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If the validity of a given formula A4 is confirmed by Herbrand’s method (such as
the resolution procedure [3] or [4]), it exhibits some informations for the construction
of a proof figure of 4 in Gentzen’s sequent calculus LK.

In this paper, we give a procedure for this construction. In fact, by using the
informations exhibited by Herbrand’s method as guide, a tree-form LK proof of the
formula 4 can be derived upwards, without trial and error for selecting formulas to be
decomposed at each stage and for searching a term or a free variable to be substituted
for the bound variables indicated in the chief formula on the decomposition
corresponding to an inference on V or 3.

This method can be used for some interactive proof checker to make a proof in a
semi-automatic mannar employing resolution method locally.

§1. The adjoint formula of a formula 4 and 4-formulas

(1) Foran LK formula 4, we define the adjoint formula A(X,, - -, X, of A as
follows:

Let negative V’s and positive I’s in 4 be 2, x,, - - -, 2,x, from left to right. Then
A’ is the scheme which is obtained from 4 by replacing 2,x; with 2 x (X,) for each
i (i=1, ---, n), where each 2, is V or 3.

Let positive ¥’s and negative I'sin 4" be #,y,, - - -, #,y, from left to right, where
R; is ¥V or 3. Then A{X,, -+, X,> is the scheme which is obtained from A’ by
replacing #,y; with Z,y[F;] for eachj (j=1, - - -, I), where for each j, F;is a scheme of
the form f(X;,, - - -, X;,) such that 2, x, (X;), '+, 2,x,(X;) (i, <i, < - <iy) are
all of the form 2,x (X ;) in 4" whose scopes contain £, y; and f; is a new function symbol
which does not appear in 4 (Skolem function).

In the following, (X;)’s and [f;(X *, X;)I's are called the guide-indeces of

i1

ALK, 0, XD,
(2) For an LK formula 4, let H(A(X,, - -+, X,>) be the Herbland universe,
that is, the set of the terms which are obtained by using functions in 4<X;, - -, X,>
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and an additional constant symbol f° if (X, - - -, X, > contains no constant symbols.
We abbreviate H(AX,, - - -, X,») as H(A).
For a fixed LK formula A4, A-formulas are all of the schema which are obtained
from A(X,, - -+, X,» and H(A) by the following procedure:
1.If 7, - - -, 1,e H(A), then A<z, - - -, 7, is an A-formula. 2. If Bv C is an A4-
formula, then so are Band C. 3. If BA Cis an A-formula, then so are Band C. 4.
If B> Cis an A-formula, then so are Band C. 5. If - Bis an A-formula, then so is
B. 6. If 9x(t)B(x) is an A-formula, then so is B(z). If 2)[F]C(y) is an A-formula,
then so is C(F).
(3) Foreach 4-formula B, we denote by sb(B) an LK formula which is obtained
from B by replacing every 2x(r) (---x---) in B with (---7---) and every
2Y[F)(---y---) in B with (---F---), that is, an LK formula obtained from B, by

taking every 2x(7) in B for a substitution-operator (f) and by taking every 2y[F]
in B for a substitution-operator < F)

(4) For a fixed LK formula A, sub-A-formulas are of the 4-formulas and sub-
schema of A-formulas which are obtained as follows:

1. Each A-formula is a sub-A-formula. 2. If Bv C is a sub-4-formula, then so

are Band C. 3. If BA Cis a sub-S-formula, then so are Band C. 4. If BoCisa

sub-A-formula, then so are Band C. 5. If -1 Bis a sub-4-formula, then so is B. 6.

If 2x(7)B(x) is a sub-A-formula, then so is B(x). 7. 2y[F]C(y) is a sub-A-formula,

then so is C(). - ‘

(5) For each sub-A-formula B, we denote by c/(B) a scheme which is obtained
from B, by elasing all the guide-indeces (t)’s and [F]’s at the quantifiers in B.

§2. A procedure for obtaining LK proofs of valid formulas

By using adjoint formulas, Herbrand’s theorem is expressed in the following
form.

THEOREM. For an arbitrary LK formula A, A is LK provable if and only if

(*) “There exist m=1 and tijeH(/T) (i=1, ---, m; j=1, ---, n) such that
Sh(Atyy, 1) VN SB(A Ty, s Ty IS tautology,” where ALX,, -+, X,
is the adjoint formula of A.

