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Abstract

The application of finite element method to a strongly nonlinear Dirichlet
problem, which arises in the field of oceanography, is described and new inequalities
involving the error in the finite element solutions are derived. As a special case, we
obtain the well-known error estimates for the corresponding mildly nonlinear and
linear elliptic boundary value problems.

§1. Introduction and formulation

This paper is concerned with the approximate solution by finite element methods of
a fairly large class of strongly nonlinear elliptic boundary value problems encountered
in the study of very large, quasistatic deformations of isotropic hyperelastic bodies and
in the field of glaciology. We develop a priori error estimates for these nonlinear
problems, assuming that Galerkin approximations are made on certain subspaces
endowed with standard finite element interpolation properties. The estimates given in
Theorem 1 are distinctly nonlinear in character, that is there is no counterpart in the
linear theory, although these reduced to the estimates for linear second order elliptic
equations, when the governing equations are linearized. For instance, we find that the
approximation error in the W}i(Q)-norm is of order h'P~!. Thus, when p=2,
corresponding to linear and mildly nonlinear theory, we obtain an error of order 4,
which agrees with recent results, see Ciarlet [1], Strang and Fix [10], and Noor and
Whiteman [7].

The mathematical model discussed in this paper arises in the field of oceanography,
see [8]. The velocity u of the glacier is required to satisfy the nonlinear boundary value
problem of the type: '

) {Tu=f(u) in Q

u=0, on 09,
where Tu= —V(|Vu|?"?Vu), Q is the cross-section of the glacier and f(u) is the
Coulomb friction. The presence of f(x) may be interpreted as a body heating term, it
arises from resistivity and is termed a local Joule heating effect. In fact, some of the
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results and methods to be described in this paper may be extended to more complicated
problems or to problems with other boundary conditions.
The problem (1) is a generalization of the nonlinear problem of finding u such that

Tu=f in Q
u=0 on 0Q,
for which the error estimates, see Glowinski and Marroco [4], have been derived using

the finite element approximation. The presence of the nonlinear term f(u) needs a
different approach for deriving the error estimates and this is the main motivation of this

paper.
Let Q =R” be a open bounded domain with smooth boundary 0Q. We denote by
H=W}P(Q), a reflexive Banach space with norm

1/p
ol =<J | Vo I"d9>
o

and the dual space H'=W ™1 7(Q), 1/p+1/p’=1. The pairing between H’ and H is
denoted by ¢.,.>. It is assumed that the nonlinear function f (u)e L(Q) is anti-
monotone and Lipschitz continuous, see Noor [6].

Multiplying equation (1) by a test function ve H and integration by parts, we
obtain

@ (Tu, vy=(f(), v),

where

<T“’U>EJ |Vu|?~2VuVvdQ, and (f(u), v)zj fwpdQ.
e Q

This formulation is known as the weak formulation.
We need the following results, which are due to Glowinski and Marroco [4].

LEMMA 1. For all u, ve H, we have

3) {Tu—Tv, u—v)zalu—o|?, p=z2.

“4) (Tu—To, u—v) Zallu—vl*(Jul+[ol)*~,  1<ps2.
® I Tu—To|| € Blu—vol(Jul +llol)*~*,  pz2.

(6) |Tu—To|| S Blu—v|?™",  1<ps2,

where a.>0, >0 are constants independent of u and v.

We remark that if f(x) is antimonotone and Lipschitz continuous and T satisfies
(3)(6), then there exists a unique solution of (1), see Noor [5]. Furthermore, the en-
ergy functional I[v] associated with (1) can be given :
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%) I[v]=if |Vv|"d9—2f Jvf(n)dnd!)
PJeo oJo
=J(v)—2F(v).

In this case Noor and Whiteman [7] has shown that the function u € H minimizes
I[v] on H if and only if ue H satisfies

®) (J'(u), vy =CF'(w), vy, forall veH,

with

©) J'(w), vy = L) |Vu|?~2VuVpdQ,  see Sibony [9],
and

(10) (F'(u), v)= L fupdQ,  see[7].

Thus it is evident from (7)—(10) that problems equivalent to (1) are;
The Weak Problem:
Find wueH such that
{Tu, v)=(f(w), v), for all veH.
The Variational Problem:

Find ueH which gives the minimum value to the functional

I[v]=%j |Vv|”d9—2f Jvf(n)dndﬂ.
Q 2J 0

We here consider the weak formulation (2) to derive the error estimates for u— u,.

§2. Approximation and error analysis

We introduce a standard finite triangulation T, of Q, see [1] such that

@) TcQ forall TeT,, () =@

TeTn

I, T'eT,=TnT'=g
. or
(i) T and T’ have either only one common vertex or a whole

common edge;

as usual / is the length of the largest side of T),.
Let S, be a finite dimensional.subspace of H approximated as:
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Sy={v4:0,€C%Q), vj|o=0, v,| re Py, for all Te T},

where P, =space of polynomials of degree 1.

The weak problem (2) can in practice seldom be solved, and so, approximation u,
to u from a finite dimensional subspace S, = H are sought. Thus the finite element
approximation u, of u is:

Find u,eS, such that

(1) {Tuy, vy =(f (up), vy, for all v,€S,.
Subtracting (11) from (2), we obtain
(12) (Tu—Tu, v,y=(fW)— f(u), v,), forall v,eS,.

This shows that in the nonlinear case, the approximate solution u, is not the projection
of uon S, as it is in the linear case, i.e., f (1) = f. We, therefore, introduce the concept of
pseudo-projection in order to obtain the inequality bounding the error u—u,. Similar
projections have been introduced by Dailey and Pierce [3], and Noor and Whiteman [7]
to derive the error bound for u—u, in the case of mildly nonlinear elliptic boundary
value problems.

Define i, € S, to be pseudo-projection of ue H by the orthogonality condition

(13) {Tu—Ti,, w,y=0, for all w,eS,.

We remark that for the linear case f(u)=f, #,€S, is the finite element
approximation of the solution u of (2) and hence i, is the projection of u on S, H.
From (13), we get the following result, whose proof is obvious.

LEMMA 2.
(14 (AN

The relation (13) and Lemma 2 will play a key role in deriving the error estimate
for u—u,.

LEMMA 3. If f(u) is antimonotone and Lipschitz continuous, then for pz2,

,y 1/p—1
(15) Nl — w | §<;> lu—a, 7P~

where u,, i, are defined by the relations (11) and (13) respectively.
Proof. It follows from (3) and the antimonotonicity of f(u) that

ol i, — uy||? S  Tity, — Ty, @,—u,)
STty — Twy, ty,— ) — (f (@) — [ (), ity —14y)
={Tii,— Tu, @,—uyy +{Tu— Tuy, t,—u,y—(f(@,)— f (), @,—u,)
—(f@)— [ (uy), ity — 1) -
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From (13), we have that {Tu— T, w,»=0, for all w,eS,,
Hence,

ol —uy||” § Tt = Tty 1ty — 1y — (f () — f (), @y — 1) = (f (@) — f (), @, — ) .
Using (2) and (11), we have
oty — up| P S (f () — f (), 11—y -
Applying the Cauchy-Schwartz inequality, we obtain
oty —upl P | f @) — [ | Nl — ]
Syllu—ay| lla,—u,

after use has been made of the Lipschitz continuity of f(u) and the Sobolev imbedding
theorem, see Ciarlet [1]. Thus we have

y 1/p—1
”“h‘“h||§(;) llu— |71,

which is (15), the required result.

LEMMA 4. If u and a, satisfy (2) and (13), then for p=2,
(16) llue—day | S CHYP = || P~ 222 ]| 371
where C is a constant independent of u and h.

Proof. From (3), it follows that

ofju—i,|P<{Tu—Ta,, u—a,)
={Tu—Ti,, u—v,)+<{Tu—Tig, v,— ) .
But from (13), <Tu— Ta,, v,—u,y =0, for all v,eS,, and so,
ofju—uy||P S {Tu—Tity, u—v,) .

If ue H n W? P(Q), then we can take v, as I,u, the linear interpolation of # on S,,
ie.,
an Lues,
Lu(P)y=u(P), forall P vertex of T,.
Thus it follows from Ciarlet [1] and Strang and Fix [10] that
(18) Iyt —ull SCyhful,

where C, is a constant independent of u and h.
For p=2, it follows from (17), (18) and (5) that
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ol — iy |1P S | Tre— Tty | ||yt — e
SBCh(llull+ 1)~ 1w — || l1ullz »
SPCo2P2hl|ulP 2 ullpllu—,l, by Lemma 2,

from which, we get

1/p—2
21 <(PC ’ op=2/p=1pl/p=1y 1 P= 22— 1y 1P =1
= S{ = [[ul llull2

— ChtlP = P22~ a7

which is (16).
Our main aim is to derive the error estimate for u—u,, which is the object of the
next theorem.

THEOREM 1. If u and u,, are the solutions of (2) and (11) respectively, then for
p=2, we have

1/p—1
(19) llu—uh||§Ch””_l{1+<l> (clhuuu"'z||u||2)2“’"”—1)2}

o

X [ul?72P ) P,
where C and C, are constants independent of h and u.
Proof. Using the triangle inequality,
lu—upll S lu—ay| + @ —ul ,  forall @,eS,,

and Lemma 3, we obtain

Y 1/p—1
llu— §{1+(-a-> IIu—ﬁhllz'”"’_l}llu—ﬁhll .

Now combining the above inequality with (16), we obtain (19), the required result.
Similarly using the arguements of Lemma 3 and Lemma 4, we have the following
error estimate for u—u,, when 1 <p<2.

THEOREM 2. If u and u,, are the solutions of (2) and (11) respectively, then for
1<p<2, we have

@) u—wl §Ch“3—*'{1+<1>22-"nu||2-"}uun*"“—Pnun;“-",
o

where C is a constant independent of h and u.

Remarks. We note that when f (1) = f, then the results obtained by us are exactly
those of Glowinski and Marroco [4], since in this case the Lipschitz constant y is zero.
This shows that our results include the results obtained by Glowinski and Marroco asa
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special case.

If p=2, then the error estimates (19) and (20) reduce to the well known results, see

Noor and Whiteman [7] and Ciarlet, Schultz and Varga [2].
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