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1. Introduction

In this paper, the properties of centralizers of semicyclic transformation
semigroups will be discussed. The basic theory of this paper is analogous to a
folkloric theorem on centralizers of semiregular permutation groups which states that
the centralizer of a semiregular permutation group G is isomorphic both to a certain
wreath product and to a semigroup of row-monomial matrices over G® (Wells [14],
Suzuki [12, p. 288], see also Burnside [1, § 171]). The first result is a theorem which
points out that the centralizer of a semicyclic transformation monoid (S, V) can be
represented by the semigroup of matrices determined by some n-tuple of right
congruences on S (Theorem 5.1). The second result is a theorem on the number of
generators of a strictly cyclic transformation monoid. This theorem asserts that for a
given finite monoid S there exists a strictly cyclic transformation monoid (7, V') such
that the centralizer of (T, V) is isomorphic to S, and such that 7 is generated as a
semigroup by at most two elements (Theorem 6.1). In the first five sections, we shall
deal with a semicyclic representation of semigroups and a representation of
centralizers of semicyclic transformation monoids. The last section contains the
investigations of the centralizers of semiregular transformation monoids.

Throughout this paper the terms ““semigroup” and “monoid” will mean a finite
semigroup and a finite monoid, respectively.

When T is a transformation semigroup on a finite set ¥, we shall write 7 more
concretely as (7, V). Henceforth, we call a transformation semigroup (7, V) a t-
semigroup simply. If a t-semigroup (7, V') contains an identity permutation on V,
then (7, V) is called a t-monoid.

If A and B are two sets, then 4 — B denotes the set of elements of 4 not contained
in B, and | 4| will denote as usual the cardinality of 4.

Letf: V,—>V,and g: V,— V; be mappings of ¥, and V,, respectively. We read a
product fg from left to right:

a(fg)=(af)g, aeV,.

We shall sometimes write a- fand f g instead of af and fg.
Let (T, V) be a t-semigroup. A non-empty subset U of V is called a block of
(T, V) if
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()TSU and (V-U)T<(V-U).

A block U of (T, V) is called a minimal block if for any block U’ of (T, V) the
implication [U’< U=> U’= U] holds.

If {V; | i=1,2, -+, n}is the set of all distinct minimal blocks of a #-semigroup
(T, V), then V= J?_,¥,and V;n V;=& if i#j, where J is the empty set (cf., [11]).
Each f'in T induces a transformation f; on V; (i.e., f; is the restriction of f to V).
The t-semigroup (T}, V), T;={f;| f €T}, is called a constituent of T on V..

Let (T, V) be a t-semigroup. If there exists an element s, € V such that (so)T=V,
then (T, V) is called a strictly cyclic t-semigroup. We call (T, V) a semicyclic t-
semigroup if for every minimal block V; of (T, V) the constituent (T}, V) is strictly
cyclic.

The t-semigroups (S, U) and (T, V') are equivalent if there exist an isomorphism
o: S—T and a bijection £: U— ¥V such that (uf)é =(ué)- (fx) for allue U and all f € S.

Let (S, V) be a ¢t-semigroup and let 7, be the full transformation semigroup on
V, then

{feTy|fg=gf for all ge S}

is called a centralizer of (S, V).

Let S be a semigroup. If D is a subset of S, we denote by (D> the subsemigroup
of S generated by the elements of D. Let p be a relation on S. If (@, b) € p, then we
shall write apb. We use the symbol ¢ for the equality relation on S. If p is a right
congruence on S, we denote by a, the p-class containing an element a€ S. The set of
all such p-classes is denoted by S,. An element e in S is called a left [resp. right]
identity modulo p if eapa [resp. aepa] for all ae S. A right congruence p is said to be
modular if there exists a left identity modulo p.

Let p be a right congruence on a semigroup S. For each x in S we define the
transformation (x)r, on S, by

(X)m,: a,—~(ax),, a,es,.

The correspondence n,: x—(x)n, establishes a homomorphism from S onto a ¢-
semigroup (S)n, on S,,. If S has a left identity modulo p, then ((S)r,, S,) is a strictly
cyclic t-semigroup. Conversely, if (T, V) is strictly cyclic, then there exists a modular
right congruence p on T such that (7, V) is equivalent to (T)=,, T,) ([13]).

2. Normalizers of right congruences

In Section 4 we define the (R, S)-matrix for a semigroup S and an n-tuple R of
right congruences on S. For this purpose, in this section, we introduce the notion of
normalizers of ordered pairs of right congruences and establish some of their
properties. The definition and the fundamental properties of the normalizer N(p) of a
right congruence p on a semigroup have already been given in [8] and [2, p. 279]. First
of all we recall the definition of a right conguence px ([2, p. 261}).
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Definition 2.1. Let p be a right congruence on a semigroup S and x be an
element of S, then the right conguence px on S is defined by for a, b in S, a(px)b if and
only if (xa)p(xb).

Definition 2.2. Let p and o be right congruences on a semigroup S. We define
the normalizer N(p, o) of the ordered pair (p, 6) to be the set of all xe S such that

p&ox:

N(p, 0)={xeS|pcox}.
We shall write N(p) instead of N(p, p) and call N(p) a normalizer of p.

PROPOSITION 2.1. Let p and & be right congruences on a semigroup S. Then

(1) If N(p, o) is not the empty set, then N(p, o) is a union of o-classes.

(2) If p=2o, then N(p)=2N(p, o).

(3) If p<o, then (N(p)UN(0))=N(p, o).

(4) If pco and there exists a left congruence T on S such that pSt<o, then
N(p, 6)=S. In particular, N(e, p)=S for all right congruences p on S.

(5) N(p) is a subsemigroup of S. If S is a monoid, then N(p) is a submonoid of S.

(6) The restriction of p to N(p) is a congruence on N(p).

The assertion (5) and (6) will be found in [2, p. 279].
If X and Y are subsets of a semigroup S, we write X o Y for the subset consisting
of all products xy with xe X and yeY.

PROPOSITION 2.2. