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1. Introduction

It is well known that every closed connected 3-manifold has a Heegaard
splitting. A 3-manifold M is said to be of genus #, if M has a Heegaard splitting of
genus n. Every 3-manifold of genus 1 is either a lens space or S? x S* in the orientable
case and is the twisted S2-bundle over S* in the non-orientable case. Moreover, 3-
manifolds of genus 1 are completely classified in [2], [4] and [5]. In this paper, we shall
try to classify a certain class of 3-manifolds of genus 2. Indeed, we shall verify that
torus bundles (over S!) of genus 2 are completely classified by a new invariant
(Theorem 3). Moreover, since every orientable 3-manifold of genus 2 is a 2-fold
branched covering space of S® branched along a link, by Birman-Hilden-Viro-
Takahashi [1], [10], [11], we can verify that every orientable torus bundle of genus 2 is
a 2-fold branched covering space of S branched along some specified link (Corollary
3.1).

In this paper, we work in the piecewise linear category. S”, D" denote n-sphere
and n-disk, respectively. Let X be a manifold and Y be a submanifold properly
embedded in X. Then N(Y, X) denotes a regular neighborhood of Y in X. Closure,
boundary, interior over one symbol are denoted by cl(-), d(-), int (-), respectively.

2. Surface-bundles over S

Let F be a closed connected surface and @:F—F be a homeomorphism.
Moreover let M be the 3-manifold obtained from F x I by identifying (x, 0) in Fx 0
with (©(x), 1) in Fx 1. Then M is called a surface-bundle over S*. We denote M also
by M(®). It will be noticed that if F is orientable then M is orientable or non-
orientable, according as @ being oreitnation-preserving or orientation-reversing.
Then by Neuwirth [8], we have;

PROPOSITION 1. Let ®, and @, be self-homeomorphisms of F. Then M(®,) is
homeomorphic to M (D,), if there is a self-homeomorphism ¥ such that ¥, is isotopic
to D,V.

Next we consider the relationship between surface-bundles over S* and their
Heegaard splittings. Let F be a closed connected surface and g(F) be the genus of F.

63



64 M. TakaHAsHI and M. OcHIAI

That is, if Fis orientable (resp. non-orientable), there exist 2 x g(F) (resp. g(F)) circles
on F such that if we cut F along these circles, the resulting manifold is a 2-disk. We
may assume that if F is non-orientable then all of such g(F) circles are one-sided
circles. Then we have;

THEOREM 1. Let M be an F-bundle over S'. If F is orientable (resp. non-
orientable), M has a Heegaard splitting of genus 2g(F)+1 (resp. g(F)+1).

Proof. Let @ be a self-homeomorphism of F such that M =Fx I/®. We may
assume without loss of generality that there exists a point p on F such that ¢(p)=p.
Next let C;, C,, -+ -, C, be circles on F satisfying the following conditions;

(1) n=2g(F) (resp. g(F)), if F is orientable (resp. non-orientable),

(2) CinCj=p, for all i#j,

(3) F—|Ji-; int(N(C,, F)) is a 2-disk.

Let C be the circle (p x I)/® in M and C, be the circle C, x0in M (k=1,2, - -+, n).
Furthermore let U=N(| Ji=; C;uC, M) and V=M —int(U). We note that U is a
non-oreintable handle if either F is orientable and @ is orientation-reversing or F
is non-orientable. (For the definition of non-orientable handles, see [9].) Let V'’
be FxI—int(N(px1I, FxI) and D,=Fxi—int(N;), where i=0, 1 and N,=
N(Ui-1(C, x0), Fx0), N, =®(N,). Then D;is a 2-disk in Fxi(i=0, 1). Now we may
assume that V is obtained from ¥V’ by identifying points x in D, with points §(x) in
D,. Since V' is a handle of genus n, V is also a handle of genus n+1. Thus M has a
Heegaard splitting of genus n+ 1. That is, M=UuV with UnV=0U=0V and U
and V are homeomorphic handles. This completes the proof of the theorem.

From now on, we shall consider surface-bundles over S' with Heegaard
splittings of rather small genus. Let F be a closed surface with positive genus g(F) and
M be an F-bundle over S'. It is easily verified that M has no Heegaard splittings of
genus one. Thus we are interested in the existence of surface-bundles over S* with
Heegaard splittings of genus two. As the first observation, we have;

THEOREM 2. For an arbitrary positive integer n, there exists an orientable F-
bundle over S* such that g(F)=n and M has a Heegaard splitting of genus two.

