Strict Boolean-valued Models

by

Hiroshi Horiguchi

(Received January 16, 1981)

§ 1. Introduction

The object of the category BVM(T) of Boolean-valued models for the theory T is a map of

$$\mu: Alg_F(Tm, M) \longrightarrow Bool(L(T), A)$$

in **Set**, satisfying the conditions of Definition 2.1 [1]. This map is called an A-valued model with the domain M, where A is a Boolean algebra and M is an F-type algebra.

If we substitute any Boolean algebra B under the conditions $A \subseteq B$ for A in μ above, then the A-valued model μ becomes a B-valued model at the same time. Clearly, the elements of B-A can not be used under the given interpretation. Here, we call these elements "dummy values." The purpose of this paper is to construct a model with a few dummy values as possible or a model without any dummy values, and to pursue its behavior.

§ 2. Definition

In this section, we will introduce the notion of strict Boolean-valued models. This notion will achieve the purpose of §1.

We need at least the set of values

$$\bigcup_{\sigma: Tm \to M} \mu(\sigma)^{\prime\prime} L(T) \qquad (\subseteq A)$$

for the interpretation of all formulas. So, the subalgebra of A generated by $\bigcup_{\sigma:Tm\to M} \mu(\sigma)''L(T)$ must comply with our definition.

However,

LEMMA 2.1. $\bigcup_{\sigma:Tm\to M}\mu(\sigma)^{\prime\prime}L(T)$ is a Boolean algebra.

Proof. First of all, $\mathbf{0}, \mathbf{1} \in \mu(\sigma)''L(T)$ for some σ . Let $\mu(\sigma_1)[\varphi_1], \ \mu(\sigma_2)[\varphi_2] \in \bigcup_{\sigma: Tm \to M} \mu(\sigma)''L(T)$, and let $\binom{x_1, \ldots, x_n}{a_n}: Tm \to M$ be one of the arrows in Alg_F , such that

$$(a_1, \dots, a_n)(t) = \begin{cases} a_i & \text{if } t = x_i \\ \text{arbitrary in } M & \text{otherwise }. \end{cases}$$

Then

where the free variables of φ_1 are among x_1, \dots, x_n , these φ_2 are among y_1, \dots, y_m and

$$z_{j} = \begin{cases} x_{i} & \text{there exists } i \text{ for which } \sigma_{1}(x_{i}) = \sigma_{2}(y_{j}) \\ y_{j} & \text{otherwise } . \end{cases}$$

This is similar to the cases of \vee , \neg .

By Lemma 2.1 the step of generation falls into disuse. Therefore, the next definition comes into effect.

The Boolean-valued model

$$\mu: Alg_F(Tm, M) \longrightarrow Bool(L(T), A)$$

is said to be strict if and only if

$$A = \bigcup_{\sigma : Tm \to M} \mu(\sigma)^{\prime\prime} L(T)$$

The full subcategory of BVM(T) determined by the strict Boolean-valued models will be denoted by SBVM(T).

Clearly, these well-known two-valued models are strict.

COROLLARY 2.2. For any Boolean-valued model $\mu_{(M, A)}$, there is exactly one strict Boolean-valued model such as following:

$$s(\mu) : Alg_F(Tm, M) \longrightarrow Bool(L(T), s(A)),$$

where $s(A) = \bigcup_{\sigma: T_m \to M} \mu(\sigma)' L(T)$, and for any $\sigma: T_m \to M$ and $\phi \in wff$

$$s(\mu)(\sigma)[\varphi] = \mu(\sigma)[\varphi]$$
.

This $s(\mu)$ will be called the cut down model of μ .

§3. Limits in SBVM(T)

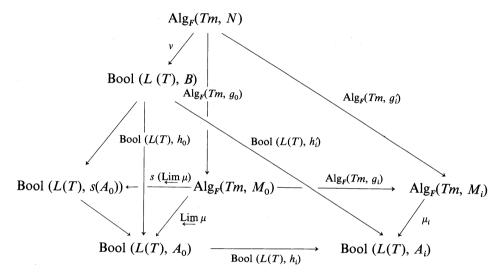
This section examines the construction of limits in SBVM(T). Note especially that the terminal object

$$t: Alg_F(Tm, *) \longrightarrow Bool(L(T), 1)$$

in BVM(T) is strict, and it is also terminal in SBVM(T).

