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1. Introduction

Consider the Dirichlet series

(L1) f9)= ay exp (54)

where 0<A, <A, < <A, <-'*, A, as n—ow, s<o+ it (g, t being real
variables), {a,}*, is a sequence of complex numbers and

(1.2) lim sup (n/4,)=D < 0 .

If the series given by (1.1) converges absolutely in the half plane Res<a
(— o0 <a< o0) then it is known ([4, p. 166]) that the series (1.1) represents an analytic
function in Res<a, and since (1.2) is satisfied we have

—o=lim sup (log |a,|)/A,.

Let D, denote the class of all functions f(s) of the form (1.1), which are analytic
in the half plane Re s<a (— oo <a<o0) and satisfy (1.2). For f e D,, set
M(o)=M(o, f)= max |flo+ir)],

—ow<t< o

m(o)=m(o, f)=max {|a,| exp (54,)}

and _
N(o)=N(o, f)=max {n:m(o)=|a,| exp (c4,)} .

M (o), m(c) and N(o) are called, respectively, the maximum modulus, the
maximum term and the rank of the maximum term of f(s) for Re s=0. The elements
in the range set of N(o) are called the principal indices of f(s). It is known ([2]) that
log M(o) is an increasing convex function of ¢ for g <a.

For a function f € D,, Krishna Nandan ([3]) has defined the order p and lower
order A (0<A=<p=<00) of f(s) as
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lim SUP loglog M(s)  p
sy inf —log (I—exp (6—a) 4 °

The above growth parameters do not give any specific information about the growth
of f(s) when p=0. Recently Awasthi and Dixit ([1]) have studied the functions of zero
order by comparing the growth of log log M(c) with that of log log (1— exp
(6 —a)) . In the present paper an attempt has been made to study the growth of such
functions in a more general way. Our results generalise the results of ([1]).

Let A be the class of all functions f satisfying the following conditions (H, i) and
(H, ii):

(H, 1) B(x) is defined on [a, o0) and is positive, strictly increasing, differentiable
and tends to oo as x— o0 .

Blex)

H, ii lim =1 for all ¢, O<c<oo.
(H. %) e
For a function f e D,, set
pB, f) .. sup Bllog M (o))

16 1) I™ inf B(—log (1—exp (¢ —)

where feA. Then p(f, f) and A(B, f) are called, respectively, -order and lower -
order of f(s). Taking, in particular; B(x)=log x, p(B, f) and A(B, f) reduce to the
growth parameters intorduced by Awasthi and Dixit ([1]). To avoid some trivial cases
we shall assume throughout that M (¢)— o0 as e—a. A function f(s) e D, is said to be
of B-regular growth if A(B, f)=p(B, f) and f(s) is said to be of B-irregular growth if
p(B, f)> B, ).

In Section 2 coefficient characterization of p(f, ) has been obtained. Coefficient
characterization of A(f, f) has been found in Section 3. A decomposition theorem for
a function of S-irregular growth has been obtained in Section 4. Finally, in the same
section, it has been illustrated that our growth parameters are more general than
those of Awasthi and Dixit. '

Note. Throughout the rest of the paper we shall assume that S(x) has been
extended over (— 00, a) by the definition f(x)=f(a) for xe(— oo, a).

2. Coefficient characterization of p(f, f)
LEMMA 1. Let f(s)€ D, with -order p(B, f) (0= p(B, )< 00). Then

. plog |a,|+ad,)
2.1) pB, f )éllf:lqiuP " Blog i)

Proof. Assumé that p(f, /) < oo, since there is nothing to prove if p(8, /)= oo.
Then, given ¢>0, there exists 6, =0,(¢) such that for ¢ > g, we have,
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log M(0) <p~'(pB(—log (1 —exp (o —))))
where p=p(B, f)+e¢. Using Cauchy’s inequality, the above inequality gives
B~ (pB(—log (1 —exp (o —a))))>log M(o)
zlog |a,|+ 04,
=log | a,|+al,+(c —a)A,
for 6 >0, and all n. Taking, in particular, =0+ log (1 —(1/4,)) the above inequality
gives
B~ (pB(log 1,))— 4, log (1—(1/2,))2 log | a,|+0,
Since f € A, the above inequality easily gives that
, pllog |a,|+ak,)
N S g 4,

Now, since £>0 is arbitrary, (2.1) follows from the above inequality. This proves the
lemma.

