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1. Introduction

In a recent paper, M. Boshernitzan ([4], Prop. 10.1, p. 254) announced the
following result concerning the Gamma function: If P(uy, u,, - - -, u,) is a polynomial
in u,, -, u,, with real constant coefficients, then on some interval (¢,, + o), the
function, P(I'(¢), I’ '(¢), - - -, I'™ (#)) has no zeros.

The object of the present note is to show that the situation concerning the zeros
of P(I'(¢), I''(1), + -+, I'"(¢)) in the complex domain is far different. We consider
broader classes of polynomials P(z, u,, 4, - - -, u,), namely those polynomials in
uy, ***, u, of positive total degree in u,, - - -, u,, whose coefficients are entire func-
tions ¢(z) satisfying the condition,

(1) log M(r, ¢)=o0(r) as r—o,

where M(r, ¢) denotes the maximum modulus of ¢(z). We show that in general, the
meromorphic function,

(2) f@=P(z '), '), - -, "),

(which cannot be identically zero by an extension of a theorem of O. Holder (see § 3)),
does possess many zeros in the plane, although there are obviously exceptions (e.g.
I'(z) itself has no zeros).

More specifically, we prove two results. The first considers the case where
P(z, uy, -+, u,) contains at least two nontrivial terms of different total degrees in
Uy, *°°, u,. In this case, we show that the exponent of convergence ([10], p. 327)
of the zero-sequence of f(z) is 1. (In fact, more is true, namely if n(r) denotes the
number of zeros of f(z) in |z|<r (counting multiplicity), then n(r)#o(r(logr)) as
r—00.) The second result considers the case where all terms of P(z, u,, - - *, u,) have
the same total degree in u,, ‘- -, u,. In this case, we construct an auxiliary entire
function Ay(z) which is simply a special linear combination (with integer coeffi-
cients) of the coefficients of P(z, u,, ---, u,). We show that if hy(z)#0, then
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again the exponent of convergence of the zero-sequence of f(z) is 1, unless
P(z, uy, -, u,) has the special form, ¢(z)u§ where g is the total degree of P. (In
fact, we show that unless P(z, u,, - -, u,) has this special form, we have n(r) # o(r)
as r—oo. Of course, if P(z;, uy, *--, u,) does have the special form ¢(z)uf, then
n(r)=o0(r) as r— oo in view of (1), Jensen’s formula ([10] p. 181), and the fact that
I'(2) has no zeros.) In the exceptional case where Ap(z) =0, the situation concerning
the distribution of zeros of f(z) is still unclear (see § 7). However, we remark that the
exceptional case hp(z)=0 cannot occur for first-order differential polynomials
P(z, I'(2), T'(2)) (see § 7).

We now state our main results

THEOREM. Let P(z, uy, uy, ***, u,) be a polynomial in uy, u;, -, u,, whose
coefficients are entire functions ¢(z) satisfying Condition (1), and assume that P(z, u,,
u,, * -, u,) is of positive total degree in uy, u,, - - -, u,. Let f(z) be the meromorphic
function defined in (2) and let n(r) denote the number of zeros of f(z) (counting
multiplicity) in | z| <r for r>0. Then:

@) If P(z, ug, uy, - - -, u,) contains at least two nontrivial terms of different total
degrees, then n(r)# o(r(logr)) as r—oo (and so the exponent of convergence of the
zero-sequence of f(z) is 1).

(b) Suppose every nontrivial term of P(z, uy, - * *, u,) is of total degree q for some
fixed ¢ >0, say
(3) P(z, ug, ~ -, up)= Y By (UG

i+ - +in=q
Let d denote the maximum of the numbers, iy+2iy+ - +(n+1)i, for which
Bioiy - - -1,(2)E0, and form the entire function,

(4) h(2) =Y bigs, - - -1, (D(= DI (= D222 (= 1'nd)™,

where the sum is extended over all (iy, - - -, i,) satisfying io+2i; + - +(n+1)i,=d.
Assume that hp(z) £0. Then either P(z, uy, * * -, u,) has the special form ¢, ... o(2)u§
or we have n(r)#o(r) as r—oo (in which case the exponent of convergence of the
zero-sequence of f(z) is 1).

