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1. Introduction and statements of the results

In this paper, we consider complete varieties over an algebraically closed field k
of characteristic zero only, and study reduced effective divisors on them from
birational point of view.

Let D be a reduced effective divisor on a complete variety X. In this paper, such a
pair of D and X is denoted by the symbol (D & X), which we call a birational pair or
simply a pair.

Consider another birational pair (C & Y). Let D=D,+---+D, and C=
C;+ - - +C, be the irreducible decompositions of D and C, respectively, and

f:X-Y
a birational map. (D & X) and (C & Y) are said to be birationally equivalent if
f | p;: DimC;
is also birational map for each i, and we write
D& X)~(C&Y).

We consider such a birational map as one of birational pairs, and we say f is a
birational map of pairs. We write
fo(D):=C;,  fAC):=D; for each i,
fo(D):=C, and f?(C):=D,

and we call f,(D) and f?(C) proper transform of D and C, respectively. By the result
of Hironaka [2], for a birational pair (D & X)), there exists a birational morphism

uw:VoX

such that V is a complete nonsingular variety and the u?(D) is a disjoint union of
nonsingular prime divisors. We say that the pair (u?(D) & V) (or u: (u?(D) & V)—
(D & X)) is a nonsingular model of (D & X). Let D=D,+---+D, be the irre-
ducible decomposition of D, and put Z;=u?(D,). Now, we fix an r-tuple of rational
numbers q,, ‘- -, a, with 0=a;<1. For a positive integer m, we define
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P,,,(Z aD; & X)

i=1

am (v [+ £ 02)]).

where [ ] denotes the integral part of divisor, i.e.,

to be

[m(K(V)fi aiZi>]=mK(V)+i [ma]] Z;,

i=1

i=

and K (V') is a canonical divisor of V. Then by a general result of Iitaka [3], there exist
k=0 (or —o0) and «, f>0, m, >0 such that

r

ocm"ngm( Y aD; & X )gﬁm"

i=1
for sufficiently large m. We define
K( Y aD; & X >
i=1

to be the above k. In particular, if

Pm<i1 a;D; & X>=0
for each m >0, then
K(il a;D; & X)= — 0.
We shall prove

P,,,(Z aiDi&X> and x(Z aiDi&X>

i=1 i=1

are independent of the choice of u. Hence we can consider them as the birational
invariants of the pair (D & X).

We have the following theorem.

THEOREM 1.1. If (D & X) is birationally equivalent to (C& Y),and u: X— Y is
a birational map of birational pairs, for any r-tuple of rational numbers a, - - -, a, with
0=a,;£1, and a natural number m, we have

P,(Xa;D; & X)=P,(Xa,C; & Y)),
k(XaD; & X)=k(XaC; & Y),
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where C=C;+ - - - + C, is the irreducible decomposition of C, and D;= u*?(C)).

Hence these invariants are birational invariants for pairs in the above sense,
which are however not proper birational invariants for X'\ D. (See Section 6.)
Using these invariants, we can solve the following problem.

Problem. When is the birational pair of the form (a curve & P?) birationally
equivalent to the pair of the form (a nonsingular curve & P?)?

Let C be a curve, and g be the geometric genus of it. We define the (first) virtual
degree of C to be

(B+./8g+1)/2.
and denote it by d,(C) or 4.
Our solution is,

THEOREM 1.2. Let C be an irreducible curve on P%. Then, (C & P?*)~
(a nonsingular curve & P?) if and only if either

(i) xk(C& PH=-—0, or

(ii) d, is an integer with d, 23,

k(3/d,C & P*)=P,(2/d,C & P*)=0,
and P, (3/d,C & P*)=1.
From this result, we have the following corollaries.

COROLLARY 1.3. (C & P?)~(a straight line & P?) if and only if k(C & P?)=
—00.

(A similar statement is contained in Coolidge [1, p. 398, Theorem 4]. Recently, this
result is also obtained by N. Mohan Kumar and M. Pavaman Murthy independently
by another motivation and different method [15].)

COROLLARY 1.4. (C & P?) ~(a nonsingular cubic curve & P?) if and only if
k(C & P*) =0 and g(C)=1, where g(C) denotes the geometric genus of C.

(A similar statement is contained in the same book p. 408, Theorem 12.) Further-
more, using the results of Kuramoto [8] and Tsunoda [13], we have the following
result by Corollary 1.3.

COROLLARY 1.5. Let S be a complete algebraic surface and D be an irreducible
curve on it. Then, P,,(D & S)=0 if and only if either (D & S)~(C & B x P*) for some
nonsingular complete curve B, and a section C of the first projection of B x P!, or there
exists a birational map p: S— B x P! such that D is mapped to a point on B x P by p.