“If part” holds by the fact that an algorithm PAL described in the next section,
derives an LK-proof of 4 under the above condition (¥*).

“Only if part” holds since we can obtain a quantifier-free LK proof of
—sb(ALT g, s Td)s s SB(AL Tty * 7 Tyny) (for some m>1 and rijeH(/T)) by
modifying an arbitrary LK proof of —A4.

We notice that the most aim of this paper is to describe effectively the above
algorithm PAL, and to verify the correctness of it for “if part”.

Moreover, by using the algorithm we can offer a procedure for trying to obtain
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an LK proof of an arbitrary formula 4.
The procedure consists of two parts.

1. First part is a procedure for checking the validity of a given formula 4 which
is explained by Fig. 1, where O may be implemented as an algorithm.

T

me 1
Are there such Tjj's (i=1,---,m; j=1,.-.,n) that
($) sb(K<'r“,---,Tln>)V--~-Vsb(K<-rml,---,‘rmn>) is a tautology?
NO YES [.-++ A is valid.
m< m+ 1

Fig. 1.

2. When the first part terminates (that is, 4 is valid), we get informations (m= 1
and t,;;) which satisfies (*). Then, by using help of the informations, Second part
(algorithm PAL) derives deterministically a cut-free LK proof of — 4, as follows:

PAL consists of three phases.

Phase 1 is an algorithm US which draws uniquely upwards a tree form proof
scheme US[S,] with the end sequent Sy= - AT, ***, T = ALTpgs " *s Ty
by successive applications of US-operation to S,. Then domain of US-operation is a
set of certain sequents of 4-formulas which are called g-4-sequents and are precisely
defined in the next section. Each application of US-operation to a g-A-sequent &
which has at least one logical symbol, derives uniquely one(or two) upper g-A-
sequent(s) US(S)=¢&, (or S,; S,) of A-formulas, and induces an inference scheme
% <0r ———61’662> which is similar to an LK inference.

The definition of US-operation is also described in the next section.

Phase 2 elases all the guide-indeces (t)’s and [F]’s in US[S,] by cl-operation. So,
“ClUS[—> ATy, 0y Typds 0y ATy s T.n2])” 1s a cut-free LK proof with the
end sequent “cl(S,)=—4, ---, A7, except that V-right and 3-left inferences have

—
terms of the form f(z,, - - -, 7)) for their eigen variables.

Phase 3 (eigen 'variable adjustment) replaces every maximal Skolem term
Fi=f{(t;, -+, ©) in c(US[S,]), with a new free variable a;. - - - (x-operation)

Then we obtain finally a cut-free LK proof a(cUS[S,])) of —4, -+, 4,

—

consequently — 4.

In the above, f(7,, - - -, 7,) in a formula B is called a maximal Skolem term, if B

has no Skolem functions which are operated later than the indicated f(z,, - * -, 7,) in
B.
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The above descriptions will be verified in the following sections.

§3. g-A-sequents and US-operation

The objects of US-operation are g-A-sequents which are defined as follows:

A sequent B, -+, B,—»C,, - -, C, of A-formulas is called a g-A4-sequent if (i)
quantifiers of the form 3x(<) or Vy[F]in 1 B,, - - 1B, C;, - -, C, are positive, and
(i) quantifiers of the form 3y[F] or Vx(r)in By, - - -, 1B, Cy, * -, C, are negative.

We notice that - A{t,,, -, 7,0, " ALTpys * ", Ty is a g-A-sequent, and if
Sis a g-A-sequent, then each sequent of US(S) is also a g-A4-sequent, according to the
definition of US-operation below.

(def.) Degrees of terms in H(A) and degrees of q-A-sequents
(i) For each Skolem function f; and t,e H(A),

deg(f}(fl’ o "Tk))=a)'lg(f;'(‘cla T tk)) +.I s
(i) For each function g in 4 which is not a Skolem function, and 7, H(4),
deg(g(ty, -, t))=w"lg(g(ty, =+, T)) -

In (i) and (i), lg(A(zy, - -, T)=Ig(z))+ - - +lg(ry)+1 and lg(c)=1, if c is a
letter.
(iii) For a g-4-sequent S,

min {deg(F)| 2y[F] in &},
deg(S)= if S has at least one 2y[F] form;

0, if © has no 2y[F] forms.

