Bieberbach Conjecture for Univalent Functions

by

K. INAYAT NOOR

(Received May 14, 1980)

Denote by S the class of functions f which are regular and univalent in the unit disc E and satisfy f(0)=0, f'(0)=1. Bieberbach conjecture is that, if $f: f(z)=z+\sum_{n=0}^{\infty}a_nz^n\in S$, then $|a_n|\leq n$ for all n. It has been proved for n=2, 3, 4, 5, [5], and 6 [8], [4]. Strong evidence that the conjecture is correct is the remarkable result of Hayman [1] that

$$\lim_{n\to\infty}\frac{|a_n|}{n}=\alpha_f<1,$$

except when f is $f(z) = z/(1 - ze^{it})^2$, where α_f is a constant depending on f. This shows that, for any fixed $f \in S$, the conjecture is correct for $n > n_0(f)$.

The conjecture is known to be valid for certain special classes of functions in S. It is valid, in particular, if all the a_n are real. it is also valid for the classes, S^* and C of functions which are starlike and convex in E respectively. In fact it is shown [7] that a function g is convex if and only if zg' is starlike. An immediate consequence of this is that if $g:g(z)=z+\sum_{n=0}^{\infty}a_nz^n$ is convex, then $|a_n| \le 1$ for all n.

Kaplan [3] introduced a class of univalent function which he called close-to-convex. This class, which we name as K, is the most general subclass of S we have uptill now. Reade [6] has shown that the Bieberbach conjecture is true for this class K.

We shall introduce a class of functions which includes K as a subclass and show that the Bieberbach conjecture is true for this class. First we have the following definitions.

Definition 1 [3]. $f: f(z) = z + \sum_{n=0}^{\infty} a_n z^n \in K$ if there exists a convex function g such that, for $z \in E$,

$$\operatorname{Re} \frac{f'(z)}{a'(z)} > 0$$

Definition 2 [2]. $f: f(z) = z + \sum_{n=0}^{\infty} a_n z^n \in C^*$ if there exists a convex function g such that, for $z \in E$,

$$\operatorname{Re} \frac{(zf'(z))'}{g'(z)} > 0$$

It is shown [2] that this class C^* includes convex functions as a proper subclass and

itself is included in K. The functions in C^* bear the same relation to the functions of K as convex functions to starlike ones, i.e., $f \in C^*$ if and only if $zf' \in K$. It can be shown [2] easily that for $f: f(z) = z + \sum_{n=0}^{\infty} a_n z^n \in C^*$, $|a_n| \le 1$ for all n.

Definition 3. $f: f(z) = z + \sum_{n=0}^{\infty} a_n z^n \in K_1$ if there exists a $g \in C^*$ such that, for $z \in E$,

$$\operatorname{Re} \frac{f'(z)}{g'(z)} > 0$$

clearly $K \subseteq K_1$.

But $f \in K_1$ may not be univalent. So we consider the subclass $K_1(U)$ of K_1 which contains univalent functions only. Again

$$K \subseteq K_1(U) \subseteq S$$
.

THEOREM 1. Let $f: f(z) = z + \sum_{n=0}^{\infty} a_n z^n \in K_1(U)$. Then $|a_n| \le n$ for all n, and this result is sharp.

Proof. f'(z)/g'(z) = h(z), Re h(z) > 0; $g \in C^*$. Let $f(z) = z + \sum_{n=0}^{\infty} a_n z^n$, $g(z) = z + \sum_{n=0}^{\infty} b_n z^n$, and $h(z) = 1 + \sum_{n=0}^{\infty} c_n z^n$. Then

$$(n+1)a_n = c_n + \sum_{1}^{n-1} (k+1)b_{k+1}c_{n-k} + (n+1)b_{n+1}$$

Since $|C_n| \le 2$ and $|b_n| \le 1$ for all n, we immediately have $|a_n| \le n$ for all n. The function $f_0: f_0(z) = z/(1 - e^{it}z)^2$ shows that this result is sharp.

Hence we see that the Bieberbach conjecture is true for a larger subclass of S than K.

Generalization.

Let K_2 be defined as follows: $f \in K_2$ if there exists a function g with $zg' \in K_1$ such that, for $z \in E$,

$$\operatorname{Re} \frac{f'(z)}{g'(z)} > 0$$

Let $K_2(U)$ be the subclass of K_2 consisting of univalent functions only then

$$K \subseteq K_1(U) \subseteq K_2(U) \subseteq S$$
.

From Theorem 1, it follows that the Bieberbach conjecture is also valid for K_2 . Continuing in the same way, we have

$$K \subseteq K_1(U) \subseteq K_2(U) \subseteq K_3(U) \subseteq \cdots K_n(U) \subseteq S$$
.

This result implies that $K_n(U)$ is the most general class of S. Moreover the class $K_n(U)$ contains K as a subclass. It is obvious from Theorem 1 that the Bieberbach conjecture is true for the class $K_n(U)$, thus improving the previous known result for the class K, which is the main aim of this paper.

References

- [1] HAYMAN, W. K.; The asymptotic behaviour of p-valent functions, Proc. London Math. Soc., 3, (1955), 257-284.
- [2] INAYAT NOOR, K.; On close-to-convex and related functions, Ph.D. thesis, Wales University (U.K.), 1972.
- [3] KAPLAN, W.; Close-to-convex schlicht functions, Michigan Math. J., 1 (1952), 169-185.
- [4] PEDERSON, R. N.; A proof of the Bieberbach conjecture for the sixth coefficient, Arch. for Rat. Mech. and Anal., 31 (1968), 331-351.
- [5] PEDERSON, R. N. and SCHIFFER, M.; unpublished.
- [6] READE, M. O.; On close-to-convex univalent functions, Michigan Math. J., 3 (1955-56), 59-62.
- [7] SEIDEL, W.; Uber die Ränderzuord-nung bei Konformen Abbildungen, Math. Ann., 104 (1931), 182-213.
- [8] Ozawa, M.; An elementary proof of the Bieberbach conjecture for the sixth coefficient, *Kodai Math. Sem. Rep.*, 21 (1969), 129-132.

Mathematics Department Islamia University Bahawalpur Pakistan