Heegaard Diagrams of Torus Bundles Over S^1

by

Moto-o Takahashi and Mitsuyuki Ochiai

(Received July 17, 1981)

1. Introduction

It is well known that every closed connected 3-manifold has a Heegaard splitting. A 3-manifold M is said to be of genus n, if M has a Heegaard splitting of genus n. Every 3-manifold of genus 1 is either a lens space or $S^2 \times S^1$ in the orientable case and is the twisted S^2 -bundle over S^1 in the non-orientable case. Moreover, 3-manifolds of genus 1 are completely classified in [2], [4] and [5]. In this paper, we shall try to classify a certain class of 3-manifolds of genus 2. Indeed, we shall verify that torus bundles (over S^1) of genus 2 are completely classified by a new invariant (Theorem 3). Moreover, since every orientable 3-manifold of genus 2 is a 2-fold branched covering space of S^3 branched along a link, by Birman-Hilden-Viro-Takahashi [1], [10], [11], we can verify that every orientable torus bundle of genus 2 is a 2-fold branched covering space of S^3 branched along some specified link (Corollary 3.1).

In this paper, we work in the piecewise linear category. S^n , D^n denote *n*-sphere and *n*-disk, respectively. Let X be a manifold and Y be a submanifold properly embedded in X. Then N(Y, X) denotes a regular neighborhood of Y in X. Closure, boundary, interior over one symbol are denoted by $cl(\cdot)$, $\partial(\cdot)$, int (\cdot) , respectively.

2. Surface-bundles over S^1

Let F be a closed connected surface and $\Phi: F \to F$ be a homeomorphism. Moreover let M be the 3-manifold obtained from $F \times I$ by identifying (x, 0) in $F \times 0$ with $(\Phi(x), 1)$ in $F \times 1$. Then M is called a *surface-bundle over* S^1 . We denote M also by $M(\Phi)$. It will be noticed that if F is orientable then M is orientable or non-orientable, according as Φ being orientation-preserving or orientation-reversing. Then by Neuwirth [8], we have;

PROPOSITION 1. Let Φ_1 and Φ_2 be self-homeomorphisms of F. Then $M(\Phi_1)$ is homeomorphic to $M(\Phi_2)$, if there is a self-homeomorphism Ψ such that $\Psi\Phi_1$ is isotopic to $\Phi_2\Psi$.

Next we consider the relationship between surface-bundles over S^1 and their Heegaard splittings. Let F be a closed connected surface and g(F) be the genus of F.

That is, if F is orientable (resp. non-orientable), there exist $2 \times g(F)$ (resp. g(F)) circles on F such that if we cut F along these circles, the resulting manifold is a 2-disk. We may assume that if F is non-orientable then all of such g(F) circles are one-sided circles. Then we have:

THEOREM 1. Let M be an F-bundle over S^1 . If F is orientable (resp. non-orientable), M has a Heegaard splitting of genus 2g(F)+1 (resp. g(F)+1).

Proof. Let Φ be a self-homeomorphism of F such that $M = F \times I/\Phi$. We may assume without loss of generality that there exists a point P on F such that $\Phi(P) = P$. Next let C_1, C_2, \dots, C_n be circles on F satisfying the following conditions;

- (1) n=2g(F) (resp. g(F)), if F is orientable (resp. non-orientable),
- (2) $C_i \cap C_j = p$, for all $i \neq j$,
- (3) $F \bigcup_{k=1}^{n} \text{ int } (N(C_k, F)) \text{ is a 2-disk.}$

Let C be the circle $(p \times I)/\Phi$ in M and C'_k be the circle $C_k \times 0$ in M $(k=1, 2, \cdots, n)$. Furthermore let $U = N(\bigcup_{k=1}^n C'_k \cup C, M)$ and $V = M - \mathrm{int}(U)$. We note that U is a non-orientable handle if either F is orientable and Φ is orientation-reversing or F is non-orientable. (For the definition of non-orientable handles, see [9].) Let V' be $F \times I - \mathrm{int}(N(p \times I, F \times I))$ and $D_i = F \times i - \mathrm{int}(N_i)$, where i = 0, 1 and $N_0 = N(\bigcup_{k=1}^n (C_k \times 0), F \times 0), N_1 = \Phi(N_0)$. Then D_i is a 2-disk in $F \times i$ (i = 0, 1). Now we may assume that V is obtained from V' by identifying points x in D_0 with points $\Phi(x)$ in D_1 . Since V' is a handle of genus n, V is also a handle of genus n+1. Thus M has a Heegaard splitting of genus n+1. That is, $M = U \cup V$ with $U \cap V = \partial U = \partial V$ and U and V are homeomorphic handles. This completes the proof of the theorem.