Definition of US-operation .
For each ¢-A-sequent I'— A which contains at least one logical symbol, we define
the upper ¢g-A-sequent(s) US(I'—> A4) as follows:

Case 0. Either of I' or 4 has two formulas* of the same form.
0.1. T has such two formulas.

UST—»A4)=Ty, D, T, -, T, — 4,
if I'sA=I,DT,D, -,DT, —4A,

where I'y), I';, - -+, I',, have not D (and formulas of I', are different to each other).

0.2. T has no two formulas of the same form, but A has.

' US(F—"A)=F d AO, Ca Al; T Ak’
if '-4=r —*Ao, C, Al, C,A29 Y C’Ak’

where I, 4,, - - -, 4, does not have C (and formulas of 4, are different to each other).

*  In this paragraph, a word “formula” is used for ““A4-formula.”
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Case 1. Both I' and 4 have no two formulas of the same form and I'—» 4 has
either of the form Bv C, BA C, Bo C or —1B. Let D be the leftmost formula of those.

1..1. 'sD=BvC:

UST—4)=T,,B,T, —4 ; I',C T, —4,
if I'-4=I,BvC, T, —4.

1.12. 'sD=BAC:

UST-4)=TI,, B,C, T, — 4,
if T-4 =I,, BACT, — 4.

1.13. 'sD=B>C:

usr-4=r,,r,»B 4 ; r,cr, —4,
if I'-4=I,B>C T, —4. '
1..4. F'sD="B:
Us(r-4)=r,, I, — B, 4,
if I'-d =, BT, —4.
1.r.l. AsD=Bv C:

US(T—4)=T — 4,, B, C, 4, ,
if I'-4=I — A, BvC, 4,.

1.r2. A3D=BAC:
US(Fr-4)=I — A, B, 4, ; I — 4,,C, 4,,
if '-A4=I' — A4,, BAC, 4, .
1.r.3. AaD=B>C:
US'-»4)=B, T — 4,,C, 4,,
if I'-4=I — 4, BoC, 4,.
l.r4. AsD="1B:
US('-4)=B, T — 4,, 4,,
if '-A=TI — A, B>C, 4,.
Case 2. Both I and 4 have no two formulas of the same form and I'> A4
has no formulas of the forms Bv C, BAC, BoC and —1B.

2.1. deg(I'>4)>0: Here I'> 4 contains at least one 2y[F] form.

2.1.1. I'>4 has 2x(t) B(x) such that deg(t) <deg(I' > A).
Let D be the leftmost formula of those 2x(t)B(x)’s.

2.1.1.1. Derl: Here D=Vx(1t)B(x), since the pointed 2x(z) in D=
—12x(t)B(x) is negative and I'— 4 is a g-A-sequent. Then define that
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USr—-4)=r,, Bx), I, — 4,
if I'-4 =TI, Vx(x) B(x), I, — 4.

2.1.1.r. Ded: Here D=3x(t)B(x), by a similar reasoning to the case (2.1.1.1).
Then we define that

US('-4)=T — 4,, B(x), 4, ,
if I'-4 =I — 4,,3x(71)B(x), 4, .
2.1.2.  No 2x(t)B(x) such that deg(t) <deg(I' - A), appears in I' - A : In this case,
I'> 4 has at least one 2y[F]B(y) such that deg(F)=deg(I'>A). Let D=2y[F]B,(y)
be the leftmost one of those.

2.1.2.1. Del: Here D=3y[F]B,(y), since >4 is a q-A-sequent.
Then we define that

US(F-A)=T,, B,(F), I',, By(F), -+, B(F), I'y — 4,
if (>4 =Ty, H[F1B,(y), I';, 3)[F1By(y), -, HIFIB(y), I, — 4

by indicating all the formulas with the same 3y[F] at front.

(In this case, we denote that cl(B,(F))= - - - =cl(By(F)).)
2.1.2.r. Ded: Here D=Vy[F]B,(y). Then we define that
US(I'-»4)=TI-4,, B\(F), 4,, B,(F), -+, B,(F), 4,

if -4 =I'->A4,, Vy[F]B(y), 4, YY[F1By(y), - - -, VI[FIBW(»), 4y
by indicating all the formulas with the same Vy[F] at front.
(In this case, also ci(B;(F))= - =cl(B,(F)).)