Using Theorem 1.1 and Corollary 1.5, we have another corollary as follows.

COROLLARY 1.6. Let S be a ruled surface. Then, there exists an irreducible
curve C with k(C & S)=0 if and only if S is a rational surface.
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By the proof of Theorem 1.2, we have the following result immediately.

COROLLARY 1.7. Let C be an irreducible singular plane curve, which has de-
gree d and multiple points P; (possibly including infinitely near singular points) with
multiplicities m;. If my=m, = - - -, and either

i) mo+m;+m,=d, or

(ii)) my+2m,=<d, and Cis not an elliptic curve of degree 4 with two double points,
then C cannot be transformed into a nonsingular plane curve by any birational

automorphism of P2.

Furthermore, applying the above Theorem 1.2 to the rational ruled surfaces
> :=P(Op: @ Op:(e)) with =0, we have another corollary as follows.

COROLLARY 1.8. Let Y, be Hirzebruch’s surface with e +# 1, and let C and C’ be
irreducible nonsingular curves on Y, and P2, respectively. Then, (C & 3°,)~(C’ & P?)
if and only if .

(1) C is a section of Y,
(ii)) Cis a fiber of 3, or

(iii) C is an elliptic curve, e<2, p|C: C— P! is a double covering, and C-a=
2—e, where p: Y.,— P is the canonical projection and a is the canonical section of Y,
with a®>= —e.

2. The proof of Theorem 1.1.

Here, in general, we let 4°(4) denote dim, H(V, ©,(4)) for a divisor 4 on V.
First we prove the following fact.

PROPOSITION 2.1. Let D=D,+---+D, and C=C;+---+C, be disjoint
unions of nonsingular prime divisors on complete nonsingular varieties V and W,
respectively. Let f: V— W be a birational morphism such that D;={f?(C,) for each i.
Then,

H(Im(K(V)+ Xa; D)) = (m(K(W)+ Xa,C)])
for a positive integer m, and rational numbers a,, * - -, a, with 0= g;<1.

Proof.
Step 1. First we prove.

H(m(K(V)+Xa:D)D) < i (Im(K(W )+ Za;,C))) -

Since f*C;zf?(C)=D,;, and K(V)=f*K(W)+ R, by ramification formula,
where R, is the ramification divisor for f,

[m(K(V)+2a;.D)]=mK(V)+>nD;
=mK(V)+Zn,f*C;
=f*m(K(W)+Za,C)l+mR,,
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where n;=[ma;]. Since R, is an effective divisor and codim (f(supp (R,))) =2, we have
HO(f *Im(K(W)+ Za,C)l+mRy) = H(Im(K(W)+ Za,C)))
and
R(Im(K(V)+ Za:.D)) Sh(f *[m(K(W)+ Za,C)l+mRy)
=h"(Im(K(W)+Za,C))]) .

Step 2. If fis a blowing up with nonsingular center Z of codimension r, then
R;=(r—1)E, where E=f"'(Z), and

D,+E if Z=C;
G
Since 0<a;<1, m=n; and r=2,
[m(K(V)+2a;D)]— f*[m(K(W)+2a,C)l=mR;+ 3 n(D;— f*C)
zm(r—1)E—nE=m(r—2)E .
Hence,
K(m(K(V)+ Za:.D)l) 2 K(Im(K(W) + Za,C))) -
Consequently, we have by Step 1,
H(Im(K(V)+ Za:.D))) = h°(m(K(W) + Za;C))) -
Step 3. In general case, we have a finite number of blowings up
hj: Wi»W;_,
with nonsingular centers for L<j<n, with W,=W, and a birational morphism
g: W,»V

such that A=f og by Hironaka [2], where h=h,c- - oh, W, is said to be
nonsingular reduction model of ! (see [3]).

W'l
h g
W ‘{_} __;__\__, Vv

Therefore, letting B,=g?(D,), and B=B, + - - - + B,, we have by Step 1,
R(Im(K(W,)+ Za;B)) =H(Im(K(V)+Za;D)]) , and
(m(K(V)+ Za;D))) < h°(m(K(W) + Za,CY)) -

Furtheremore, we have by Step 2,
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R(m(K(W)+ Za.C)) =h(Im(K(W,) + Za;B))) .
Therefore
R(Im(K(W)+Za,C)) = (m(K(V)+Xa:D)]) . W
Proof of Theorem 1.1. Take two nonsingular models

fi: (D& V)->(D & X)

L D"&V)>(D & X).
We choose a nonsingular reduction model of f=f ;1 of;

g: (1?* & V¥>D" & V")

such that A= f ! o g is a birational morphism.

