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ABSTRACT. A class of analytic functions in the unit disc is defined in which
the concept of the functions of bounded boundary rotation is generalized. A
necessary condition for a function f to belong to this class, coefficient results and
Hankel determinant problem are solved.

Let ¥, be the class of functions f with bounded boundary rotation. Paatero [7]
showed that a function f, analyticin E={z:|z|<1}, f(0)=0, f'(0)=1, f'(z) #0; is in
V, if and only if

f (Zf (@
“ 1

It is geometrically obvious that k£ =2. By the Paatero representation theorem [7] for
fevV,, we can write

do<kn

(zf"(2)
Y _H(z),
o e
where

k1 ko1 ;
H(z)—<T+—2—>H1(z)—<j4—-7>H2(z), Re H(2)>0 i=1,2.
We introduce a new class of analytic functions related with the class V.

Definition 1. Let f be analytic in E, f(0)=0, f'(0)=1 and f'(z)#0. Then
f €A if there exists a function g€ V, such that for ze E

j Re! @
9@
Clearly ,, =K, the class of close-to-convex functions introduced by Kaplan [4].

Definition 2. Let fbe analytic in E, £(0)=0, f'(0)=1, f’(z) #0. Then f € ', if
there exists a functions g € ¥, such that for z€E,

AC)

e —=>0.
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d0<kmn, k=2.
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The class A, is a subclass of £, and was discussed in some detail in [6]. Here we
shall deal with #",.

THEOREM 1. Let fe A y,. Then

, k(1+r)¥?
0 VOIS5; e

B k 1+r (k/2)+1
(i) ‘f(z)|§M{<l—r> —1}.

The function f, € A", defined as

k 1 (k/2)+1
g1

shows that these upper bounds are sharp.

THEOREM 2. Let f€ A . Then, with z=re', and 0, <0,,
0> 1
J Re {(Zf(z))}db —(k—Dm, k=22,
01 g (Z)

Theorem 1 and Theorem 2 follow easily from Definition 1.

Remark 1. From Theorem 2, we can interpret some geometric meaning for
A 4 For simplicity let us suppose that the image domain is bounded by an analytic
curve C. At a point on C, the outward drawn normal has an angle arg {e?f’(e®)}.
Then it follows that the angle of the outward drawn normal turns back at most
(k—1)m. This is a necessary condition for a function f to belong to 2.

Remark 2. Goodman [3] defines the class K(f) of fucntions f as follows. Let f
with

f@=z+Y a,z"
2
be analytic in E and f'(z) #0. Then for 20, f € K(f) if and only if for z=re®, 6, <0,
] 1 /
2o 2f(2)
Re do> —fr.
J e s

We note that ", « K(k—1), (k—1), (k=2) the functions in K(k —1) for k> 2 are not
necessarily univalent [3].

We now prove the following.

THEOREM 3. Let fe A, and be given by

flz)y=z+ i a,z".
n=2
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Then
a,=O0(1)-n*2, where O(1)
is a constant and depends upon k only.
The function f; defined by (1) shows that the exponent k/2 is best possible.
THEOREM 4. Let f € A, and be given by

0

f@=z+ ) a,z".

n=2
Then
[lay| =14y || AGRD7, (k22),
where A(k) is a constant depending upon k only.
The function £, defined by (1) shows that the exponent ((k/2)—1) is best possible.
Let f be analytic and be given by

f(z)=z+§:a,,z".
2

Suppose that the g th Hankel determinant of f'is defined for g=1, n=1 by

a, Apiq ovvee- Qpig-1
H()= |Gy geeeeeeeeeeeeee , )
Qpygoqrsrorsrrrmemeeees Gyi2g-2

In [6], it was shown that if f €V,

(k/2)—1

,  q=1
H,(n)= 0(1){n(kq/2)_qz

k=8q—10, g=2

The exponent (kq/2) —g* is best possible in some sense. see [5]. Here we estimate the
rate of growth of the Hankel determinant for f'e A7,.