LEMMA 2. Let f(s)eD, with B-order p(B,f). Set F(x,c)=a"' (cB(log x)),
1< c< 0. Assume that

(i) for every ¢, 1 Sc< oo, there exists a constant x,(c) such that for x> x,(c) we
have

éf_’:p(ﬁ’ f)+8'

dF (x, ¢) <F (x, ¢)

dx ~ x
and
(i) F(x, ¢)/x—0 as x— o0 for every ¢, | Sc< 0.
hold. Then
p(B,f)< max (1, 6)
where '

. f(og |a,|+al,)
0=lim sup ——————"
n— Bllog 4,)

Note (i) Condition (i) of the Lemma ensures that F(x, ¢)/x is ultimately a
nonincreasing function of x for every ¢, 1 Sc<oo.

(ii) Henceforth, a function fe A satisfying the conditions (i) and (ii) of the
Lemma will be called an admissible function.

(iii) Inparticular log, x, p =1, is an admissible function. Here log; x=1log x and
log,(x)=log (log,_; x) for p=2.

Proof. First, let 1 =6 < oo. Then, given ¢>0 there exists n, =n,(¢) such that for
n>n, we have

(2.2) log |a,|+aA, < F(4, 0), =0+¢.
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Now, since (1.2) holds, we have n< D’A, for n>n"=n’(D’), where D’ > D.
Let Ay, be a fixed 4, greater than A,, and x,(0), where x,(f) is as defined in
condition (i) of the lemma. Then, using (2.2), we have

2.3) M@= [a,] exp (67)
n=1

<SPN)+ Y exp (Flhy 0)+(0—a)h)

n=No+1

where P(N,), the sum of first N, terms, is bounded.
For each ¢ define a natural number n(s) as

2 2 _
in(o)émF<_, 20><'1n(a-)+1 .

o—0)

Then (2.3) gives that

n(o) ]
(2.4) M(o) < P(No)+ ( Y+ X )(exp (F (2 0)+(0 —)4,))
n=No+1 n=n(e)+1

éP(NO)'i_n(O.) CXp F(ln(ap 9)

+ i exp (F (A, 0)+(c—a)4,).

n=n(e)+1

Now, for ¢ sufficiently near tc o and for all n>n(s), we have

2 2 -
F (4, 0) <F(’1n(o)+17 9)<F<°“UF<°‘_°', 29>’ 0)
j'n = j'n(tr)+l - 2 F< 2 . 20)

aA—0 A—0

(x—0)
2

since e A. Thus, for ¢ sufficiently near to o, we have

i exp (F(4,, 0)+(c—a)d,) < i exp <(O' —0) /1,,)

n=n(g)+1 n=n(c)+1 2

® (c—o)n ad (c—a)n
=< =<
_anH exp( D >_n§0 exp< 5D

=1/(1—exp (0 —a)/2D"))

2D’
(x—0)
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Now, using (2.4) and the definition of n(s), we have
M(0) < P(No) +n(0) exp (F(Lyqy, 0))(4D’/(2—0))
or
log M(0)<log n(6) + F(A,, 0)+log (2/(a—0))+O(1)
<log (2/(x—0))+log F(2/(x~0), 20)+log (2/(x—0))

2 2
+F<(a_a)F<(a_a), 29), 9>+0(1).

<4 log (2/(x— )+ F((2/(x—0))* 0)
SSF((2/(x—0))%, 0)

for all ¢ sufficiently near to a. The above inequality easily gives that
p(B.f)<0=0+¢.
Since £>0 is arbitrary, we have

p(B,f)=0.

Next, let 0 < 1. Then the above analysis, with =1, gives that the B-order p(B, )
of f(s) is atmost one. The lemma is thus proved.

Lemma 1 and Lemma 2 lead to

THEOREM 1. Let f(s) € D, with B-order p(B, f). Assume that p(B, )= 1 and that
B is an admissible function. Then

p(B,f/)=max (1, 0)
where 0 is as defined in Lemma 2.

Remark. With B(x)=Ilog x, the above theorem generalises a result in [1].

3. Coefficient characterization of A(f, f)
We need the following lemmas. Lemmas 3 and 4 are due to Krishna Nandan
3.
LEMMA 3. Let f(s)eD,. Then

log m(c)=1log m(ao)+J AngdXx, =0 <oy<o<o.

LEMMA 4. If
f9)= ) a, exp (s,)
n=1

belongs to D, and satisfies
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3.1) lim inf (4,—4,_,)=0>0

then for every 6’ <o and for all ¢ sufficiently near to o, we have
1+¢ 1— -
M(o)<m(o) 14+ 0N (g4 12PNy i (6—a)
P N (o)

Note. In Lemmas 3 and 4 we assume that m(s) and N (o) are unbounded
functions of ¢.

LEMMA 5. Let f(s)e D, with B-order p(B, f) and lower S-order A(B, f). Assume
that B is an admissible function and that (3.1) holds. Set

qn}:hm sup p(log m(a))
@3] 4oy Inf f(—log(l —exp(c—a)))

Then, if p(B, f)>1, we have p(B, f)=@,. Further if /B, f)> 1, then J(B, f)= @, holds.

Proof. Let D’>D be a fixed number. Since (1.2) is satisfied, we have, by
Lemma 3, for all ¢ sufficiently close to a.

(3.2) N (o) —0) <D Ay, —0)

o+1/2(a—0)
J
<2D J AN(odx

1
<2D'log m(a +7(oc - a)) .
Using (3.2), for ¢ sufficiently close to &, we have

log m<0+—;—(a—o)+%(1 —exp (a—oc)))

N <a+%(1 —exp (a—oc)))§2D’ I
(oc—o)—T(l —exp (o —a))

log m(a +%(oc — o-))

(x—0)

<4D
Now, using Lemma 4 and the above inequality, we have
(3.3) log M (o) <log m(a)+log log m<a+%(oc—a)>—log (x—0)
+log (1—exp (c—a)) 1 4+0(1)

<2log m<a +%(oc - 0))

+2log (1—exp (6—a) ' +0(1).
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From (3.3), it easily follows that if ¢, <1 then p(8, f)<1 and if ¢, =1 then
0, 2p(B,f). We also have ¢, < p(f, f) in view of the inequality m(c) < M (o). Thus
p(B, /)=y if p(B,/)>1.

The remaining part of the lemma also follows similarly by using (3.3). The lemma
is thus proved.

Remark. Lemma 5 generalises a result in [1].

THEOREM 2. Let f(s)€ D, with lower B-order A(B, f). Then

..o Bllog |a,, | +aky,)
(34) HB, zlim ;nf Biog 5 )

for any increasing sequence {n,} of positive integers.

Proof. Let the limit inferior on the right hand side of (3.4) be denoted by S.
Clearly 0<S<oo. First, let 0<S<oo. Then, given >0, S>e¢, there exists ko=
ko(e) such that for all k >k, we have

08 | Gy, | > F(Ay , o ) —aihy,
where §=S—¢. Choose o,=a—(1/4,). Then, for ¢,<0=<0,.,, using Cauchy’s
inequality and the above inequality, we have
log M(o)zlog | a,, | +04, 2 log|a,, [+ 04l
2 F(p,, > D+ (04— )y,
=F((1/(2=0y4,)), $)—1
=2 F((1/(2~0)), §)—1

Since B € A, the above inequality easily gives
MB.)z8=S—¢

As ¢ is arbitrary this in turn implies that

(3.5) MB,NzS

Obviously, (3.5) holds for §=0. For S=oco0, the above arguments give that
A(B, f)=o0. This proves the theorem.

COROLLARY Let f(s) € D, with B-order p(B,f) and lower p-order
M(B, f). Assume that B is an admissible function. Further, let (i) p(log 4,) ~ f(log 4,.,)

1
as n— oo and (ii) limﬂ(—ow-*-o‘/l"_)=50 exist with 1 <S8y, <co. Then f(s) is of -

o PllOg 1)
regular growth with p(B, )= AP, f)=S,.

The corollary is immediate in view of Theorem 1.

Remark. Taking B(x)=log x, Theorem 2 gives a result of Awasthi and Dixit [1].
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THEOREM 3. Let f(s)e D, with lower B-order A(B,f). Let A(B,f)>1. Assume
that B is an admissible function and that

2 dF(x, C)—>OO

(3.6) Ix as x— oo
for all ¢, 1 <c<oo. Further, let (3.1) hold and let
(3.7) Yy(m)=(log | a,/a, 1 /(ps1—4,)

be a nondecreasing function of n for n>n,. Then

L. ﬁ(logla,,|+fx/1,,)
AP ) stim it e oy

Note. In particular, log, x, p= 1, is an admissible function which satisfies (3.6).

Proof. As y(n) forms a nondecreasing function for n>n,, it follows that
Y(n)>y(n—1) for infinitely many values of n, since otherwise p(B, f)<1. Clearly

Y(n)—a as n—co. When y(n) > (n— 1), the term a, exp (s 4,) becomes the maximum
term and we have
m(c)=la,| exp (¢4,)  for Y(n—1)<o<y(n).
Now, since (3.1) is satisfied, we have by Lemma 5,
.. plog m(a))
AP, f)=lim inf — .
(B =l il G fog (1 —exp (o~ )

Suppose first that 1 <A(p, /) < co. Then, given ¢ >0 there exists ¢, =g, (¢) such that for
g>a, we have

log m(e)2 F((1—exp (6—))~", 1)

where 1= A(B,f)—e. Let a,, exp (s4,,) and a,, exp (s4,,) (n, >ny, Y(n; — 1) >a,) be two
consecutive maximum terms so that n, <n, — 1. Then

log |an2|+}."20'gF((1 _exp (O'—‘(Z))_l, /I)

for all ¢ satisfying y(n,—1)<o<y(n,). Let n,<n<n,—1. It is easily seen that
v(r)=ym+1)="- =ym)=---=y(n,—1) and that

la,| exp (o4,)=la,,| exp (o4,,)  for o=y(n).
Hence
log |a,|+ A,y (m)2 F((1—exp (Yy(n)—w) ', 4)
or
(3.8)  logla,|+ad, 2 (a—yY(n)+F((1—exp WY(m)—a)~', 1)
Z A (1 —exp (Y(n)— )+ F((1—exp (Y(n)—a) ™', 1)
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Now, consider the function
Ay -
H(x)=;+F(x, A).

Differentiating H(x), we get

Z dF(x, )
H(=—"3+ 5; ).

Now, since f is an admissible function we have F(x, 1) <x for x=x°=x°(1) and

dF (x, I)<F(x, 7)
dx =~ x

for x=x,=x,(4). Set x’=max (x,, x°). Now

A +dF (x, 2)
(x)? dx
dy (F(X, 3
<__n
= (XI)Z + x/
for n>n’=n’(x’). On the other hand, since (3.6) is satisfied we have H’(x)>0 for all
sufficiently large values of x. Thus, if x*(n) is the point such that

H'(x)=

x=x"

<0

min Hx)=H(*n) (1>n).

Then
4, _dF(x, })
C*m)’ T dx e
or
(3.9) Ay SX*M)F (x*(n), D= (x*m)*

Using (3.8), (3.9) and the definition of x*(n), we have
log |a, |+ a2, 2 F (/A 7)
Since e A, this easily gives that

.. . Plogla,|+al,

3.1 < o1l T
19 Hb D= I Blog 4,
If A(B, f) = oo, the above arguments with an arbitrarily large number in place of 1 give
that the limit inferior on the right hand side of (3.10) is also infinite. This proves the
theorem. .

Combining Theorems 2 and 3 we obtain a coefficient characterization of lower f8-
order for a subclass of functions of D, given as Theorem 4 below.