Then, D’=f¥(D), D''=f%D), D*=h?(D’) by definition of nonsingular model.
Applying Proposition 2.1 to 4 and g, we have

Ho(Im(K(V ")+ Za;D)) =h(m(K(V*)+ Xa,D¥)])
=h(mEKV ") +Za:D{)) .
Thus, P,(>a;D; & X) is independent of the choice of f; and f,, and is consequently a

well defined birational invariant. Theorem 1.1 follows immediately from this
fact. B

3. The simplification algorithm for plane curves

To prove Theorem 1.2, we need the technique used in Shafarevich [10, pp.
100-105].

Consider a plane curve C of degree d which has singular points Py, - - -, P, with
multiplicities m,, - - -, my, respectively. Here, singular points mean also infinitely near
singular points. We assume mo=m; Zm, = -+ - Z M.

Let j=(d—m,)/2, and define the integer 4 by the condition

My>jZ My 4y -

We say that (j, ) is the parameters of C. For another curve C’ with the parameters
(j’, k"), we say that C’ is simpler than C if
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G h)<U, b
with respect to the lexicographical order.
We prove the following proposition.

PROPOSITION 3.1. If a plane curve C satisfies the following conditions:
(@) h=2, and

h
b) d=3j=3 (m—)),

1

then there exists a Cremona transformation f such that f(C) is simpler than C.

Sketch of the proof.

Step 1. If Py, P and Q are all distinct points of P? such that P,, P, and Q are
not collinear and if C'=c,(C), where c=c(P,, P, Q), i.., c is the standard Cremona
transformation with fundamental points P,, P and Q, then j=;’. Furthermore, j=j’
if and only if the point corresponding P, with respect to ¢ has highest multiplicity.
For a proof, see Shafarevich [10, p. 103].

Step 2. Assume that there exist two distinct points P, and P, with 1=r, s<4h,
lying on the plane P2. Then by the definition of 4, P,, P, and P, are not collinear, and
¢,(C) is simpler than C, where c=c(Py, P,, P,). Saying more precisely, if j=j’, then
h’=h—2. For a proof, see Shafarevich [10, p. 103, Lemma 17].

Step 3. Assume that it is impossible to find any points P, and P, satisfying the
condition of Step 2. We choose two points 4 and B on P? such that none of the points
P, for 1 i<k, lie on the lines Py4 and P,B, and the direction of Py4 and P,B do not
correspond to any of the points lying over P,. Set c=c(Py, 4, B) and C’=c,(C).
Then,

a) we have j=j"and h'=h+2, and

b) no other singular points of C’ lies over the point of highest multiplicity of
C’.

Remark. Furthermore, (b) is preserved by this transformation. For a proof, see
Shafarevich [10, p. 104, Lemma 18].

Step 4. Assume that none of the singular points of C lies over P,, but for some
r, s<h the point P, lies over P,, of order one and P, lies on P2. We choose a point
R on the plane such that no singular point lies on the lines PyR and PR, and such
that the direction of P,R does not correspond to the point P,. Set c=c(P,, P,, R).
Then,

a) no singular point of C of multiplicities greater than j lies on the line P,P,,
and the direction of this line does not correspond to any point P,, and

b) eitherj’<j, orj'=j, h’=h and the number of singular points of c,(C) lying
on the plane and having multiplicity >; is greater than the analogus number for C.

Remark. 1f j=j’, then (b) is preserved by this transformation. For a proof, see



92 S. Suzuki

Shafarevich [10, p. 104, Lemma 19].

Step 5. We shall now describe the simplification algorithm for C. If C satisfies
the condition of Step 2, then it can be simplified by the transformation described in
Step 2. Considering the Step 1, we may assume that j is preserved by every
transformation of each steps. If C does not satisfy the condition of Step 2, we apply to
C the transformation of Step 3, and applying Step 4 successively, we arrive at a curve
with parameters (j, 2+2) for which all the singular points Q,, ‘-, 0,4, of
multiplicities >j lie on a plane. Since 4+ 2 =4, by the inequality (b), we have

h+2
d<) m;.

i=1

Hence not all of the points Q, - - -, Oy, lie on the same line. Similarly by inequalities
my+m,+m,=my+2m,>d,

it does not happen that all of the points Q,, Q,, O, with r, s<A+2 lie on the same
line. Then it is possible to find points Q,, @, with r, s<h+ 2, such that there exist two
more points Q,, Q, with u, v<h+2, not lying on any of the lines Q,Q,, O, Q;, QoQ;.
(If all but one, say Q,, of the points Q lie on the line Q,Q;, then we choose the pair
(Qs, Q) instead of the pair (Q,, Q,). Since £=2, the points Q,, Q,, Q,, O, Q., - -
must lie on the plane, that is, we have at least five points on P2.) After this we apply
successively c(Qq, Q,, @) and c(Qq, Q.. @,). By Step 2 we arrive at a curve with
parameters (j, #—2). Thus we obtain the desired simplification. W

4. The proof of Theorem 1.2.

We use the following lemmas.