Proof. Let K be a torus knot of type (p, g) in S> with n=(p—1)(¢—1)/2. Then
the knot exterior E(K)=S>—int(N(K, S%)) of K is an F,-bundle over S* such that
0F, <0E(K), g(F,)=n, and E(K)=S"* x S'. Since K is a torus knot, we may assume
that K lies on the boundary of an unknotted solid torus H in S>. Let « be a simple arc
in 9H joining distinct points of K with the interior of it disjoint from K such that it is
not homotopic on éH to any arcs in K joining points Kno. Then N(aUK, S*)=Visa
handle of genus two. Furthermore, U=S>—int (V) is also a handle of genus two,
since H—int(¥) and (S®—int (H))—int (V) are both solid tori and their intersection
is a 2-disk 0H—int (V). Let M be a closed 3-manifold obtained by attaching a 2-
handle D*>x I to E(K) along 0F,. Then M is an F-bundle over S such that Fis a
closed surface with g(F)=n and that M has a Heegaard splitting of genus two. This
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completes the proof of the theorem.

It will be noticed that by Moser [6] all the 3-manifolds given by Theorem 2 are
Seifert fibered spaces.

3. Torus-bundles over S*

In this section, we consider only torus-bundles over S!. Let G be the group of
2 x 2 matrices over Z with determinant plus or minus one. Moreover, let T be a torus
and A(T) be the homeotopy group of 7. Then A(T) is isomorphic to G. Let & be a
homeomorphism of T onto itself. Then @ is given by a matrix (? %) in G. Let M (&) be
the torus bundle over S' determined by @. A presentation of m,(M(®)) is given by

m(M(®)=<x, y, t|lx, I=1, txt ™" =xPys, tyr ™' =x"y")
where x, y correspond to generators of 7,(7).

PROPOSITION 2. Let &, and ®, be self-homeomorphisms of T, whose matrices
are A, and A,, respectively. Moreover let M, and M, be the torus-bundles over S!
determined by ®, and ®,, respectively. Then M, is homeomorphic to M, if and only if
A, is a conjugate of A, or A;* in G.

Proof. One direction comes from Proposition 1. Furthermore, if the Betti
number b(M(®,))=1, then the converse follows from Theorem 1 in [7]. Suppose that
M(®,) is homeomorphic to M(®,) and b(M(P;))=2 (i=1, 2). Thus we have that
H\(M(®)), Z)=Z+Z+Z,. Let E be the unit matrix and B;=4,—E (i=1, 2). It is
easily seen that the determinant of B, is zero. Let B,=(; 3;) (i=1, 2). Then there are
integers v; and w; such that (a;, b)=v{x;, B;) and (c;, d )=wy(a;, B,), where i=1, 2 and
o; and B; are relatively prime integers. Thus there are 1ntegers y; and §; such that
det (3¢ 41)=1(i=1, 2). Then we have that GignE i ~Ey= (*114: 9), where u; =

O0i(yia;+0,c)—yyib;+6:d) (i=1, 2). Thus the matrix A is conjugate to (“i*5*1 9)
(i=1,2). Let z;=a;+b;+ 1. Since det(4,)= + 1, we have that |z;|=1. Then two cases
happen;

Case (1): M(®,) is orientable. In this case, we have that z;=1. Since H,(M(®)),
Z)=Z+Z+2Z,, we have that k=|u;|. Thus 4, is conjugate to A,, since
G DG DG “H=(_L

Case (2): M(®)) is non-orientable. In this case, we have that z;= — 1. By Hempel
[4], 4, is also conjugate to 4,, since (71 (7L 9)=E.

This completes the proof.

By the above argument, if M is a torus-bundle with H,(M, Z)=Z+Z+2Z,,
then the corresponding matrix A4 is conjugate to one of CDC89, 1.

From now on, we are interested in torus-bundles with Heegaard sphttmgs of
genus two. By Theorem 1, every torus-bundle has always a Heegaard splitting of
genus three. But some of them have also Heegaard splittings of genus two.
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PROPOSITION 3. Let M(®) be a torus-bundle over S* and ¢= % 1. If the matrix
of @ is (" 5), then M(®) has a Heegaard splitting of genus two.