2.2. deg(F—4)=0.

2.2.1. I'->4 has a formula of the form 2x(z)B(x). let D be the leftmost one of
those.

2.2.1.1. Der: Here D=Vx(t)B(x). Then define that

US(r-A4)=TI,, B(x), I, — 4,
if I'-A =T,,Yx(t)B(x), T, — 4.

2.2.1.r. Ded: Here D=3x(t)B(x). Then define that

US(T>A4)=T — 4,, B(1), 4, ,
if I'->4 =T — 4,, Ix(t)B(x), 4, .

2.2.2. I'>A4 has no formulas of the 2x(t)B(x). Here I' >4 consists of only
primitive formulas. In this case, US(I'—>4) is undefined.

§4. Propositions on US-operation and the correctness of PAL algorithm

In this section, we list up several propositions on US-operation.
Then, by using them, we prove the correctness of PAL algorithm for deriving
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effectively LK proof figures of valid formulas by using the informations charac-
terizing the validities of these formulas.
But, the proofs of these propositions will be left in the next section.

PROPOSITION 1. If I'—>A is a q-A-sequent and satisfies the following condition
(#), then so does each sequent of US(I'—A4).

# If 9y[F] appears in a q-A-sequent &, then F does not appear in cl(S).
PROPOSITION 2. If I'>A is a g-A-sequent, then

© sh(US(I" - A))

¢ sb([— 4)

is a quantifier-free LK deduction. If the lower sequent of (c) is a tautology, then so is
each of the upper sequents of (c).

We notice that a quantifier-free LK sequent By, - -+, B,—»C,, - -+, C, (p=1 or
g=1) is called a tautology, if 1B, v - vB,vC; V- vC,is a tautology.

PROPOSITION 3. If I'—-A is a q-A-sequent and satisfies the condition (#), then
c(US(I'— A4))
c(F—-A)
is an LK* deduction, by inserting some LK inferences.

In the above, LK* is defined as a deduction system which is obtained from LK,
by adding Skolem functions f}’s in A(X,, - --,X,> to the language given in the
biginning and by replacing inference-rules on quantifiers with the following:

C(r), -4
v left: —r——n—
il T4
—A
3* right: -4, 0

I'—A4, IxC(x)

where C(t) contains no terms of the form fy(6y, - - -, ¢,) which contains the indicated
7 in proper part.

D(f{r, =+, @), -4

3* left:
) 3yD(y), T4
V* rlght, —4, D(L(Tl, > Tk))
-4, YyD(y)
where
(i) F=f(t;, -, 7) does not appear in the lower sequent,
(i) D(f{ry, - -, 7)) contains no terms of the form fy(c,, - - -, o) which contains

the indicated F=f(t;, - -, 7,) in proper part.
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(def.) For each formula D in LK*, (D) is a formula which is obtained from D,

by replacing every maximal Skolem term Fin D with a free variable o with subscript
F.

PROPOSITION 4. If 2 is an LK* proof, then «(%) is an LK proof, where U P) is a
proof scheme which is obtained from P, by replacing every formula D in P with a(D).

(deg.) For a g-4-sequent S,, US[S,] is a tree form proof scheme which is derived
by successive applications of US-operation, as follows:

Let #, =S, and let 2, be a tree form which is obtained at the i-th stage. If 2 ;has
uppermost sequents &, ,- -, S i, (p21) which are not of primitive formulas, then
# 41 Is the scheme which is obtained from 2, by drawing US(S;) over S,
(=1, ---, p). If every uppermost sequent of 2, is of primitive formulas, then
US[G]=2,.

THEOREM. Let A(X,, -+, X,> be the adjoint formula of A and let S,=
_>‘Z<1'-11’ ) Tln>’ Y "Z<Tm1’ Y Tmn .

If s6(Sp)=—sb(AT 1, Ty 5> SH(A Ty, 5 Tny) is @ tautology, then
a(cl(US[S,))) is a cut-free LK proof of » A4, * -, 4.

S
m

Proof. Tree-form proof scheme US[S,] has the end sequent S, = — 4{1,,, * * -,
Tynps s A{Tpy> * > Ty and has the topmost sequents of only the form P, -,
P,~0Q,, -+, Q, where P; and Q; are primitive formulas.