3. Preliminaries

For a meromorphic function g(z) on the plane, we will use the standard notation
for the Nevanlinna functions m(r, g), N(r, g), and T(r, g) introduced in ([8], pp. 6, 12)
(see also [5], p. 3), including the notation n(r, g) to denote the number of poles
(counting multiplicity) of g(z) in |z|<r.

We will also use the notation ¥ =TI"'/T", where I' is Euler’s I'-function. We will
require the following facts from ([8], p. 17) and ([3], p. 62):
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(5) T(r, I')=(r(log r)/m)+ O(r) as r—ow,
and
(6) T(@r, ¥)=r+o(r) as r—oo.

Finally, we will require the following extension of a theorem of O. Hélder which
is proved in ([3], §§5, 8, 15) (see also [2]):

EXTENSION OF HOLDER'S THEOREM. Let R(z, uy, - - -, u,) be a polynomial
in uy, **, u, with coefficients which are entire functions ¢(z) satisfying Condition (1).
Then if either y=I'(z) or y="¥(z) is a solution of the differential equation R(z, y,
v’y e, y™)=0, then all coefficients of R(z, uy, - * -, u,) must vanish identically.

(The original result due to Hélder considered the case where the coefficients of

R(z, uy, - - -, u,) are polynomials [7).)

4. Proof of Part (a)

For each nonnegative integer j, let P,(z, u,, * - -, u,) denote the homogeneous part
of P(z, uy, - -, u,) of total degree j in u,, - - -, u,, so that,

(7) P(z,ug, ", u)= Y, Pfz, up, ", 1),
i=o

where by hypothesis P,, is not the zero polynomial and m > 1. Now it is easy to verify
(see [5], p. 73) that if y(z) is a meromorphic function and w=y’/y, then for k=
1, 2,, - - -, the function y®/y can be written as a polynomial in w, w’, «--, w&=D
with constant coefficients. It easily follows that for each j=0, 1, - -, m, we can
write,

(8) Pz, 3.y, Y)Y =Pz, w, W, e, WD),

where P¥(z, w, w’, -+, w® ) is a polynomial in w, w’, ---, w"™ ), whose
coefficients are entire functions satisfying the Condition (1). Applying this to the case
where y=T and w=Y, it follows from (2) and (7) that,

(9) 16)= 3 RN,
where,
(10) R(2)=PHz, W), VG, -, POIE).

In view of (1), (6) and the elementary rules for calculating with the Nevanlinna
characteristic (see [5] or [8]), we have

11) T(r, R)=0(r) as r—oo for j=0,1, -, m.

In view of (9), we have
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(12) f@)=3 QN[ where Q;=Rj+jR¥,
j=0

and thus,

(13) T(r, 0)=0(r) as r—ow for j=0,1, -, m.

We now assume that the conclusion of Part (a) fails to hold, i.e., assume that
n(r, 1/f)=o(r(log r)) as r—co. Of course, from (2) and (6) we also have n(r, /)= O(r)
as r—oo. Thus, if we set D= f’/f, then it follows (see [9], p. 63]) that,

(14) T(r, D)=o0(r(logr)) as r—oo,
and we have from (9) and (12) that,
(15) Y. (Q;—DR)I"=0.
j=0
Since T'(r, Q;— DR))=o(r(log r)) as r—co for j=0, 1, - - -, m from (11), (13), (14), it
now follows that,
(16) Q;—DR;=0 for j=0,1, - -, m,

for in the contrary case it would follow from (15) and the elementary rules for
calculating with the Nevanlinna characteristic (see [6], p. 108]) that 7'(r, ') would be
o(r(log r)) as r— oo in contradiction to (5).

From (16), we obtain,

(17) d(RJFJ/f)/dZEO for ]=0, 1’ eeom,
from which we conclude that,
(18) Ri=c;f/IT  for j=0,1,---,m,

where c; is a constant.

