X \in W_1$ there is $Y \in W_2$ with $X \subseteq Y$. An ideal I is said to be precipitous if whenever $A \in I^+$ and W_n $(n < \omega)$ are I-partitions of A such that

$$W_0 \ge W_1 \ge \cdots \ge W_n \ge \cdots$$
 $(n < \omega)$,

there is a sequence of sets

$$X_0 \supseteq X_1 \supseteq \cdots \supseteq X_n \supseteq \cdots \qquad (n < \omega)$$

such that for each $n < \omega \ X_n \in W_n$ and $\bigcap_{n < \omega} X_n \neq \emptyset$.

It is already known that if I is a κ^+ -saturated ideal then I is precipitous. (see [2])

§1. I-partitions

LEMMA 1. Let A be a set of positive measure.

- (1) If W_1 and W_2 are I-partitions of A, then there is an I-partition W of A such that $W \le W_1$ and $W \le W_2$.
- (2) If W is an I-partition of A and $\alpha < \kappa$, then $W_{\alpha} = \{X \alpha \mid X \in W\}$ is also an I-partition of A.

Proof. I is nontrivial κ -complete, so (2) is obvious. Hence we have only to prove (1). We can easily get the following propositions:

- (i) If Z is an I-partition of A and X' is an I-partition of $X \in Z$ then $\bigcup_{X \in Z} X'$ is an I-partition of A.
- (ii) If Z is an I-partition of A and X is a subset of A with $X \in I^+$ then $Z_X = \{X \cap Y \mid X \cap Y \in I^+ \text{ and } Y \in Z\}$ is an I-partition of X. Hence we get that for all $X \in W_1$

$$W_{2X} = \{X \cap Y \mid X \cap Y \in I^+ \text{ and } Y \in W_2\}$$

is an *I*-partition of *X*, and $W = \bigcup_{X \in W_1} W_{2X}$ is an *I*-partition of *A*. Moreover

$$W = \bigcup_{X \in W_1} W_{2X} = \bigcup_{X \in W_1} \{X \cap Y | X \cap Y \in I^+ \text{ and } Y \in W_2\}$$

$$= \{X \cap Y \mid X \cap Y \in I^+ \text{ and } X \in W_1 \text{ and } Y \in W_2\}.$$

This means $W \le W_1$ and $W \le W_2$.

PROPOSITION 2. Let I be a κ -saturated ideal over κ . Then if $A \in I^+$ and $\{W_n\}_{n < \omega}$ are I-partitions of A such that

$$W_0 \ge W_1 \ge \cdots \ge W_n \ge \cdots$$

then there is a sequence of sets with

$$X_0 \supseteq X_1 \supseteq \cdots \supseteq X_n \supseteq \cdots$$

such that $X_n \in W_n$ for each $n < \omega$ and $\left| \bigcap_{n < \omega} X_n \right| = \kappa$. (| X| denotes the cardinality of X)

Proof. Let $A \in I^+$ and W_n $(n < \omega)$ be *I*-partititions of A such that $W_0 \ge W_1 \ge \cdots \ge W_n \ge \cdots$. By Lemma 1. (2), we have for each $\alpha < \kappa$ $W_{n\alpha}$ $(n < \omega)$ are *I*-partitions of A such that $W_{0\alpha} \ge W_{1\alpha} \ge \cdots \ge W_{n\alpha} \ge \cdots$. Since I is κ -saturated, I is precipitous. Hence there is a sequence $X_{0\alpha} \ge X_{1\alpha} \ge \cdots \ge X_{n\alpha} \ge X_{n+1\alpha} \ge \cdots$ such that for each $n < \omega$ $X_{n\alpha} \in W_{n\alpha}$ and $\bigcup_{n < \omega} X_{n\alpha} \ne \emptyset$. By the definition of $W_{n\alpha}$ there is an $X_n \in W_n$ with $X_{n\alpha} \subseteq X_n$, and such and X_n is unique. Let $X_n \in W_n$, $X_{n\alpha} \subseteq X_n$ and $X_{n+1} \in W_{n+1}$, $X_{n+1\alpha} \subseteq X_{n+1}$. Then we have $X_n \ge X_{n+1}$. Because of $W_n \ge W_{n+1}$, there is a $Y \in W_n$ such that $Y \ge X_{n+1}$. But since $X_n \ge X_{n+1\alpha}$ and $Y \ge X_{n+1\alpha}$, we get $X_n = Y$. Hence $X_n \ge X_{n+1}$. Thus we get for each $\alpha < \kappa$ there is a sequence $X_0 \ge X_1 \ge \cdots \ge X_n \ge \cdots$ such that for each $n < \omega$ $X_n \in W_n$ and