LEMMA 4.1. Assume that Py, Py, - - -, P, are on P*, and m,, - - -, m, and m are
non-negative integers, and Ey, E,, - - -, E, are the exceptional curves of the blowing up
with center {P,, Py, -+, P,}. If

h
mg mia
i=1

then
h

m(L—Eo)—..Z1 mE;| #J,

where L denotes a general line on P.

The proof is easy.
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Py

Py

LEMMA 4.2. If D=D;+---+D, is an irreducible decomposition of reduced
effective divisor of P", then

PD&P)=3 ¢,

i=1

where g(D;) denotes the geometric genus of D;.
Proof. Take a nonsingular model
f: (W& V)>(D & P,
and put f?(D;)= W,, and consider the following short exact sequence.
0->0y(K(V) = O (K(V)+ W)—> Oy (K(W))—-0 .

Since

dim H°(V, 0,(K(V)))=0, and

dim H'(V, O,(K(V)))=dimH""}(V, Oy)=dimH" ' (P", Opr)=0
by Serre duality and birational invariance of dim, H'(V, ©}), we have the desired
equality by the long exact sequence of the above short exact sequence.

Assume (C & P?) ~(a nonsingular curve & P?). If g=0, then (C & P?) satisfies (i)
of Theorem 1.2, and if g = 1, then it satisfies (ii) of the same theorem by the birational
invariance of k(X a;D; & P?) in Theorem 1.1, where g denotes the geometric genus of
C.

Let’s prove the converse.

Step 1. If (C & P?) satisfies (ii) of Theorem 1.2, then for any rational number &
with 3/d, >¢=0, it holds that

k(eC & P?)= — 0 .
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Indeed, let u: (D & S)—(C & P?) be a nonsingular model of (C & P?), and F=
d, K(S)+ 3D. Then there exists an effective divisor 4 €| F| by the hypothesis. Suppose
there exists an effective divisor Ee€|mF— D | for some m>0. Since mF~ E+D~mA
and dim |mF|=0, we have
E+D=mA, and E=mA—-D=0.
Therefore we have 4> D, because D is irreducible. Hence,
d,K(S)+2D~A—D=0.
We have P, (2/d,C & P?)>0, this is a contradiction. Thus we have for any m>0
|mF—D|=|md,K(S)+(Bm—-1)D| = .
Hence, for any rational number ¢ with 3/d; >¢=0, we have for sufficient large m
K(S)+eD<K(S)+(@Bm—1)/md,D .
Therefore,
x(eC & P)<k((Bm—1)/md,C & P*)=— 0.

Hereafter, we consider the simplest counter example (C & P?) with respect to the
simplification algorithm, that is, we assume C is a singular plane curve with minimum
parameters (j, #) such that

h<2, 1)
or

h
d—3j>QZ (m;—j) . )

Let u: (D & S)—(C & P?) be a nonsingular model of (C & P?) such that utlis
the composition of successive blowings up with center P;.

Step 2. If h=2, then we have
h
¥ys 2 (mi=))

which is a contradiction.

Indeed, if /=2, we may apply Steps 3 and 4 of Proposition 3.1 to this pair
successively. Therefore we can assume that Py, P, - -, P, are on P2, (C & P?) is
smallest with respect to j, and (C & P?) satisfies (2).

Case (i1). Assume 3/d;, >2/(d—my).

If (C & P?) satisfies (i) Theorem 1.2, C is a rational curve by Lemma 4.2.
Furthermore, if C has only one singular point, i.e., k=0, then it is easy to check that
C can be transformed into a straight line by a Cremona transformation. Therefore we
may assume k=1, ie, d—my=2. Hence, (C & P?) satisfies the condition
3/d; >2/(d—my).
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Let R,=E,+ - +E, be the ramification divisor of a nonsingular model p.

Then,
(d—mo)K(S)+2D= —3(d—mo)L +(d —m)R +2dL— Y 2m,E,
—_—(3m0 - d)L - Z(zm, + mo - d)El

h

%(3mo‘d)(L“Eo)_ Z (2mi+mo“d)Ei s

i=1

hence by Lemma 4.1 and (2),

dim |(d—mg)K(S)+2D | =dim (3mo—d)(L—E0)—ﬁ @m;+my—d)E,| >0.

i=1
Therefore we have
P, ,(2/(d—my)C & PH>0.

This contradicts Step 1, or (i) of Theorem 1.2.
Case (ii). Assume 3/d, <2/(d—my).
Since dim |4, K(S)+3D| =0, and

dlK(S)+3D=3(d——d1)L—i (m;—d,)E;

i=0

we have
3(d—d)=3my—d, .
Thus
3/dy 22/(d—my) .
Therefore
3/d,=2/(d—m,), and we have 2d,=3(d—my,).
Hence,

2(d,K(S)+3D)=2d,K(S)+6D =3(d—me)K(S)+6D

=3((d—me)K(S)+2D)

h
=3((3my—d)L—Ey)— Z (2m;+my,—d)E) .
i=1

Therefore, we have by Lemma 4.1 and (2)
dim |2(d,K(S)+3D)| =3.

On the other hand, by the assumption P, (3/d; C & P*)=1 and «(3/d, C & P*)=0,

we have

95
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dim|2(d,K(S)+3D)| =0,
which is a contradiction.

Therefore we may assume

h<2.
If (C & P?) satisfies (i) of Theorem 1.2, then

m,K(S)+D=(d—3m,)L+ Z (my —my)E;—(mg—my)Ey—(m; —m,)E,

iz3
2(d—3my)L—(mo—my)Eq—(my —m,)E,
=(d—mo—2my)L+(mo—my)L' 20,
where L'=L— E,— E,. Hence we have
P, (C& P,)>0.

This inequality contradicts the assumption k(C & P?)= —co. Therefore, we have
done in the case of (i) of Theorem 1.2.
Step 3.

Case (i). h=-—1,i.e., 3my=d,

In this case, x(1/m,C & P*) =0, because
moK(S)+D=—3myL+myR,+dL—3>mE,
=(d—3mp)L— 3 (m;—my)E;
=(d—3my)L=0.

Therefore we have 1/m,=3/d, by Step 1. Hence d; = 3m,. Therefore,

d,K(S)+3D=3(d—d,)L—Y(3m;—d,)E;23(d—d,)L .
We have
x(3/d,C & P*)=2.
This contradicts the hypothesis.
Case (ii). h=0,ie., 3my>d=2m,+my;
In this case, we have x(1/m,C & P?)20. Indeed,
m,K(S)+D=(d—3m,)L—3 (m;—m,)E;
=(d—3m;)L—(my—m,)E,
= (my—m,)(L— Eg)+(d—my—2m;)L >0 .
Therefore, by Step 1, we have

1/m,=23/d,, ie., d; =3m, .
Therefore,
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d,K(S)+3D=3(d—d,)L—(3my—d,)E,
=oL+(Gmy—d)(L—-E,),

where o =3d—2d, — 3m,. If 020, then x(3/d,C & P?) =1, which is a contradiction. If
o <0, then there exists an effective divisor E such that

(Bmy—d ) (L—E))~E—oaL.
Since 3my—d; >0, we have
1=x((3mo—d,(L—E,))=2.

This is a contradiction.
Case (iii). h=1, i.e., 2m +my>d=2m,+m,.
Since

m,K(S)+ D= (d—3m,)L—(my—my)Ey— (m, —m,)E, ,
and
(d—3my)—(mg—m,)=d—my—2m, =0,
we have by Step 1,
w(1/myC & PH)=0, and 1/m,=3/d, .
Therefore,
d,K(S)+3Dz=3(d—d,)L—(3my—d,)E,—(3m, —d,)E, .
Since P, (3/d,C & P*)=1, we have
3(d—d)=3my—d,=3m,—d, .

Therefore, we have

mo=my, (3)
and
3(d—my)=2d, 4)
Therefore, there exists an integer # such that
dy=3n, (%)
and
d—my=2n. (6)

If =1, then 2=(d— 1)(d—2)—2my(my—1)—2¢ by the genus formula of Clebsch,
k
where e= Y my(m;—1)/2.
i=2

Therefore, we have by (6)
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(mo—1)(mg—2)+2e=0.

Hence
e=0, and my=2.

Again, we have d(d—3)=4 by the genus formula; thus
d=4. @

If P, ¢ P2, we choose two general points 4 and B on C, and applying c(P,, 4, B) to
(C & P?), we may assume P, e P?. Then ¢(P,, P, A),C is nonsingular, where 4
is a general point of C. This is a contradiction. Therefore #=2. By the genus for-
mula,

g=(d, —1)(d, —2)/2
=(d—1)(d—2)/2—my(my—1)—e¢ .
By (5) and (6), and since £ =0, we have
02mg—(4n—1)mo+n(5n—3)
=(mo—(2n—1/2))*+n(n—1)—1/4>0.

This is a contradiction. W

5. The proof of corollaries
Corollaries 1.3 and 1.4 follow immediately from Theorem 1.2 and Lemma 4.2.

Proof of Corollary 1.5. Referring to the Enriques’s criterion for ruled surfaces
and Kuramoto [8] and Tsunoda [13], it suffices to check the next Proposition 5.2.

THEOREM 5.1 (Kuramoto-Tsunoda). Let S be a normal complete algebraic
surface, and D be a reduced effective and connected divisor on S. If P,,(S\ D)=0, then
R(S\ D)= — 0.

For a proof, see [8] and [13].

PROPOSITION 5.2. Let S be a complete algebraic surface over k, and D be an
irreducible curve on S. If k(D & S)= — o0, then there exist a nonsingular complete curve
B and a birational map u: S — — - B x P* such that either there exists a section C of
the first projection of B x P! such that (D & S)~(C & B x PY) or D is mapped to a point
on Bx P! by .

Proof.® Considering Corollary 1.3, if we cannot contract D to a point on
Bx P! by any birational map u: S - — - Bx P!, then we may assume S is an

*) This proof is due to Professor S. Iitaka. The original one of authors is longer and more
complicated.
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irrational ruled surface and there exists an irreducible curve C on Bx P! with
(D & S)~(C & Bx P'). Taking a nonsingular model (C* & S*)—(C & Bx P)
and considering a fiber space g: S*—B x P! — B, we have

k(D & S)=«(D* & S¥)
=r(S*\ D¥)
ZR(S3\DY+K(B)
by the addition formula of Kawamata [7], where S¥ is a general fiber of g and D*=

D¥|s.x. Since Si=P*, k(B)20 and k(D & S)= — o0, we have &(S¥\D¥= — oo and
so D% is a point. Therefore C is a section of the first projection of Bx P!. W

Proof of Corollary 1.6. Considering Theorem 1.1 and Corollary 1.5, we may
assume S=Bx P! and g=1 and x(C & S)=0, where g=g(B).

Step 1. Let P and Q be two points on S which are neither on the same section
nor on the same fiber. Then the elementary transformation f =elmp 4, is a birational
automorphism of S, and if C has multiplicities mp and m, at P and Q, respectively,
and C-b=m, where b is a fiber of Bx P'—>B, and let C’=f,(C), then C’ has
multiplicities m —mp and m—m, at corresponding points P’ and Q’, respectively.

The proof is easy.
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Step 2. Considering a nonsingular model
f:(C* & S*)—»(C & Bx PY),
and a fiber space

g:s* —L Bxp' —. B,

where g=p o f, we have
R(SE\NCH+120=x(C & S)
=R/(S*\ C*) 2 k(S¥ \ C¥)+x(B)
by the easy addition theorem [3, p. 338] and the addition formula as in the proof of
Proposition 5.2, we have
K(S¥\CH=k(B)=0.

Therefore C-b=2 and g=1, where b is a fiber of p.

Step 3. If C-b=2, then k(C & S)=1.

Let C&2a+nb, where a is a section over B, and & means numerical equivalence.
Since C is irreducible and C-a=n, we have n>0. Applying Step 1 to C successively,
we may assume C has only ordinary double points, say P;---, P,, on a section.
Therefore we have

n=2e.

Let S'=Py(0z D Ople)), n=elmp, ... p,, and ,(C)=C,. Then C, is nonsingular,
and

K(S)+C,.x#(29g—2—e+nb=(n—e)b>0.
Hence, there exists F on B such that deg (F)>0 and
K(S)+C,=p*F,
where p: B x P! B is the first projection. So,
H(K(S")+ C)=h(p*F) Z h°(F)=deg (F)>0

by the Riemann-Roch Theorem for curves. Thus we have an effective divisor
Ee | K(S")+C,| with E#0 and E?=0. Therefore we have k(D & S)=1 by a result of
Kawamata [5]. This is a contradiction. The converse is obvious. W

Proof of Corollary 1.7. At first, we state the following Lemma.

LEMMA 5.3. Let C be an irreducible plane curve which has degree d and multiple
ponits Py, P;, P,, - -+ possibly including infinitely near singular points with multipli-
cities m;. If myzm;=2m, = - - -, and my+2m, =d, then

P, (1/myC & P*)>0.
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Proof. Considering the nonsingular model
p: (D& S)-(C & P?),
we have
myK(S)+ D= —3m,L+m,R,+dL—Ym,E;
2(d—3m,)L—(mo—my)Eq — (my —my)E,
=(d—my—2my) L+ (my—m,)(L— E,) — (m, —m,)E,
2(d—my—2m,)L+(my —m,)(L— E,— E)=0. [ ]

Considering a birational pair (C & P?) as in the statement of Corollary 1.7, and
suppose this pair satisfies the condition (i) or (ii) of Theorem 1.2. If (i) is true, then

k(C & P?)2x(1/my,C & P*) =0

by the above Lemma 5.3, a contradiction. Therefore this pair satisfies (ii) of Theorem
1.2. If h=2, then 2m, >d—my; thus

dzmy+my+m, Zmy+2m,>d,

This is a contradiction. Therefore, we have / <2. But this also contradicts Step 3 of
the proof of Theorem 1.2. Moreover, (ii) of Corollary 1.7 corresponds to (7) in Step 3
of the same proof. W

Proof of Corollary 1.8. Assume (C & Y,) satisfies the conditions (i), (ii) or (iii).
It is easy to check that (C & }°,) ~(a nonsingular curve & P?) if (C & ¥",) satisfies (i)
or (ii) of Corollary 1.8.

In the case (iii), e=0 or 2. We choose a general point P on C. Let C*=
(elmp),(C), and a, be the canonical section of 3 ;, where elmp: ¥, -3, is an
elementary transformation. Then, the pair (C* & 3',) is nonsingular and C*-q, =1.
Therefore, contracting a;, we have the required nonsingular birational pair
(C’ & P?).

Conversely, we assume (C & Y ,)~(C’ & P?) and both C and C’ are non-

singular.
We continue the proof by examining the following two cases.
D e=0.
() ez2.

Case (I). Assume C®ma+nb, where & means numerical equivalence, and
m, nz0, and a and b denote a section and a fiber of 3, respectively. Taking a
general point P on 3, let (elm),(C)=C*, and a, be the canonical section of ;.
Since C* has an m-ple point and C*-a, =n, contracting a,, we have (C’ & P?),
where C’ has two distinct multiple points with multiplicities m and n, respectively.
Assume m=n, and that C’ has degree d, and consider a nonsingular model
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u: (D& S)-(C’' & P?).
Since
K(S)+D=(d—-3)L—(m—1)Ey—(n—1)E, ,
if K(C* & P*)= — o0, we have by (i) of Theorem 1.2,
@d—3)<(m—1).
Hence, d<m+1, we obtain
d=m+1 and n=1.

Therefore C is a section of the second projection of 3, =P! x P!.
When x(C & 3°,) 20, let d; be the virtual degree of C. Then d, K(S)+3D=
3(d—d)L—(3m—d,)E,—(3n—d,)E,, and

dim|d,K(S)+3D| =0
by (ii) of the Theorem 1.2. Therefore, we have
3(d—d)=3m—d, =3n—d, .
Thus we have
m=n, and 3(d—m)=2d, .
Particularly, there exists an integer # such that
d =3y, and d—m=2y.

If n=1, then C'is an elliptic curve and d=m+ 2. Hence we have by the genus formula
of Clebsch

m=n=2.

This corresponds to (iii) of Corollary 1.8.

If n2 2, we can derive a contradiction as in the case (iii) of Step 3 of the proof of
Theorem 1.2.

Case (II). Assume Cxma+nb, where m and n=0, and a is the canonical

section of 3, with a>= —e, and b is a fiber of 3,. Then, K(3,)~ —2a—(e+2)b. If
k(C & ¥,)= — o0, then we have

m<2, or n<e+2,
because
KE)+Cx(m—2a+(n—e—2)b.

If m=2, then n<e+2. Therefore, by the adjunction formula of C,
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—2=(K(Z)+C)-C
=—em(m—2)+mn—e—2)—m(e+2)
< —em(m—2)+2(e+2)(m—1)—m(e+2)
=m-2)(—e(m—1)+2).
Hence we have
2>(m—2)(e(m—1)—2)=0.

If m—2=e(m—1)—2=1, then m=3and2e=3,a contradiction. Therefore, m—2=0
or e(m—1)—2=0, i.e., e=2/(m—1)=2. Hence we have m=2, and C~2a+(e+1)b
by the adjunction formula. Therefore 0= C-a=1—e=< —1, a contradiction. If m=1,
then C is a section of ¥, and if m=0, then C is a fiber of 3.