From now on, we shall consider surface-bundles over S^1 with Heegaard splittings of rather small genus. Let F be a closed surface with positive genus g(F) and M be an F-bundle over S^1 . It is easily verified that M has no Heegaard splittings of genus one. Thus we are interested in the existence of surface-bundles over S^1 with Heegaard splittings of genus two. As the first observation, we have;

THEOREM 2. For an arbitrary positive integer n, there exists an orientable F-bundle over S^1 such that q(F)=n and M has a Heegaard splitting of genus two.

Proof. Let K be a torus knot of type (p,q) in S^3 with n=(p-1)(q-1)/2. Then the knot exterior $E(K)=S^3-\operatorname{int}(N(K,S^3))$ of K is an F_1 -bundle over S^1 such that $\partial F_1 \subseteq \partial E(K)$, $g(F_1)=n$, and $\partial E(K)=S^1\times S^1$. Since K is a torus knot, we may assume that K lies on the boundary of an unknotted solid torus H in S^3 . Let α be a simple arc in ∂H joining distinct points of K with the interior of it disjoint from K such that it is not homotopic on ∂H to any arcs in K joining points $K\cap \alpha$. Then $N(\alpha \cup K, S^3)=V$ is a handle of genus two. Furthermore, $U=S^3-\operatorname{int}(V)$ is also a handle of genus two, since $H-\operatorname{int}(V)$ and $(S^3-\operatorname{int}(H))-\operatorname{int}(V)$ are both solid tori and their intersection is a 2-disk $\partial H-\operatorname{int}(V)$. Let M be a closed 3-manifold obtained by attaching a 2-handle $D^2\times I$ to E(K) along ∂F_1 . Then M is an F-bundle over S^1 such that F is a closed surface with g(F)=n and that M has a Heegaard splitting of genus two. This

completes the proof of the theorem.

It will be noticed that by Moser [6] all the 3-manifolds given by Theorem 2 are Seifert fibered spaces.

3. Torus-bundles over S^1

In this section, we consider only torus-bundles over S^1 . Let G be the group of 2×2 matrices over Z with determinant plus or minus one. Moreover, let T be a torus and $\Lambda(T)$ be the homeotopy group of T. Then $\Lambda(T)$ is isomorphic to G. Let Φ be a homeomorphism of T onto itself. Then Φ is given by a matrix $\binom{p}{g}$ in G. Let $M(\Phi)$ be the torus bundle over S^1 determined by Φ . A presentation of $\pi_1(M(\Phi))$ is given by

$$\pi_1(M(\Phi)) = \langle x, y, t | [x, y] = 1, txt^{-1} = x^p y^q, tyt^{-1} = x^r y^s \rangle$$

where x, y correspond to generators of $\pi_1(T)$.

PROPOSITION 2. Let Φ_1 and Φ_2 be self-homeomorphisms of T, whose matrices are A_1 and A_2 , respectively. Moreover let M_1 and M_2 be the torus-bundles over S^1 determined by Φ_1 and Φ_2 , respectively. Then M_1 is homeomorphic to M_2 if and only if A_1 is a conjugate of A_2 or A_2^{-1} in G.