 $(\bigcap_{n<\omega} X_n) \cap (\kappa-\alpha) \neq \emptyset$. Since I is κ -saturated, we have $|W_n| < \kappa$ for all $n < \omega$. Set Y be the set of all sequences $\{Y_n\}_{n<\omega}$ such that $Y_0 \supseteq Y_1 \supseteq \cdots \supseteq Y_n \supseteq \cdots (Y_n \in W_n)$, then $|Y| < \kappa$, because κ is a regular cardinal. Assume that for each $\{Y_n\}_{n<\omega} \in Y$, $|\bigcap_{n<\omega} Y_n| < \kappa$. Then there is a $\beta < \kappa$ such that for all $\{Y_n\}_{n<\omega} \in Y$

$$(\bigcap_{n<\omega}Y_n)\cap(\kappa-\beta)=\emptyset$$

a contradiction.

Let I be an ideal over κ . Then we say f is an I-function if $\mathrm{dom}\,(f) \in I^+$. Let $A \in I^+$. Then we say $f: A \to \kappa$ be an unbounded I-function if $\{\alpha \mid f(\alpha) \le \gamma\} \in I$ for all $\gamma < \kappa$. An ideal I is said to be weakly normal if for each $A \in I^+$ there is a minimal unbounded I-function f with $\mathrm{dom}\,(f) \subseteq A$, where a minimal unbounded I-function means an unbounded I-function f such that there is no unbounded I-function g with $\mathrm{dom}\,(g) \subseteq \mathrm{dom}\,(f)$ and $g(\alpha) < f(\alpha)$ for all $\alpha \in \mathrm{dom}\,(g)$. A collection F of I-functions is said to be closed under restrictions if for each I-function g with $g \subseteq f \in F$ we have $g \in F$.

If I is precipitous, then every nonempty collection of I-functions which is closed under restrictions has a minimal element (see [2]).

PROPOSITION 3 ([2]). If I if a precipitous ideal, then I is weakly normal.

Proof. We show that, if I is an ideal such that every nonempty collection of I-functions which is closed under restrictions has a minimal element, then I is weakly normal.

Let A be a set of positive measure. Set

$$F_A = \{f | f \text{ is an unbounded } I\text{-function with } \text{dom}(f) \subseteq A\}$$
.

Let g be an I-function such that $g \subseteq f$ for some $f \in F_A$. Assume that g is not unbounded. Then there is $\gamma < \kappa$ with $\{\alpha | g(\alpha) \le \gamma\} \notin I$. Hence $\{\alpha | f(\alpha) \le \gamma\} \notin I$. This contradicts f is unbounded. Thus we get F_A is a collection of I-functions closed under restrictions. Hence F_A has a minimal element. This means I is weakly normal.

§2. Length of an increasing sequence of ideals

Let I be an ideal over κ and $A \in I^+$. We set

$$I \mid A = \{X \mid X \subseteq \kappa \text{ and } X \cap A \in I\}$$
.

 $I \mid A$ is an ideal which extends I. It is known that if I is λ -saturated, then $I \mid A$ is also λ -saturated.

PROPOSITION 4. (1) If I is precipitous, then so is $I \mid A$.

- (2) If I is an ideal such that every nonempty collection of I-functions closed under restrictions has a minimal element, then so is $I \mid A$.
 - (3) If I is weakly normal, then so is $I \mid A$.

Proof. (1): Let I be a precipitous ideal and $A \in I^+$. If $S \in (I \mid A)^+$, then $S \cap A \notin I$. Hence $S \cap A \in I^+$. Let W be $I \mid A$ -partition of $S \in (I \mid A)^+$. Then for any distinct elements X, Y of W, we get $X \cap A \notin I$, $Y \cap A \notin I$ and $(X \cap A) \cap (Y \cap A) = (X \cap Y) \cap A \in I$. Set

 $W_A = \{X \cap A \mid X \in W\}$. Then we get W_A is an I-partition of $S \cap A$. Assume W_A is not an I-partition of $S \cap A$. Then there is a $T \notin I$ such that $T \subseteq S \cap A$ and $(X \cap A) \cap T = (T \cap X) \cap A \in I$ for all $X \in W$. Since $T \notin I$ and $T = T \cap A$, we get $T \notin I \mid A$. Hence there is a T such that $T \subseteq S$, $T \in (I \mid A)^+$ and $T \cap X \in I \mid A$ for all $X \in W$. But this contradicts W is an $I \mid A$ -partition of S. Now let $\{W_n\}_{n < \omega}$ be $I \mid A$ -partitions of $S \in (I \mid A)^+$ such that $W_0 \ge W_1 \ge \cdots \ge W_n \ge \cdots$. Then $\{W_{nA}\}_{n < \omega}$ are I-partitions of $S \cap A$ such that $W_{0A} \ge W_{1A} \ge \cdots \ge W_{nA} \ge \cdots$. Since I is precipitous, there is a sequence of sets $X_0 \cap A \supseteq X_1 \cap A \supseteq \cdots \supseteq X_n \cap A \supseteq \cdots$ with $X_n \cap A \in W_{nA}$ for each $n < \omega$ and $\bigcap_{n < \omega} (X_n \cap A) \ne \emptyset$. Thus if $X_0 \supseteq X_1 \supseteq \cdots \supseteq X_n \supseteq \cdots$, then the proof is complete. Let $X_n \not\supseteq X_{n+1}$ for some $n < \omega$. By hypothesis there is a $Y \in W_n$ with $Y \supseteq X_{n+1}$. So we have $X_n \supseteq X_{n+1} \cap A$, $Y \supseteq X_{n+1} \cap A \notin I \mid A$ and $X_n \ne Y$. But this contradicts $X_n, Y \in W_n$.

There are some equivalent definitions of precipitous ideals. We can see another proof based on one of them in [3].

(2): Let I be an ideal satisfying the assumption of (2), $A \in I^+$, and F be a nonempty collection of $I \mid A$ -functions closed under restrictions. Set

$$F \upharpoonright A = \{f \upharpoonright A \mid f \in F\},$$

where $f \upharpoonright A$ is a function with $\operatorname{dom}(f \upharpoonright A) = \operatorname{dom}(f) \cap A$ and $f \upharpoonright A \subseteq f$. Since for each $f \in F \operatorname{dom}(f) \notin I \mid A$, we have $\operatorname{dom}(f \upharpoonright A) = \operatorname{dom}(f) \cap A \notin I$. Hence $f \upharpoonright A$ is an *I*-function. Let g be an *I*-function with $g \subseteq f \upharpoonright A$ for some $f \in F$. Then g is an $I \mid A$ -function, because $\operatorname{dom}(g) \cap A = \operatorname{dom}(g) \notin I$ implies $\operatorname{dom}(g) \notin I \mid A$. Hence we get $g \in F$, because of $g \subseteq f \upharpoonright A \subseteq f \in F$. It is clear that $g = g \upharpoonright A$. So $g \in F \upharpoonright A$. Hence $F \upharpoonright A$ is a nonempty collection of *I*-functions closed under restrictions. Therefore, by assumption, $F \upharpoonright A$ has a minimal element h, which is clearly also a minimal element of F.