Proof. By Theorem 1, M(®) has a Heegaard splitting of genus three and
the Heegaard splitting (U, V; F) is associated with the presentation of 7, (M (D)),
<x, y, t|[x, y]=1, txt™t=x"y, tyt”t=x). Let u=u;UuUu; (resp. V=10, UU,UD;)
be a complete system of meridian-disks of U (resp. ¥). That is, u (resp. v) is a collec-
tion of mutually disjoint disks properly embedded in U (resp. ¥) such that cl(U—
N(u, U)) (resp. cl(V—N(v, V))) is a 3-disk. Let x, y, and ¢ be the canonical genera-
tors of the free group (V) (=Z*Z*Z). Then we can easily find a homeomor-
phism f from 6U onto 0V such that the induced homomorphism f, : n,(0U)—
(V) satisfies f,(0u;)=xyx" 'y, f,(0u)=x"ytx"'¢"!, and SOug)=xty~ 't 1.
It will be noticed that f(0u,) bounds a torus with one hole in V. We can assume
that f(du;) meets dv, transversely at only one point. Then if M(®) is orientable,
by Waldhausen [13] the intersection of dv, and f(du,) or f(du,) are eliminated.
Next suppose that M (®) is non-orientable. Then we may assume that the generators
x and y (resp. £) are induced by orientable circles (resp. a non-orientable circle) in
V. Thus all the circles f(du,), f(0u,), and f(0u;) are orientable in V. Hence the
elimination method of the orientable case can also apply to the non-orientable case.
Let u] and uj be the resulting circles on the boundary of V’'=V—int(N(v,, V).
Then (V’; dv,Udv,, uj u3) gives a Heegaard diagram of genus two. Thus M (P) has
a Heegaard splitting of genus two. This completes the proof.

It will be noticed that if e= — 1 and m=2 (resp. e= + 1 and m=3), M (&) has an
orientable (resp. non-orientable) Heegaard diagram of genus two, illustrated in
Figure 1.1 (resp. Figure 1.2).

Next we shall verify that the torus-bundles of genus two given by Proposition 3
cover all torus-bundles of genus two.

LEMMA 1. Let A be a matrix in G and M be a torus-bundle determined by A. If
n,(M) is generaied by two generators, then A is conjugate to a matrix & 9 withq' =1
orr'=1.

Proof. To avoid complexity, we will verify only the case when M is orientable,
and the proof in the case when M is non-orientable is similar. Let [T=m,(M) and
A=(? 9). Suppose that [T=<a, b), that is, two elements a and b in [] generate
[1. By txt ' =x?y? and tyz~ ! =x"y*, we have 1~ 'xt=x°y" % and ™ 'yr=x""y", since
ps—qr=1. Thus we have that tx=xPy%, ty=xy’t, t 'x=x% %', and t7ly=
x"TyPt~1. Let z be an arbitrary element in []. By the above four equations and
xy=yx, there are three integers a, 8, y, such that z=x*y##". Furthermore such ex-
pression of z is unique. For, if x*’#’=1, then the equation ax+ fy+yt=0 holds
in H,(M, Z). Since H,(M, Z)=Z+Z,, x and y generate Z,, and ¢ generates Z, we
have that y=0. Hence x*y*=1 in n,(M). Here x, y are contained in m,(T). Let i
7,(T)—n,(M) be the inclusion induced homomorphism. Since i. is monic, x*y*=
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1 in n,(T). But T is a torus, and so a==0.

Now suppose that a=x*y#11"* and b= x*2y#21"2. We may assume that 0<y, <y,.
Then b=x*'yk1r1x* yF' 12~ =qax*t¥'{2~7 for some integer o', f’. Thus we may
assume that [T=<a, b) with a=x*y#1#* and b=x*2y?2. Next we can assume with-
out loss of generality that a, and f, are relatively prime. Then the element b
can be thought of as a simple loop in T, which is not homotopic in T to zero. And
there is a simple loop ¢ in T which meets b transversely at only one point. Let c=
c¢*yP* with det (32 §2)=1. Consequently a new presentation of [T, <b, c, t|[b, c]=1,
tht™ 1 =bPict, tet™!=b"c*) is obtained and [[=<(a, b> with a=5b**#. And so
[1=<ay, b) with a;=cf¢. Since a, and b generate ¢, we have that y=1. Thus [[=
{ay, by with a; =c*t. Since t=c"%a,, the following presentation of [T follows;

[1=<b, ¢, a,|[b, =1, a;ba; * =b?*c", a;ca; * =b""c) .