It is notable that every product $\mu \times \nu$ of two strict Boolean-valued models is not always strict. By Corollary 2.2, the cut down model of this product in BVM(T) is strict, and we can easily prove that $s(\mu \times \nu)$ becomes the product in SBVM(T). This argument can be substantiated not only in the case of products but also in the case of limits.

THEOREM 3.1. If a functor $\mu : J \rightarrow SBVM(T)$ has a limit $\varprojlim \mu$ in BVM(T), then the cut down model $s(\varprojlim \mu)$ of it is a limit in SBVM(T).



Proof. Let $\mu: J \rightarrow SBVM(T)$ be a functor with a limiting cone (g_i, h_i) : $\varprojlim \mu_{(M_0, A_0)} \rightarrow \mu_{i(M_i, A_i)}$ in BVM(T), and let $\nu_{(N, B)}$ be any strict Boolean-valued model with a cone $(g'_i, h'_i): \nu_{(N, B)} \rightarrow \mu_i$. Then, from the universal property of $\varprojlim \mu$, there is a unique arrow $(g_0, h_0): \nu - - \rightarrow \varprojlim \mu$ such that $(g'_i, h'_i) = (g_i, h_i)(g_0, h_0)$ for all $i \in J$. The Boolean homomorphism $h_0: B \rightarrow A_0$ can be factored as $B \rightarrow s(A_0)$ followed by an inclusion $s(A_0) \rightarrow A_0$. Since $\nu_{(N, B)}$ is strict, any element b of B can be written in the form $\nu(\sigma)[\varphi]$ and we have the following equation:

$$h_0(b) = h_0 v(\sigma) [\varphi] = \varprojlim_{h_0} \mu(g_0 \sigma) [\varphi] \in s(A_0) .$$

$$B \xrightarrow{h_0} A_0$$

$$s(A_0)$$

§ 4. Adjunction SBVM(
$$T$$
) $\stackrel{U_s}{\longleftarrow}$ Alg _{F}

In [2] Theorem 3.1, we introduce the adjunction

$$\varepsilon : BVM(T) \stackrel{U}{\Longleftrightarrow} Alg_F$$

where U is the forgetful functor, ξ is its left-adjoint and ε is the counit of this adjunction. In this section we will examine more closely the construction of ξ .

Among other things, we have

LEMMA 4.1. For any F-algebra M, $\xi(M)$ is strict.

Proof. Clearly $\bigcup_{\sigma:T_{m\to M}} \xi(M)(\sigma)''L(T) \subseteq L_M$. The converse inclusion also holds. Since any element of L_M can be written in the form

$$\left[\varphi(x_1,\ldots,x_n)\right]$$

there is a σ : $Tm \rightarrow M$ and $\varphi \in wff$ such that

$$[\varphi(x_1,\ldots,x_n)] = \xi(M)(\sigma)[\varphi].$$

This means $[\varphi(x_1,\ldots,x_n)] \in \bigcup_{\sigma:Tm\to M} \xi(M)(\sigma)''L(T)$.

By this Lemma, the full subcategory SBVM(T) contains all the objects $\zeta(M)$ for $M \in Alg_F$, and it leads to another adjunction

$$SBVM(T) \xrightarrow{U_s} Alg_F$$

where the functor ξ_s is just ξ with its codomain restricted from BVM(T) to SBVM(T), U_s is U with a domain restricted to SBVM(T).

Putting together the information in the above lemma, we have the theorem:

THEOREM 4.2. The forgetful functor

$$U_{\rm s}: {\rm SBVM}(T) \longrightarrow {\rm Alg}_{\rm F}$$

has a left adjoint ξ_s .

COROLLARY 4.3. U_s preserves limits.

Acknowledgments. The author wishes to thank Professor T. Simauti for his encouragement suggestions, and criticism in connection with the writting this paper.

References

- [1] HORIGUCHI, H.; A definition of the category of Boolean-valued models, Comment. Math. Univ. Sancti Pauli, 30 (1981), 135–147.
- [2] Horiguchi, H.; Limits in the category of Boolean-valued models, Comment. Math. Univ. Sancti Pauli, 31 (1982), 00-00.
- [3] MACLANE, S.; Categories for the Working Mathematician, Graduate Texts in Mathematics No. 5, Springer-Verlag, Berlin and New York, 1971.

Department of Mathematics Rikkyo University Tokyo, Japan