(3): Let I be weakly normal and $A \in I^+$. Assume that $I \mid A$ is not weakly normal. Then there is a sequence of unbounded $I \mid A$ -functions

$$f_0 > f_1 > \cdots > f_n > \cdots$$
 $(n < \omega)$,

where $f_n > f_{n+1}$ means dom $(f_n) \supseteq \text{dom}(f_{n+1})$ and $f_n(\alpha) > f_{n+1}(\alpha)$ for all $\alpha \in \text{dom}(f_{n+1})$. Then we have a sequence of *I*-functions

$$f_0 \upharpoonright A > f_1 \upharpoonright A > \cdots > f_n \upharpoonright A > \cdots \qquad (n < \omega)$$
.

For each $n < \omega$, f_n is an unbounded $I \mid A$ -function, so we get $\{\alpha \mid f_n(\alpha) \le \gamma\} \in I \mid A$ for all $\gamma < \kappa$. Hence we have

$$\{\alpha \mid (f_n \mid A)(\alpha) \leq \gamma\} = \{\alpha \mid f_n(\alpha) \leq \gamma\} \cap A \in I$$

for all $\gamma < \kappa$. This means $f_n \upharpoonright A \ (n < \omega)$ are unbounded *I*-functions, a contradiction.

Next we shall give a remark on the length of the increasing sequence of ideals which extends I.

LEMMA 5. Let I be an ideal and be $A \in I^+$, $B \in I^+$. Then we have (1) $I \mid A = I \mid B$ iff $A \cap B \notin I$, $A - B \in I$ and $B - A \in I$.

(2) $I \mid B \subseteq I \mid A$ iff there is a $C \subseteq B$ such that $C \notin I$, $B - C \notin I$ and $I \mid A = I \mid C$.

Proof. (1): Let assume $I \mid A = I \mid B$. If $A - B \notin I$, then $A - B \notin I \mid A$ and $A - B \in I \mid B$, a contradiction. Hence we have $A - B \in I$, and then $A \cap B \notin I$. Similarly $B - A \in I$.

Assume $A \cap B \notin I$, $A - B \in I$ and $B - A \in I$. Then $X \in I \mid A$ iff $X \cap A \in I$. But $X \cap A = X \cap ((A \cap B) \cup (A - B)) = (X \cap (A \cap B)) \cup (X \cap (A - B))$. So $X \in I \mid A$ iff $X \cap (A \cap B) \in I$. Similarly $X \in I \mid B$ iff $X \cap (A \cap B) \in I$. Hence we get $X \in I \mid A$ iff $X \in I \mid B$. Thus $I \mid A = I \mid B$.

- (2): Assume $C \subseteq B$, $C \notin I$, $B C \notin I$ and $I \mid A = I \mid C$. Then we have $I \mid B \subseteq I \mid C$, because $X \cap B \in I$ implies $X \cap C \in I$. From (1) we get $I \mid B \neq I \mid C$. Hence $I \mid B \subseteq I \mid A$. Next let us assume $I \mid B \subseteq I \mid A$. It suffices to observe the following 4 cases:
 - (i) $A \cap B \in I$,
 - (ii) $A \cap B \notin I$, $A B \in I$ and $B A \in I$,
 - (iii) $A \cap B \notin I$ and $A B \notin I$,
 - (iv) $A \cap B \notin I$, $A B \in I$ and $B A \notin I$.

Assume the case (iv) occurs. Then if we set $C = A \cap B$, then we have $C \subseteq B$, $C \notin I$, $B - C = B - (A \cap B) = B - A \notin I$. And we get $A \cap C = A \cap (A \cap B) = A \cap B \notin I$, $A - C = A - (A \cap B) = A - B \in I$ and $C - A = \phi \in I$. Hence from (1) we get $I \mid A = I \mid C$. Next we shall prove that only the case (iv) occurs. If (i) occurs, then we have $A \in I \mid B$ and $A \notin I \mid A$, a contradiction. If (ii) occurs, then from (1) $I \mid A = I \mid B$, a contradiction. If (iii) occurs, then we have $A - B \notin I \mid A$, because $(A - B) \cap A = A - B \notin I$. But $A - B \in I \mid B$, a contradiction. Hence only (iv) occurs.

If I is an ideal over κ and Z is an almost disjoint family with respect to I such that $\omega \le |Z| < \kappa$, then we can construct a sequence of ideals of the form $I \mid A$ such that

$$I \subsetneq I \mid A_0 \subsetneq \cdots \subsetneq I \mid A_\alpha \subsetneq \cdots \qquad (\alpha < |Z|)$$

in the following way:

Set
$$\gamma = |Z|$$
, $Z = \{X_{\alpha} \mid \alpha < \gamma\}$ and

$$A_{\alpha} = \bigcup_{\beta < \gamma} X_{\beta} - \bigcup_{\delta < \alpha} X_{\delta}$$

for each $\alpha < \gamma$. Since

$$A_{\alpha} \supseteq X_{\alpha} - \bigcup_{\delta < \alpha} X_{\delta} = X_{\alpha} - \bigcup_{\delta < \alpha} (X_{\alpha} \cap X_{\delta}) \notin I$$
, then $A_{\alpha} \notin I$.

And

$$\begin{split} A_{\alpha} - A_{\alpha+1} &= \left(\bigcup_{\beta < \gamma} X_{\beta} - \bigcup_{\delta < \alpha} X_{\delta} \right) - \left(\bigcup_{\beta < \gamma} X_{\beta} - \bigcup_{\delta < \alpha+1} X_{\delta} \right) \\ &= \left(\bigcup_{\beta < \gamma} X_{\beta} \right) \cap X_{\alpha} - \bigcup_{\delta < \alpha} X_{\delta} = X_{\alpha} - \bigcup_{\delta < \alpha} X_{\delta} \notin I. \end{split}$$

Hence from Lemma 5.(2) we get $I | A_{\alpha} \subsetneq I | A_{\alpha+1}$.

To the contrary we have

PROPOSITION 6. Let I be a λ -saturated ($\lambda \leq \kappa$) ideal over κ . If there is a sequence of ideals such that

$$I \subsetneq I \mid A_0 \subsetneq \cdots \subsetneq I \mid A_\alpha \subsetneq \cdots \qquad (\alpha < \mu)$$

then we have $\mu < \lambda$.

Proof. Assume $\mu \ge \lambda$. We shall construct a sequence of sets of positive measure such that

$$B_0 \supseteq B_1 \supseteq \cdots \supseteq B_\alpha \supseteq \cdots \qquad (\alpha < \lambda)$$

and $B_{\beta} - B_{\alpha} \notin I$ for all $\beta < \alpha$ and $I \mid A_{\alpha} = I \mid B_{\alpha}$ for all $\alpha < \lambda$. Then we can easily construct a set of cardinality λ and of pairwise disjoint sets of positive measure from $\{B_{\alpha} \mid \alpha < \lambda\}$. But this contradicts I is λ -saturated.

We shall construct B_{α} ($\alpha < \lambda$) by induction.

Let $\alpha = \gamma + 1$. By hypothesis of induction, we already get $\{B_{\delta} \mid \delta \leq \gamma\}$ such that $I|A_{\nu}=I|B_{\nu}\subsetneq I|A_{\nu+1}$. Hence from Lemma 5.(2) there is $B_{\nu+1}\subseteq B_{\nu}$ with $B_{\nu+1}\notin I$, $B_{\gamma}-B_{\gamma+1} \notin I$ and $I \mid A_{\gamma+1}=I \mid B_{\gamma+1}$.