So, sb(US[S,]) has also the topmost sequents of only the form Py, - -, P,—>Q,,
-+, O, and has the end sequent —sb(A{t;, * -, 1;,0), = - *, SB(AL Ty, * * *, Tppyd) Which
is a tautology, by the assumption. Then, by Proposition 2, every topmost sequents P,,
s P>y, o0, Qg s a tautology, that is, WP v vIP, VO Ve v, s a
tautology. So, P;=Q; for some i and j.

On the other hand, the tree form proof scheme c/(US[S,]) has the end sequent
cl(©g)=—4, -+, A and the topmost sequents of the form P,, - -, P,—Q,, -+, Q,

—
such that P, = Q, for some i and j, that is, P,, - -, P,~Q,, -, Q,is deduced from a
beginning sequent P;—Q,;.

Since &, satisfies the condition (#) by Proposition 1, every g-4-sequent of
US[&,] also satisfies the condition (#).

Then, by these facts and Proposition 3, c(US[S,)) induces a cut-free LK* proof
of -4, ---, 4, by inserting some inferences.

N

Therefore, by Proposition 4, a(c/(US[S,))) is a cut-free LK proof of — 4, - -, A4,

———
m

and derives consequently — A.
§5. Proofs of propositions

In order to prove the propositions in the preceding sections, we use preliminary
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lemmas on A-formulas.
We have immediately the next lemma, according to the definition of A-formulas.

LEMMA 1. For an arbitrary A-formula B, (*) every scheme of the form
Jd(Ty, -+, T)) in B never contains variables y; and x; where f; is a Skolem function.

In the following, S, ¢ and # denote quantifier-symbols.

LEMMA 2. For an arbitrary LK formula A, if Sy [F1B(y;) and cy,[FIC(y;) are
A-formulas, then i=j and S=c.

Plroof. In general, by the definition of 4-formulas, we can easily see that if
Sy [F1B(y; is an A-formula, then'F must be of the form fi(z,, - -, 7,) and Sy,
appears only as the i-th quantifier with [ ]-guide-index in 4¢X;, - - -, X,> from the
left side.

Therefore, by the assumption, F is of the form fi(z,, - - -, 7,) and F'is also of the
form f(oy, - - -, 6,). So, i=j. Thus Sy, and cy,(=cy;) both are the i“th quantifier with
[ J-guide-index in ACX,, - -, X,>.

Therefore, S=c.

LEMMA 3. If SyiF1B(y;) and Sy,|F]C(y;) both are A-formulas, then
cl(B(F)) = cl(C(F)).

Proof. Let A{t, ---,1,> and Ao, ---, 6,> be A-formulas, from which
Sy{F1B(y;) and Sy[F]C(y;) are obtained respectively.

Let 2, x;(X;), -+ 2,x,(X,) (< <i), &,9,[/;,(Xip, 5 X)) ooy
Ry, i Xip 5 Xy N UL <+ <js<j:py S Sp,=r) be all of the quantifiers in
A(Xy, -+, X,», whose scopes contains S}y;.

Then, the adjoint formula 4¢X;, - - -, X,> has a subscheme H=8y[f{(X;, """,
Xi,)]D(xil’ B xi,.’yjp ) yjss yj; <Xip T Xi,.’ T Xi,>) where (1) xip Y xi.-syjp
-+, y;, are not bounded in H and (2) {X;;, " **, X;, ", X0 in H (¢t =r) means that
X, -* X, -, X, may appear only in the guide-indeces (7)’s and [F]’s at some
quantifiers in D(x;,, ***, X;, Vi "5 Vies Vjp {Xipp 75 Xy 005 XiD)-

Therefore, Sy [F1B(y) =8y fi(ti - T )ID(Ts, ~ =5 Ty [3, (i I Tipl), Tt
Ji@ip T, ) ¥ (Tt Ths 705 T5,0), since all of the quantifiers in A<z, -+ -, 7,)
whose scopes contain Sy, are 2; x; (t;), - - ,2,x,(1;), @.,yj’[)”j[(r‘h, T b