Let a, =g. For every integer m, we have the following,

(1) gbg™ =@ cmy @ gibrg =

(3) gc"'g_l =(b"cs‘)"' (4) g—lcmg=(b—ncp1)m
Since [[={g, b), we have that c= g"'b"g"- - - b’k for some integer v;, v,, -, V.
Then we will verify that ¢ has an expression b*c?g” such that ¢, divides B. Since both b
and c are contained in 7, (7"), we may assume without loss of generality that all of the
three integers vy, v,, v; are non-zero. It is sufficient to verify that an element g*b*, with
non-zero integers T and A, in [T has an expression 5*'cf'g”* with ¢, divides B,. To

avoid complexity, we assume that 7 and A are both positive. Then by the equations (1)
and (2), we have the following,

g’bl:bl’?"c”rl"1lgc"r2"1lg~ . .Cmq;lgcqllg )

Furthermore, by equation (3) we have that for any integer m, gc"=(b"'c*")"g=
brimestmg. Thus, at the final step we can obtain the expression of g'b*, b*cfig,
such that ¢, divides B,. Consequently, c=>5%"g" for some integers «, B, y and g,
divides f. But by the uniqueness of the expression of ¢, we have that f=1. Hence
g=+1. Here (*. ") is conjugate to (_F !). Thus we conclude that g=1. This com-

pletes the proof of the lemma.

LEMMA 2. Let A=® 9 be a matrix in G. If (q—1)(r—1)=0, then A is
conjugate to a matrix (' §) in G with e= + 1.

Proof. Suppose that g=1. In this case, if det(4)=1, then A=(,2, ;). If
det(4)=—1, then 4=(,%, ). Then the following hold;

ps 1 s)(s - )=(s - )(p+s _1 (ps+1 s)(_s —1) (_s _1)(p+s )'
Thus we set m=p+s. If r=1, then the same result is obtained.

Let M(m, €) be a 3-manifold determined by a matrix ("2 &) with e= + 1. Then
by Lemma 1 and Lemma 2, and Proposition 2, we have;
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THEOREM 3. Every torus-bundle over S* with a Heegaard splitting of genus two
is homeomorphic to M(m, €) for some integer m, and if it is orientable (resp. non-
orientable) then e= —1 (resp. e=1). In particular, M (m, &)= M(m’, ¢) if and only if
m=m’.

Birman-Hilden-Viro-Takahashi [1], [10], and [11] proved that every orientable

Figure 1.1. A Heegaard diagram in the orientable case of m=2.

Figure 2. A link K(m+4)=K, v K;(U K;).
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closed 3-manifold with Heegaard splittings of genus two is a 2-fold branched
covering space of S branched along a link. As illustrated in preceding remark, the
manifold M (2, —1) has a Heegaard diagram of genus two given by Figure 1.1. Thus
we can determine one type of branched sets of torus-bundles of genus two. Let
K(m+4) be the link illustrated in Figure 2. It has two components K, and K (resp.
three components K,, K;, and K,) if m is odd (resp. even). We note that the
component K, is unknotted and that m+4 is the number of double points in K, UK,
(resp. K;), when m is even (resp. odd). Then we have;

COROLLARY 3.1.  Every orientable torus-bundle of form M(m, —1) is a 2-fold
branched covering space of S* branched along K (m+4).

By the way, there are infinitely many torus-bundles of genus three but not two. It
is an interesting problem to decide whether such torus-bundles are 2-fold branched
covering spaces of S or not. Fox had proved in [3] that S* x S* x S! is not a 2-fold
branched covering space of S3. Thus we will set up the following problem;

PROBLEM 1. Which torus-bundles are 2-fo7d branched covering spaces of S3?

In view of Lemma 1, we raise the following;

PROBLEM 2. Are link types of branched sets of every torus-bundle of genus two
unique?
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