Hereafter, we assume x(C & Y,) = 0. In this case, C has the virtual degree d, with
d,23. Let '=d,K(Y,)+3C~(Bm—2d,)a+(3n—(e+ 2)d,)b=oa+ pb, where

a=3m—2d,, and B=3n—(e+2)d,.

Recalling x(3/d,C & ¥,)=0 and the Zariski decomposition of divisors (see
Kawamata [6] or Miyanishi [9, p. 129, Chapter II]), we divide the proof into the
following two cases.

(d1_) TI-a<0,
and
(1,) I-az0.

Case (I1_). Let I''=I'+(I'-a/e)a=(B/e)a+ b .
Then, I'"*=p%/e=0. Since the intersection matrix of I'’ is negative definite,
we have =0, i.e., 3n=(e+2)d,, and 0< —TI'a=0e=(3m—2d))e, i.e.,

3m>2d, .
On the other hand, 0 C-a= —em+n, i.e.,
n=zem.
Therefore, (e+2)d, =3n=3em> 2ed,, we have
2>e.
This is a contradiction.

Case (I1,). Assume I'-b=0<0.

Since P, (3/d,C & ¥ )=1, we can take an effective divisor E€ |I'| such that
supp (E)>b. Let E=E’+kb for some k>0, where supp (E Y$ b. Then, 0>E-b=
E’-b 20, which is a contradiction. Therefore we have I': b=0a=0. Hence I is already
numerically semi-positive, i.e., arithmetically effective. Therefore we have
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I =0.

Thus, we obtain NI'~0 for sufficiently large N>0, where ~ means linear equiva-
lence. Therefore, a= =0, and so

3m=2d, ,
and
3n=(e+2)d, .
Therefore, we have an integer 5 such that
di=3n, (M
m=2n, ®)
and
n=(e+2)n. ©)

Let g be the geometric genus of C. By the adjunction formula, we have
29—2=d?-3d,=(K(Z,)+C)-C
= —em(m—2)+mn—e—2)+n(m—2). (10)
Hence, by (7), (8), (9) and (10), we have

n=1.
Therefore
g=1,
m=2,
and
n=e+2.
Since, 0L C-a=2—e, we have
es?2.
This case corresponds to (iii) of Corollary 1.8. [ ]

6. A counter example to the proper birational invariance of x (D & X)

Here, we show that k(D & X) and P,(D & X) are not proper birational
invariants of the noncomplete variety X'\ D in general.

We can construct a counter example as follows. Let X=P? and D=C,; +C, +
C3+ L, +L,+L;, where C; and L; denote six lines in general position. Let
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u: (D* & S*¥)»(D & P?)

be a nonsingular model of (D & P?), where u is a composition of blowings up of all
double points of D, and let

D*=C¥+C¥+C¥+L¥+L$+L%,
where .
C¥=uPC;) and L¥=uP(L) for each i.
Let L;n L;=P,, where {i,j, k}={1,2,3}, and we apply the standard Cremona
transformation c¢=c(P;, P,, P;) to P?, and we can factor ¢ like c=gof ! is the
composition of blowings up with centers P,, P, and P, and g is the contraction of
{» L and L3, where L/=f%(L) for i=1, 2, 3. Let f~'(P)=E, ¢,C;=C,
g Ei=E;, and A=Y C;+YE,.
h=c|p2\p: P2\D—>P*\ 4

is an isomorphism, still more a proper birational morphism. We show that

k(D & P?)=0 and (4 & P?)=—
as follows.

(K(S)+D*)-C¥=—-2 and C}¥*=-4.

Hence by a standard process of Zariski decomposition for K(S)+ D* (see Miyanishi
[9, Section 3 of Chapter I and Section 1 of Chapter II]), we have

K(S)+D*—(C}/2),
and applying the standard process to all C#¥ and L¥, we have the semi positive part
K(S)+(D*)2).

Since D has only double points as its singularity, we can contract all exceptional
curves of the first kind with respect to u. It follows that we have relatively minimal
model P? and K(P?)+ D)2, and 2(K(P?)+ D/2)~ —6L+6L=0, thus we obtain

k(D & P?)=0.
On the other hand, let
n:(4* & S)—(4 & P?)

be a nonsingular model of (4 & P?), where 1 is the composition of blowings up of all
multiple points of A, where

A*=3C}{+3EY, and Ef=n"E).

Since
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(CPP=(EFy=—1,
and
(K(S)+4%)-CF=(K(S)+A4*) Ef=-2,

for each i, we can contract all C} and E} by standard process of Zariski
decomposition. Hence, we obtain relatively minimal model P2 and K(P?), we have

k(A & PH)=—0 .
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