J
R,y fi(tis 05 75,,)] and /T(‘cl, -+, 1,» has a subscheme Syj[fj(‘ci 5 T ID(x;

ips
X Vi s Vi Vi (i " Tip 7% TiD)-
SimilarIYa Sy][F]C(yJ)-:Sy][f](all’ T oir)]D(ail, ) Gir’f}l(oil’ o .’aipl)’ B
fis(aip T O-i,,s)a Vi <ai19 s Oy, " ai,>)'
Since fi(t;, ", 1, )=F=f{0;, **,0,), T;,=0;, """, T;,=0;.
Therefore, BIF)=D(t;,, -+, T;, f;,(Tsp» s ‘cipl), o i@, 1,-"),fj(‘cil, e
Tir); <ti1a s T Tiyp T Ti,>) and C(F)=D(Tip Y Ti,afjl(‘tip T Tipl)’ o "f}s
(Tila T Tip,)af;‘(tip T Tir); <Tip s T O T Ui,>)’ since p; <+ < ps=r.
So, B(F) and C(F) coincide with each other except differences of terms in the
guide-indeces (7)’s and [F]’s at the quantifiers in those 4-formulas.
Thus, c(B(F))= cl(C(F)).

l’.. »



58 T. OSHIBA

LEMMA 4.
(1) If B=Sy[FIC(y; ey [GID(y;, y)) is an A-formula, then deg(F)<deg(G).
(2) If B'=#x(v)H(x;, cy{GlK(x,, ;) is an A-formula, then deg(t) <deg(G).

Proof. Let /T('cl, -++, 1,> be an A-formula from which B is obtained.

Then, Sy,[F] appears in A<t,, - -, 1,), and ¢y,[G] also appears in the scope of
Sy,[Fl. Soi<j. ----- 1)

Let 2, x;(t;,), ", 2,x,(t;) be all the quantifiers of the form 2x(z) in A(1,,
.-+, 1,»> whose scopes contain Sy [F].

Then F=f(t;,, -, 7;). And then, all the quantifiers of the form 2x(t) whose
scopes contain ¢y[G], are 2; x;(t;), 5 2;,x,(t;) -, 2,x,(7;) (r<s). Thus
G=fj(Ti1, S T,y T

So, lg(F)<lg(G). -~ 2

Therefore, by (1) and (2), deg(F)<deg(G). | |

Let D be a sub-A-formula, let 7 be a term in H(A{X,, - - -, X,») and let z denotes

z
either y; or x;. Then, in the same way as for LK formulas, we define D( t) as a

scheme which is obtained from D, by substituting each occurrence of z in D to 7. Then
we have the following lemma.

LEMMA 5. If B(z) is a sub A-formula with full indications of free occurrences of
z, and te H(ACX,, - -, X,>), then cl(B('c))=(cl(B(z))( Z).
T
Proof. We can easily verify this lemma by the induction on the number of
logical symbols in B(z). / /

Proof of Proposition 1.
First, we notice that the condition (#) is equivalent to the following (#').

#) If 2y[F] appears in I'—> A, then every F in I'> A4 appears only
in the guide-indeces in I'> 4.

0) In the cases except four cases when US-operation removes some quantifiers in
I' - A, the treatments are as follows:

Suppose that I'—> 4 has the condition (#’). An appearance of 2y[F] in US(I' - A)
implies that of 2y[F] in I'-> 4, since in those cases, “all the quantifiers with guide-
indeces in I'—> 4 coincides those of US(I'—>A4).” - - - - A

Then, by the assumption, F occurs only in some guide-indeces in I' > 4.

Therefore, by the above (%), F also occurs only in some guide-indeces in
US(I'— A).

) In the case corresponding to (2.1.1.1.) in the definition US-operation,

* US('-A4)=T,, B(x), I, — 4
and -4 =r,, vx(1)B(x), I’, — 4, where deg(t) <deg(I'—>4) .
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Suppose that I'> 4 satisfies the condition (#') but US(I'-4) does not. Then
there is such a term G=f(z,, - - -, 7,) that US(I"—> 4) contains some 2y[G] and one of
G’s appears at the outside of every guide-index in US(I' - 4). - - - - - ®

So, I' >4 also contains 2y[G], because of the form of the inference scheme (*).
Therefore, by the assumption, every G does not appear at the outside of any guide-
indeces in F—»A4. -+ - ®

- Thus, by ©® and @, G at the outside of every guide-index in US(I'—4), must
appear in B(1).