We observe first that not all the ¢; can be zero, for in the contrary case all R;=0
and so f(z) =0 in contradiction to the extension of Holder’s theorem (§ 3). We next
observe that exactly one of the ¢; can be nonzero, for if ¢;#0 and ¢, #0 where j<k,
then from (18) we would obtain I'*~/=(¢,R;/c;R,) from which it would follow using
(11) that T'(r, I')=0(r) as r— o0 in contradiction to (5). Hence, there is an index ¢
such that 0 <g <m with the property that ¢, #0 and ¢;=0 if j #¢. Thus from (18), we
have R/(z)=0 for j#g¢, and in view of (10) it now follows from the extension of
Holder’s theorem (§3) that for j#g, all coefficients of P¥(z, w, w’, -+, w" V) as a
polynomial in w, w’, - -+, w®™1, vanish identically. It is shown in ([1], §4 (b), p. 56)
that this implies that all coefficients of P,(z, u,, - - -, u,) as a polynomial in u,, - - -, u,,
must vanish identically for j# g. From (7), we then see that P= P, which is contrary to
the hypothesis that P contains at least two terms of different total degrees in u,, - - -,
u,. This contradiction establishes the conclusion of Part (a) that n(r, 1/1) # o(r(log r))
as r—oo. From this and ([9] §14, p. 27), we can conclude that the exponent of
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convergence of the zero-sequence of f(z) is at least 1. However, since f(z) is of order at
most 1, the exponent of convergence of the zero-sequence has the same property by
([9), p- 31), and so is precisely 1.

5. Proof of Part (b)

To prove Part (b), we assume that P(z, u,, - - -, u,) has the form (3), and without
loss of generality we may assume that P(z, u,, - - -, u,) actually depends on u,, that is,

(19) O0P/0u,#0 as polynomials in u,, -, u,.

Now I'(z) has simple poles at the nonpositive integers, and for each m=0, 1, - - -,
let «,, denote the residue of I'(z) at the point z= —m. Hence, the Laurent expansion
of I'(z) around z= —m is of the form,

(20) r)=o,(z+m) 1+ 4,(z),

where 4,(z) is analytic on |z+m|< 1, from which it follows that for j=1, 2, - - -, we
have

@n r'2z)=(=1I(Non(z+m) 0D+ 40(z)

on 0 <|z+m|<1. Substituting these expansions into the right side of (2), it follows
from (3) that on 0<|z+m|<1, we have,

(22) @) =hp(2)dd(z+m)"*+B,(2),

where hp(z) and d are defined in the statement of Part (b), and where B, ,(z) is analytic
on 0<|z+m|<1 and has at most a pole of order d—1 at z= —m.

From the hypothesis, we have /,(z) #0, and we now assume that n(r, 1/f) (which
is n(r)) satisfies,

(23) n(r, 1/f)=o0(r) as r—-oo.

We now analyze the poles of f(z). We observe first that since the coefficients of
P(z, uy, - -, u,) are entire functions, the poles of f(z) can occur only at nonpositive
integers. Let E; denote the set of all nonpositive integers which are not zeros of sp(z),
and let E, denote the remaining nonpositive integers. From (22), any element of E,;
gives rise to a pole of f(z) of multiplicity d. Let F,(z) denote the canonical product
having a zero of multiplicity d at each element of E;, (and no other zeros), and
consider the sequence of poles of the meromorphic function g=fF,. In view of (22),
this sequence (if it is not empty) consists of elements of E, which can appear at most
d—1 times (or not at all). Hence, if we let F,(z) denote the canonical product with
simple zeros at the elements of E,, then

(24) n(r, g) <(d—Dn(r, 1/F,) .

Now, by construction, every element of E, is a zero of sp(z) and hence,
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(25) n(r, 1/F) <n(r,1/hp) .

Since 4, is a linear combination of entire functions satisfying Condition (1), it also
satisfies this condition, and hence in view of Jensen’s formula, we have n(r, 1/hp) =
o(r) as r— 0. In view of (24) and (25), we thus obtain,

(26) n(r, g)=o(r) and n(r, 1/F,)=o0(r) as r—oo.

Finally, we observe that any zero of g must be a zero of f of the same
multiplicity, and so from (23), we have,

27 n(r, 1/g)=o0(r) as r—oo.

Now the entire function F; F§ has zeros at precisely the non-positive integers,
each of multiplicity d. This is the same zero-sequence possessed by the entire function
I' =%, and since both functions are of order 1 (by (5) and ([10], (9.4), p- 330)), we have
by the Hadamard factorization theorem ([10], p. 332) that,

(28) I'(2) ™= F (2)(Fy(2))%**",

for some constants a and b.
Since f=g/F,, it follows from (28) that,

(29) (f'1f)—dI’[T)=y,  where Y=(g'/g)+d(F;/F))+a.