46 A. NAUTIYAL

THEOREM 4. Let f(s) € D, with lower B-order A(B, ), A(B, f)> 1. Assume that
is an admissible function and satisfies (3.6). Let (3.1) hold and let \y(n), as given by (3.7),
be ultimately a nondecreasing function of n. Further, if f(log 1,) ~ f(log 1, ) as n— oo,
then

.o PBlog|a,|+al,)
AMpB, f)=lim inf —=—2 ™
B D=0 =g o 4y
Our next theorem gives a coefficient characterization of lower B-order which
holds for a wider subclass of functions of the class D,. Thus we have

THEOREM 5. Let f(s)€ D, with lower B-order A(B, [), B, f)= 1. Assume that f3

is an admissible function and satisfies (3.6). Let (3.1) hold. Further, if p(log A, )~
Bllog 4, . ) as m— oo, where {n,} is the sequence of the principal indices of f (s), then

(3.11) AP, f)=max (1, 6,)
where

.. . plogla,,|+o, )}
3.12 0,=max <lim inf =" Tk L
( : 0 tmic) { ko B(log lnk“)

Here maximum in (3.12) is taken over all increasing sequences {n,} of positive integers.

Proof.  First, let A(B,f)=1. Then, by Theorem 2, 0,, as given by (3.12), is
atmost one. Thus (3.11) holds in this case.
Next, let A(8, /)> 1. Now, consider the function

0= 3 n, 5P (5,),
where {n,},_, is the sequence of the principal indices of f(s). It is easily seen that
g(s)e D, and that g(s) also satisfies (3.1). Further, for any s, f(s) and g(s) have the
same maximum term and so, by Lemma 5, B-order and lower f-order of ¢(s) are the
same as those of f(s). Thus lower B-order of g(s) is A(B,f). Also, V(n,)=
(og |4y, /ay, , D/, . ,—*,) is a strictly increasing function of m. Since g(s) satisfies
the hypothesis of Theorem 4, we have

T . ﬁ(log I anm l + Od’"m)
(3.13) AP, N)=tim It e )

But, from Theorem 2, we have

.. Blog |a,, |+024,)
(3.14) AP, f)zn;jf{hﬁ ;“f plog A, . ,) }

From (3.13) and (3.14) we get (3.11) in this case also.

The theorem is thus proved.
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4. A decomposition theorem

We now prove a theorem for functions of S-irregular growth.

THEOREM 6. Let f(s)€ D, be of B-irregular growth with p(B, f) > 1. Assume that
B is an admissible function. Let AP, f)<u<p(B,f). Then f(s) is of the form
h,(8)+g.(s), where B-order of g,(s) is not greater than max (1, u) and

h{s)= 3. a,, exp (si,)
p=1

satisfies

. . . Plogi,)
AB, f)=u lim inf —=""2 .
p—>© B(log lnp+1)

Proof. Let g,(s)=2"a, exp (s4,), where 2’ denotes the summation over » for
which

log |an| éF(Am u)_aln .

Then g,(s) is in D, and, by Lemma 2, is of B-order atmost max (1, u). Let

h(s)=f(s)=g(s)= 3. a,, exp (s,)-
p=1
Then
log |a,,|>F(4,, u)—ak, .
Let 0,=a—(1/4,,). Then, for 6,<0=<0,,,, using Cauchy’s inequality, we have

log M (0)2log |a,,|+04,,2F(4,, w)—(@—0,)4,,

np =

2 F (1)~ 125 F (0 )

for all sufficiently large values of p. Thus

B2 log M (o)) > up(log 4,)
p(—log (1 —exp (o —a))) ~ f(—log (1—exp (v, ; —)))
for all ¢ sufficiently near to «. Now, since (1 —exp (0,41 —0) ' ~A
theorem follows from the above inequality.

We now give a simple example which shows that the growth parameters
introduced here are more general than those of Awasthi and Dixit.

as p— oo, the

Np +1

Example. Consider the function

0

G(s)= Y, exp (exp (log,n)* + sn), 1<K<o.

n=3

Then G(s)eD, and the order p of G is zero. From Theorem 2 we see that
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Alog, G)=p(log, G)= 0. Thus the growth parameters of Awasthi and Dixit fail to
give any specific information about the growth of G(s). But, from the corollary of
Theorem 2, it is easily seen that p(log,, G)=A(log,, G)= K. Thus, the function G has
nonzero finite growth parameters in our sense.
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