Let G be one of such G’s in B(t). Then the following two cases arises:

(i) Case when the indicated G in B(z) is separated from the indicated 7’s.

(i1) the other case.

In Case (i), Vx(r)B(x) in I'>4 contains previously G at the outside of every
guide-index in I'—> 4. This is a contradiction.

In Case 2, the following three cases arise:

(ii-1) G(in B(7)) is a proper part of an indicated .

(ii-2) G(in B(1)) coincides to an indicated .

(ii-3) G(in B(r)) contains some indicated 7’s in a proper part of G.

In Cases (ii-1) and (ii-2), deg(G) <deg(t) <deg(I' > A) < deg(G).

This is a contradiction.

In Case (ii-3), since 2y[G] in US(I'— 4) appears in an 4-formula in I'-> 4, and G
is of the form fj(z,, - - -, t,) where f; is a Skolem function, a contradiction is leaded as
follows:

Since G contains some of the indicated t’s, G=f(t, (), - - *,7,’(z)) where at least
one 7;'(t) properly contains t.

Thus B(t)=B'(fy(t,'(7), - * -, 7,'(7)), ©). So an A-formula Vx(7)B(x) is of the form
Vx()B'(fy(t,"(x), * -, 1,'(x))), x). This contradicts to Lemma 1.

(2) In the case corresponding to Case (2.1.1.r), the treatment is dual to the case (1).

(3) In the case corresponding to Case (2.1.2.]),

(*) US(F_>A)=FO, BI(F)s rl’ BZ(F)a T, Bk(F)’ Fk - A
and I'>d4 =T, 3y[F1B(y), I';, IF1By(y), -, WIFIB(y), [, — 4

where there are no formulas of the form Iy[F]C(y) in US(I'>4) and deg(F)=
deg(I' > A)<deg(T) for every Zy’[T]in I'->A.

Suppose that I'>4 has the condition (#"), but US(I'>4) does not. Then this
leads to a contradiction as follows:

By the assumption, there is a term G=f/(t,, - - -, 7,) such that US(I" - A4) contains
2y’[G] and one of G’s appears at the outside of every guide-index in US(I"'»A4). By an
argument similar to that in the case (1), we can see that the above G’s appears in
B, (F) for some j,. Let G be one of such G’s in B, (F). Then two cases arise:

(i) The case when the indicated G in B, (F) is separated from the indicated F’s.

(i) The other case.

In Cace (i), by an argument similar to the case (1), we can lead that 2y’[G] is
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contained in I'»4 and 3y[F]B, (y) in -4 contains G at the outside of every guide-
index in I'>A4. This is a contradiction.

In Case (ii), three cases arise.
(ii-1) G(inB; (F)) is a proper part of one of the indicated F’s.
(ii-2) G(in B, (F)) coincides with one of the indicated F’s.
(ii-3) G(in B, (F)) contains some of the indicated F’s.

In Case (ii-1), deg(G) <deg(F)<deg(I —A)<deg(G). This is a contradiction.
Case (ii-3), a contradiction is leaded by the same treatment as in Case (1).

In Case (ii-2), G=F. On the other hand, 2y’[G] is in US(I'—4).
(i-2-1) When such a 2y’[G](=2y'[F]) is in B,(F) for some i, 3y[F]B,(y) is of the
form 3y[F]1B'(y, 2y'[FIC(y, ).

By Lemma 4, deg(F) <deg(F). This is a contradiction.
(ii-2-2) When such a 2y’[G](=2y’[F]) is in some B of I' ;» 4, the treatment is as
follows: Since B is not primitive and the outermost logical symbol of B is neither v,
A, D nor 71, B has a quantifier at front. Three cases arise.

@ B=32y[FID(y).

(B) B=2y"[F"IH(y", 2y'[FIK(y", y)).

() B=2"x(1)E(x, 2y'[F]L(x, y")).

In Case (), by Lemma 2, 2=3 and y’=y. So, 3y[F]D(y) remains in I’ 4.

This cannot occur in the case (3), corresponding to (2.1.2.).

In Case (B), by Lemma 4, deg(F'"") <deg(F)=deg(I' - A) < deg(F"").

This is a contradiction.

In Case (y), by Lemma 4, deg(t) <deg(F)=deg(I'— A). This cannot occur in the
case (3).