Let α be limit. We already get $\{B_{\beta} | \beta < \alpha\}$ such that $I | A_{\beta} = I | B_{\beta} \subseteq I | A_{\alpha}$ and $B_{\beta} - B_{\beta+1} \notin I$ for each $\beta < \alpha$. Hence for each $\beta < \alpha$ there is a C_{β} such that $C_{\beta} \subseteq B_{\beta}$, $B_{\beta} - C_{\beta} \notin I$ and $I \mid A_{\alpha} = I \mid C_{\beta}$. Then from Lemma 5.(1) we have $A_{\alpha} \cap C_{\beta} \notin I$, $A_{\alpha} - C_{\beta} \in I$ and $C_{\beta} - A_{\alpha} \in I$. Hence $\bigcup_{\beta < \alpha} (A_{\alpha} - C_{\beta}) \in I$, because of $\alpha < \lambda \le \kappa$. Let us define

 $D_{\beta} = A_{\alpha} \cap C_{\beta}$. Then from Lemma 5.(1) we have $I \mid D_{\beta} = I \mid C_{\beta}$. Now define $B_{\alpha} = \bigcap_{\beta < \alpha} D_{\beta}$.

Then we get

$$B_{\alpha} = \bigcap_{\beta \leq \alpha} D_{\beta} = \bigcap_{\beta \leq \alpha} (A_{\alpha} \cap C_{\beta}) = \bigcap_{\alpha \leq \alpha} (A_{\alpha} - (A_{\alpha} - C_{\beta})) = A_{\alpha} - \bigcup_{\beta \leq \alpha} (A_{\alpha} - C_{\beta}) \notin I$$

 $B_{\alpha} = \bigcap_{\beta < \alpha} D_{\beta} = \bigcap_{\beta < \alpha} (A_{\alpha} \cap C_{\beta}) = \bigcap_{\beta < \alpha} (A_{\alpha} - (A_{\alpha} - C_{\beta})) = A_{\alpha} - \bigcup_{\beta < \alpha} (A_{\alpha} - C_{\beta}) \notin I.$ And $A_{\alpha} - B_{\alpha} \subseteq \bigcup_{\beta < \alpha} (A_{\alpha} - C_{\beta}) \in I$, so $A_{\alpha} - B_{\alpha} \in I$. Moreover $B_{\alpha} - A_{\alpha} = \phi \in I$. Therefore we

have $I \mid A_{\alpha} = I \mid B_{\alpha}$. Let be $\beta < \alpha$. Since $B_{\alpha} = \bigcap_{\delta < \alpha} (A_{\alpha} \cap C_{\delta})$, we get $B_{\alpha} \subseteq C_{\beta}$. And

 $B_{\beta} - B_{\alpha} \supseteq B_{\beta} - C_{\beta} \notin I$ implies $B_{\beta} - B_{\alpha} \notin I$. Hence for all $\beta < \alpha$ $B_{\beta} - B_{\alpha} \notin I$. This completes the proof.

From the remark of [1] we have that an ideal I over κ is κ -saturated iff every ideal over κ extending I is the ideal of form $I \mid A$. Hence we have

COROLLARY 7. Let I be a k-saturated ideal over k. If there is a sequence of ideals such that

$$I \subsetneq I_0 \subsetneq \cdots \subsetneq I_\alpha \subsetneq \cdots \qquad (\alpha < \mu)$$

then we have $\mu < \kappa$.

References

- [1] BAUMGARTNER, J., TAYLOR, A., WAGON, S.; On splitting stationary subsets of large cardinals, J. of Symbolic Logic, 42 (1977).
- [2] Jech, T., Prikry, K.; Ideals over uncountable sets, Memoirs of the American Mathematical Society 214, 1979.
- [3] WAGON, S.; The structure of precipitous ideals, Fundament Mathematicae, CVI (1980).

Department of Mathematics Rikkyo University Tokyo, Japan