In view of (26) and (27) (and the fact that F, has no poles), it follows from ([9],
p. 63) that T(r, g’/g) and T'(r, F;/F,) are each o(r) as r— co. Since a is a constant, we
see that the meromorphic function y(z) has the property that T(r, )=o0(r) as
r— 0. Hence by a theorem of Miles ([8], p. 372-373), we can write y =, /\,, where
¥, and y, are entire functions each satisfying Condition (1), and v, #0.

Now, let R(z, uy, uy, ** -, u,, ) be the polynomial in uy, u,, - - -, u,,, defined by

(30) R=(8P/dz2)+ Z (OP/ouu,  ; ,
j=0

J

so that in view of (2) we have,
(3D f'@=R(z T'(2), (), -, T"*N()).

We remark that the coefficients of R are entire functions satisfying Condition (1).
In view of (29), (2), and (31), it easily follows that if Q(z, ug, 4y, = - -, U,4+,) is
defined by,

32) O=Y,(2)ugR— Y, (2)du, P—,(2)uo P,

then Q(z, g, 4y, * * *, U,4+4) is a polynomial in uy, u;, - * -, u, . ;, whose coefficients are
entire functions satisfying Condition (1), and Q has the property that,

(33) 0z I'(2), T'(z), -+, T"Y(z)=0.

By the extension of Hoélder’s theorem (§3), all coefficients of Q must vanish
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identically, so Q(z, 4y, ***, u,4,) is the zero polynomial in wu,, - -, u,,,;. Hence
0Q/0u, . is also the zero polynomial in u,, - - -, u,,,. But if # is not zero, then the -
only terms of Q involving u,,, occur in y,(z)u,R, and we have from (30) that
0Q/0u,, ,  is Y,(2)uy(0P/0u,). If this were the zero polynomial in uy, u;, * -, t, 4y, it
would obviously contradict (19). Hence n must be zero, so that P is a polynomial in
the single indeterminate u, whose coefficients are entire functions satisfying
Condition (1). Since all terms of P have degree ¢, it now follows that P is of the form
¢(z)ug which proves Part (b). (Note that if n(r) # o(r) as r— oo, then the exponent of
convergence of the zero-sequence of fis equal to 1 by the same argument used at the
end of the proof of Part (a).)

6. Remark

We point out here that our main result remains true if the coefficients of
P(z, uy, -, u,) are permitted to be meromorphic functions (z) satisfying the
condition T'(r, ¥)=o0(r) as r—oo. This follows easily since by [8], p, 372-373), any
such function ¥ can be written as the quotient of entire functions satisfying Con-
dition (1). Putting all terms in P over the product of the denominators, and noting
that n(r, 1/¢)=o0(r) as r— oo for any entire function ¢ satisfying Condition (1) (by
Jensen’s formula), the assertion then follows from the Theorem of §2.

7. Remark

In the exceptional case where hp(z)=0 in Part (b) of the theorem, the proof
breaks down because an analysis of the sequence of poles of f becomes very
complicated (see (22)). Hence, we are unable to obtain an explicit representation for
the canonical product whose zero-sequence is the sequence of poles of f, and such a
representation was crucial in our proof. Even in the simplest case where hp(z) =0, i.e.,
where P(z, uy, u, u,) iS ugu, — 212, it is easy to see that an analysis of the sequence of
poles of f(z) would involve determining the first coefficient (and possibly even the first
three coefficients) in the power series expansion of the functions 4,,(z) in (20) around
z=—m for each m=0,1, 2, ---.

However, in the case where n= 1, we remark that the case /4,(z) =0 cannot occur.
In this case, 4p(z) is a nonzero constant multiple of a nonzero coefficient since the
only index (i,, i;) for which i, +i, =q and iy +2i, =d is 2¢—d, d—q).

8. Remark

The results of §2 cannot be greatly improved for the following reasons: In Part
(a), we always have n(r) = O(r(log r)) as r— oo in view of (5). In Part (b), we always
have n(r) = O(r) as r— oo because when P is homogeneous, there is only one term in
the summation in (9), and so the assertion follows from (11).
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