4) In the case corresponding to the case (2.1.2.r), the treatment is dual to the case
(2.1.2.).

Proof of Proposition 2.

We can easily verify that the proposition holds for each type of applications of
US-operation in Case 0 and Case 1. For each type of applications of US-operation in
Case 2, sb(US(I' > A)) coincides with sb(I'—>A4). This, leads to an LK deduction of a
dummy step. Then, in this case, the proposition also holds.

Proof of Proposition 3.
In order to prove the Proposition, it suffices to see that

c(US(T" - 4))
cl(C—4)

induces an LK* deduction, for each type of applications of US-operation. Essential
types are in only the cases when US-operation decomposes A-formulas with
quantifiers at prenex.

We treat only Case 2.1.1./. and Case 2.1.2.r., since Case 2.1.1.r. and Case 2.1.2.1.
are dual to the above cases.
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“Case 2.1.1.1": In this case, T4 =T, Vx(t)B(x), I',—A. Therefore,

c(US(T—>4))  cl(l'y), cl(B(x)), clI'y)—>cl(4)
c(F—»A4) ~ cl(I'y), Yxcl(B(x)), cl(l';)—cl(4)

induces an LK* deduction, since cl(B(7))=/(cl(B(x))) (:) by Lemma 5 and
cl(B(r))=B’(x) cannot contain any term fy(a,, - - -, o,) which contains some of the
indicated 7.

[Assume that B'(t)=B"'(f,(s,(z), - - -, 0,'(1)), 1) where one of ¢,(7)’s contains t
properly. Since B(t) is reconstructed by adding certain indeces to the quantifiers of
B'(t), B(z) is of the form B""'(fy(o,'(1), ‘-, 0,/(7)), 7). Then an A-formula Vx
(1)B(x)=VYx(1)B""'(fy(o,"(x), - * , 6,'(x)), x) has a bound variable x at the inner part
of a Skolem function f; in an A-formula. This contradicts to Lemma 1.]

“Case 2.1.2.r.”: In this case, we verify that

c(US(I' - 4))
cl(F' > 4)

induces an LK* deduction explained in Fig. 2, by inserting some inferences.
By the assumption of the proposition, the lower sequent I'-A=I—A4,,

VY[F1B,(y), 41, VIFIBy(¥), - - VIF]BY( ), 4y satisfies (#).
Then the sequent c(I'—4)=

() — cl(4o), Yy cl(By(y)), cl(dy), Yy cl(By(y)), > ¥y cl(B(y)), cl(4)

has no terms of the form F. So, the position (@) in Fig. 2 is a correct V*-right

inferences of LK*. Because, the condition (i) is satisfied by the above fact, the

condition (ii) is satisfied by an argument similar to Case 2.1.1... and
I

B (F) =B,

be taken for k— 1 contructions. Then the assertion holds in this case.

), by Lemma 5. Moreover, by Lemma 3, the position (%) can

cl(US(C — A)) =
el(r) — cl(A,),cl(B,(F)),cl(A), +,cl(Bk(F)),cl(Ayk)

Exchanges
el(r) — cl(Ay), -+ ,cl(Ag),cl(B,(F)),-*,cl(B(F))

(%) Contractions

() — cl(Ay),+++,cl(A),cl(B,(F))
° ° ° Tk ! (e) Vﬁ—right
el(F) —> cl(Ay),-+-,cl(By), Vycl(B,(y))
Weakenings
el(r) — cl(Ay),---,cl(Ay), Yy cl(Bl(y)),~~-,V& cl(Bk(y)%

Exchanges
cl(l) — cl(Ao),cl(V&[FJBl(y)),cl(AQ,---,cl(V&[F]Bk(y)),CI(Ak)

=cl(lF—=A).

Fig. 2.
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Proof of Proposition 4.

It suffices to prove that by the operation «, inference-rules of LK * turn into those
of LK. Only the cases corresponding to 3*-left and V*-right are essential. Since the
condition (ii) in 3*-left inference implies that a(D( St s ) =D"(0 -, ) and
a(3yD(y))=3yD’( ), and (i) means the condition on the eigenvariable, each inference
on 3*-left turns into an inference on 3-left of LK. The treatment on V*-right inference
is the same as that on 3*-left.
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