THEOREM 5. Let fe Xy, and let the qth Hankel determinant of f for g21,
n=1 be defined by (2). Then

K2, g=1
Hq(")=0(1){ntk4/2>—q“q, g=2, k=8g—10.
The O(l) is a constant depending upon k, q and f.
To prove Theorem 5, we need the following known lemmas.
LEMMA 1. Let H be analytic in E, | H(0)| <1 and be defined as

H(Z)=<§+—12—>H1(z)—<%—%>H2(z); ReH(2)>0, i=1,2.
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Then

|H (2)|?d0 <

(z=re")
o 1—r?

1 (%" 1+ (k2=1)r?
2n

and

1 2z
—J |H'(z)|d0<
0

2 1—r2
Lemma 1 is an easy generalization of one in [8].
LEMMA 2. Let f be analytic in E and

f(@)=z+ i a,z".
n=2

Let the gth Hankel determinant of f for 21, n=1 be defined by (2) Then writing
4,(n)=Ayn, z,, ), we have

A2q—2(") A2q—3(n+1) Aq—1("+q—1)
H(n)= Azq-;("+1) Ayqan+2) - 4, 5(n+q) .
By_rlntq=1) A, (n+q) - Aon+2q—2)

where, with Ay(n, z,, f)=a,, we define for j=1,
Aj(n’ Zl’f)zAj—l(n3 Zlyf)_zlAj—l(n+l’ Zl»f) (3)

LEMMA 3. With x=(n/(n+1)y), v=0 any integer

i\ PMo—(k—1
Afn+v, x, zf(2)= Y <i>y—(£(;1—_(l—_])k—)n)

k=0

Aj—k(n+v+k’ y,f)

Lemmas 2 and 3 are due to Noonan and Thomas [5].
- We now prove Theorem 5.

Proof.  We shall prove this result by using the differences (3). Since f € ¢, there
exists g € V, such that .

S (@)=9'(2)H(2),
where H is defined as in Lemma 1.
Set F@)=(f"(2)'=9'{HDh()+zH (2)},
where
(29'(2))" =9'(2)h(2)

Now for j=0, z; any non-zero complex number, consider
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2n
A 20 F) =53 f (z—2,(ef (@) e+
0
L e @
ém—,f |z—2,1719'2) | |H (2)h(z) + zH ()| O
0
It is known [1] that for ge V,,
S (z)\WH 172
wks) :
g(z)=<sz(z)>(k/4)_(1/2) ) ( )
z

where S, and S, are starlike.
Also it is known [2, p.162] that we can choose a z; =z,(r) with | z, | =r such that
for any univalent function S
2r?
max |(z—2)8)|S7— ®

lz|=r

Thus, for k=(4j—2)

1 2n jlsl(z)l(k/4)+(1/2) ,
|4)n, zy, F)| ST . lz—zy| T_SZ(Z)TW—)lH(Z)h(Z)’ +zH'(z)|dO

2 N\J (k/4)—j+(1/2) (k/4)—(1/2)
<ptoegen (2N (T 4
= 1—r2) \(1=r? 5

2n
—21;[0 | H(z)h(z)+zH () |d6 ,

where we have used (5), (6) and the fact that for any univalent functions S,

r r
méls(zﬂém

Now using Lemma 1, we have for k=(4j—2)

A(k, j)
IA](n’ Z1s F)lé(l_—r)(k/m’

where A(k, j) is a constant depending upon & and j only. Choosing r=1—(1/n), we
have for k=4j—2,

Ain, z, F)=0(1)-n*»~i*2 (n— )
Applying Lemma 3, twice, we obtain for k>4j—2,
An, e®n, )=0(1)n*>73,  (n—o0) (N
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2
n .
= ew"
1 <n+ 1)

Theorems 3 and 4 follow by putting j=0, 1 in (4) and proceeding in the same way.
Using (7) and Lemma 2, along with the similar argument due to Noonan and
Thomas [5], we have

Hn)=0(1)-n*k?-a%1  [>8g-10 ¢=2.

where
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