Proof. One direction comes from Proposition 1. Furthermore, if the Betti number $b(M(\Phi_1))=1$, then the converse follows from Theorem 1 in [7]. Suppose that $M(\Phi_1)$ is homeomorphic to $M(\Phi_2)$ and $b(M(\Phi_i)) \ge 2$ (i=1, 2). Thus we have that $H_1(M(\Phi_i), Z) = Z + Z + Z_k$. Let E be the unit matrix and $B_i = A_i - E$ (i=1, 2). It is easily seen that the determinant of B_i is zero. Let $B_i = \binom{a_i \ b_i}{c_i \ d_i}$ (i=1, 2). Then there are integers v_i and w_i such that $(a_i, b_i) = v_i(\alpha_i, \beta_i)$ and $(c_i, d_i) = w_i(\alpha_i, \beta_i)$, where i=1, 2 and α_i and β_i are relatively prime integers. Thus there are integers γ_i and δ_i such that $\det \binom{\alpha_i \ \beta_i}{\gamma_i \ \delta_i} = 1$ (i=1, 2). Then we have that $\binom{\alpha_i \ \beta_i}{\gamma_i \ \delta_i} \binom{a_i \ b_i}{(c_i \ d_i)} \binom{a_i \ b_i}{(c_i \ d_i)} \binom{a_i \ b_i}{(c_i \ d_i)} = \binom{a_i + d_i \ 0}{u_i \ 0}$, where $u_i = \delta_i(\gamma_i a_i + \delta_i c_i) - \gamma_i(\gamma_i b_i + \delta_i d_i)$ (i=1, 2). Thus the matrix A_i is conjugate to $\binom{a_i + b_i + 1}{u_i \ 1}$ (i=1, 2). Let $z_i = a_i + b_i + 1$. Since $\det (A_i) = \pm 1$, we have that $|z_i| = 1$. Then two cases happen;

Case (1): $M(\Phi_i)$ is orientable. In this case, we have that $z_i = 1$. Since $H_1(M(\Phi_i), Z) = Z + Z + Z_k$, we have that $k = |u_i|$. Thus A_1 is conjugate to A_2 , since $\begin{pmatrix} 1 & 0 \\ 1 & -1 \end{pmatrix}\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}\begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$.

Case (2): $M(\Phi_i)$ is non-orientable. In this case, we have that $z_i = -1$. By Hempel [4], A_1 is also conjugate to A_2 , since $\begin{pmatrix} -1 & 0 \\ u & 1 \end{pmatrix} \begin{pmatrix} -1 & 0 \\ u & 1 \end{pmatrix} = E$.

This completes the proof.

By the above argument, if M is a torus-bundle with $H_1(M, Z) = Z + Z + Z_k$, then the corresponding matrix A is conjugate to one of $\begin{pmatrix} 1 & 0 \\ u & 1 \end{pmatrix}$, $\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$, $\begin{pmatrix} -1 & 0 \\ 1 & 1 \end{pmatrix}$.

From now on, we are interested in torus-bundles with Heegaard splittings of genus two. By Theorem 1, every torus-bundle has always a Heegaard splitting of genus three. But some of them have also Heegaard splittings of genus two.

PROPOSITION 3. Let $M(\Phi)$ be a torus-bundle over S^1 and $\varepsilon = \pm 1$. If the matrix of Φ is $\binom{n-\varepsilon}{0}$, then $M(\Phi)$ has a Heegaard splitting of genus two.

Proof. By Theorem 1, $M(\Phi)$ has a Heegaard splitting of genus three and the Heegaard splitting (U, V; F) is associated with the presentation of $\pi_1(M(\Phi))$, $\langle x, v, t | [x, v] = 1, txt^{-1} = x^m v^{\varepsilon}, tyt^{-1} = x \rangle$. Let $u = u_1 \cup u_2 \cup u_3$ (resp. $v = v_1 \cup v_2 \cup v_3$) be a complete system of meridian-disks of U (resp. V). That is, u (resp. v) is a collection of mutually disjoint disks properly embedded in U (resp. V) such that cl(U-N(u, U) (resp. cl(V - N(v, V))) is a 3-disk. Let x, y, and t be the canonical generators of the free group $\pi_1(V)$ (= Z*Z*Z). Then we can easily find a homeomorphism f from ∂U onto ∂V such that the induced homomorphism $f_*: \pi_1(\partial U) \to \mathcal{O}(U)$ $\pi_1(V)$ satisfies $f_*(\partial u_1) = xyx^{-1}y^{-1}$, $f_*(\partial u_2) = x^m y^{\varepsilon} tx^{-1} t^{-1}$, and $f_*(\partial u_3) = xty^{-1} t^{-1}$. It will be noticed that $f(\partial u_1)$ bounds a torus with one hole in V. We can assume that $f(\partial u_3)$ meets ∂v_2 transversely at only one point. Then if $M(\Phi)$ is orientable, by Waldhausen [13] the intersection of ∂v_2 and $f(\partial u_1)$ or $f(\partial u_2)$ are eliminated. Next suppose that $M(\Phi)$ is non-orientable. Then we may assume that the generators x and y (resp. t) are induced by orientable circles (resp. a non-orientable circle) in V. Thus all the circles $f(\partial u_1)$, $f(\partial u_2)$, and $f(\partial u_3)$ are orientable in ∂V . Hence the elimination method of the orientable case can also apply to the non-orientable case. Let u'_1 and u'_2 be the resulting circles on the boundary of $V' = V - \operatorname{int}(N(v_2, V))$. Then $(V'; \partial v_1 \cup \partial v_3, u'_1 u'_2)$ gives a Heegaard diagram of genus two. Thus $M(\Phi)$ has a Heegaard splitting of genus two. This completes the proof.

It will be noticed that if $\varepsilon = -1$ and m = 2 (resp. $\varepsilon = +1$ and m = 3), $M(\Phi)$ has an orientable (resp. non-orientable) Heegaard diagram of genus two, illustrated in Figure 1.1 (resp. Figure 1.2).

Next we shall verify that the torus-bundles of genus two given by Proposition 3 cover all torus-bundles of genus two.

LEMMA 1. Let A be a matrix in G and M be a torus-bundle determined by A. If $\pi_1(M)$ is generated by two generators, then A is conjugate to a matrix $\binom{p'}{r}$ with q'=1 or r'=1.

Proof. To avoid complexity, we will verify only the case when M is orientable, and the proof in the case when M is non-orientable is similar. Let $\prod = \pi_1(M)$ and $A = \binom{p}{s}$. Suppose that $\prod = \langle a, b \rangle$, that is, two elements a and b in \prod generate \prod . By $txt^{-1} = x^py^q$ and $tyt^{-1} = x^ry^s$, we have $t^{-1}xt = x^sy^{-q}$ and $t^{-1}yt = x^{-r}y^p$, since ps - qr = 1. Thus we have that $tx = x^py^qt$, $ty = x^ry^st$, $t^{-1}x = x^sy^{-q}t^{-1}$, and $t^{-1}y = x^{-r}y^pt^{-1}$. Let z be an arbitrary element in \prod . By the above four equations and xy = yx, there are three integers α , β , γ , such that $z = x^{\alpha}y^{\beta}t^{\gamma}$. Furthermore such expression of z is unique. For, if $x^{\alpha}y^{\beta}t^{\gamma} = 1$, then the equation $\alpha x + \beta y + \gamma t = 0$ holds in $H_1(M, Z)$. Since $H_1(M, Z) = Z + Z_k$, x and y generate Z_k , and t generates Z, we have that $\gamma = 0$. Hence $x^{\alpha}y^{\beta} = 1$ in $\pi_1(M)$. Here x, y are contained in $\pi_1(T)$. Let $t: \pi_1(T) \to \pi_1(M)$ be the inclusion induced homomorphism. Since t is monic, $x^{\alpha}y^{\beta} = 1$

1 in $\pi_1(T)$. But T is a torus, and so $\alpha = \beta = 0$.

Now suppose that $a = x^{\alpha_1} y^{\beta_1} t^{\gamma_1}$ and $b = x^{\alpha_2} y^{\beta_2} t^{\gamma_2}$. We may assume that $0 \le \gamma_1 \le \gamma_2$. Then $b = x^{\alpha_1} v^{\beta_1} t^{\gamma_1} x^{\alpha'} v^{\beta'} t^{\gamma_2 - \gamma_1} = a x^{\alpha'} t^{\beta'} t^{\gamma_2 - \gamma_1}$ for some integer α' , β' . Thus we may assume that $\prod = \langle a, b \rangle$ with $a = x^{\alpha_1} y^{\beta_1} t^{\gamma_1}$ and $b = x^{\alpha_2} y^{\beta_2}$. Next we can assume without loss of generality that α_2 and β_2 are relatively prime. Then the element b can be thought of as a simple loop in T, which is not homotopic in T to zero. And there is a simple loop c in T which meets b transversely at only one point. Let c = $c^{\alpha_3}y^{\beta_3}$ with $\det\begin{pmatrix} \alpha_2 & \beta_2 \\ \alpha_3 & \beta_3 \end{pmatrix} = 1$. Consequently a new presentation of \prod , $\langle b, c, t | [b, c] = 1$, $tbt^{-1} = b^{p_1}c^{q_1}$, $tct^{-1} = b^{r_1}c^{s_1}\rangle$ is obtained and $\prod = \langle a, b \rangle$ with $a = b^{\alpha}c^{\beta}t^{\gamma}$. And so $\prod = \langle a_1, b \rangle$ with $a_1 = c^{\beta} t^{\gamma}$. Since a_1 and b generate t, we have that $\gamma = 1$. Thus $\prod = 1$ $\langle a_1, b \rangle$ with $a_1 = c^{\beta}t$. Since $t = c^{-\beta}a_1$, the following presentation of \prod follows;

$$\prod = \langle b, c, a_1 | [b, c] = 1, a_1 b a_1^{-1} = b^{p_1} c^{q_1}, a_1 c a_1^{-1} = b^{r_1} c^{s_1} \rangle.$$

Let $a_1 = g$. For every integer m, we have the following,

(1)
$$gb^mg^{-1} = (b^{p_1}c^{q_1})^m$$

(3) $gc^mg^{-1} = (b^{r_1}c^{s_1})^m$

(2)
$$g^{-1}b^mg = (b^{s_1}c^{-q_1})^m$$

(3)
$$gc^{m}g^{-1} = (b^{r_1}c^{s_1})^{m}$$

(4)
$$g^{-1}c^mg = (b^{-r_1}c^{p_1})^m$$

Since $\prod = \langle g, b \rangle$, we have that $c = g^{\nu_1} b^{\nu_2} g^{\nu_3} \cdots b^{\nu_k} k$ for some integer $\nu_1, \nu_2, \cdots, \nu_k$. Then we will verify that c has an expression $b^{\alpha}c^{\beta}g^{\gamma}$ such that q_1 divides β . Since both b and c are contained in $\pi_1(T)$, we may assume without loss of generality that all of the three integers v_1 , v_2 , v_3 are non-zero. It is sufficient to verify that an element $g^{\tau}b^{\lambda}$, with non-zero integers τ and λ , in \prod has an expression $b^{\alpha_1}c^{\beta_1}g^{\gamma_1}$ with q_1 divides β_1 . To avoid complexity, we assume that τ and λ are both positive. Then by the equations (1) and (2), we have the following,

$$g^{\mathfrak{r}}b\lambda = b^{\mathfrak{p}_{1}^{\mathfrak{r}}\lambda}c^{\mathfrak{p}_{1}^{\mathfrak{r}-1}q_{1}\lambda}gc^{\mathfrak{p}_{1}^{\mathfrak{r}-2}q_{1}\lambda}g\cdots c^{\mathfrak{p}_{1}q_{1}\lambda}gc^{q_{1}\lambda}g.$$

Furthermore, by equation (3) we have that for any integer m, $gc^m = (b^{r_1}c^{s_1})^m g =$ $b^{r_1m}c^{s_1m}g$. Thus, at the final step we can obtain the expression of $g^{\tau}b^{\lambda}$, $b^{\alpha_1}c^{\beta_1}g^{\gamma_1}$, such that q_1 divides β_1 . Consequently, $c = b^{\alpha}c^{\beta}g^{\gamma}$ for some integers α , β , γ and q_1 divides β . But by the uniqueness of the expression of c, we have that $\beta = 1$. Hence $q=\pm 1$. Here $\binom{p-1}{r}$ is conjugate to $\binom{p}{r}$. Thus we conclude that q=1. This completes the proof of the lemma.

LEMMA 2. Let $A = \binom{p}{r} \binom{q}{s}$ be a matrix in G. If (q-1)(r-1) = 0, then A is conjugate to a matrix $\binom{m}{1} \binom{\varepsilon}{0}$ in G with $\varepsilon = \pm 1$.

Proof. Suppose that q=1. In this case, if $\det(A)=1$, then $A=\begin{pmatrix} p & 1 \\ ps-1 & s \end{pmatrix}$. If $\det(A) = -1$, then $A = \begin{pmatrix} p & 1 \\ ps+1 & s \end{pmatrix}$. Then the following hold;

$$\binom{p}{ps-1} \ \ _s^1) \binom{1}{s} \ \ _{-1}^0) = \binom{1}{s} \ \ _{-1}^0) \binom{p+s}{1} \ \ _{0}^{-1}) \ , \qquad \binom{p}{ps+1} \ \ _{s}^1) \binom{-1}{-s} \ \ _{-1}^0) = \binom{-1}{-s} \ \ _{-1}^0) \binom{p+s}{1} \ \ _{0}^1 \ .$$

Thus we set m=p+s. If r=1, then the same result is obtained.

Let $M(m, \varepsilon)$ be a 3-manifold determined by a matrix $\binom{m+2}{1}$ with $\varepsilon = \pm 1$. Then by Lemma 1 and Lemma 2, and Proposition 2, we have;

THEOREM 3. Every torus-bundle over S^1 with a Heegaard splitting of genus two is homeomorphic to $M(m, \varepsilon)$ for some integer m, and if it is orientable (resp. non-orientable) then $\varepsilon = -1$ (resp. $\varepsilon = 1$). In particular, $M(m, \varepsilon) = M(m', \varepsilon)$ if and only if m = m'.

Birman-Hilden-Viro-Takahashi [1], [10], and [11] proved that every orientable

Figure 1.1. A Heegaard diagram in the orientable case of m=2.

Figure 1.2. A Heegaard diagram in the non-orientable case of m=3.

Figure 2. A link $K(m+4) = K_0 \cup K_1 (\cup K_2)$.

closed 3-manifold with Heegaard splittings of genus two is a 2-fold branched covering space of S^3 branched along a link. As illustrated in preceding remark, the manifold M(2, -1) has a Heegaard diagram of genus two given by Figure 1.1. Thus we can determine one type of branched sets of torus-bundles of genus two. Let K(m+4) be the link illustrated in Figure 2. It has two components K_0 and K_1 (resp. three components K_0 , K_1 , and K_2) if m is odd (resp. even). We note that the component K_0 is unknotted and that m+4 is the number of double points in $K_1 \cup K_2$ (resp. K_1), when m is even (resp. odd). Then we have;

COROLLARY 3.1. Every orientable torus-bundle of form M(m, -1) is a 2-fold branched covering space of S^3 branched along K(m+4).

By the way, there are infinitely many torus-bundles of genus three but not two. It is an interesting problem to decide whether such torus-bundles are 2-fold branched covering spaces of S^3 or not. Fox had proved in [3] that $S^1 \times S^1 \times S^1$ is not a 2-fold branched covering space of S^3 . Thus we will set up the following problem:

PROBLEM 1. Which torus-bundles are 2-fold branched covering spaces of S^3 ? In view of Lemma 1, we raise the following;

PROBLEM 2. Are link types of branched sets of every torus-bundle of genus two unique?

References

- BIRMAN, J. S. and HILDEN, H. M.; Heegaard splittings of branched coverings of S³, Trans. Amer. Math. Soc., 213 (1975), 315-352.
- [2] Brody, E. J.; The topological classification of the lens spaces, Ann. of Math., 71 (1960), 163-184.
- [3] Fox, R. H.; A note on branched cyclic coverings of spheres, *Revista Math. Hisp.-Am.*, 32, No. 4-5 (1972), 158-166.
- [4] LICKORISH, W. B. R.; Homeomorphisms of non-orientable two-manifolds, Proc. Cambridge Philos. Soc., 59 (1963), 307-317.
- [5] HEMPEL, J.; "3-Manifolds," Ann. of Math. Studies 86.
- [6] Moser, L.; Elementary surgery along a torus knot, Pacific J. Math., 38 (1971), 737-745.
- [7] NEUMANN, D. A.; 3-Manifolds fibering over S¹, Proc. Amer. Math. Soc., 58 (1976), 353-356.
- [8] NEUWIRTH, L.; A topological classification of certain 3-manifolds, Bull. Amer. Soc., 69 (1963), 00-00.
- [9] OCHIAI, M.; Homeomorphisms on a three dimensional handle, J. Math. Soc. Japan, 30 (1978), 697-702.
- [10] TAKAHASHI, M.; An alternative proof of Birman-Hilden-Viro's theorem, Tsukuba J. Math., 2 (1978), 27-34.
- [11] VIRO, O. J.; Linkings, two-sheeted branched coverings and braids, Math. USSR Sb., 16 (1972), 223-236.
- [12] WALDHAUSEN, F.; Heegaard-Zerlegungen der 3-Späre, Topology, 7 (1968), 195-203.

Institute of Mathematics
The University of Tsukuba and
Ibaraki, Japan

Department of Mathematics Osaka University Osaka, Japan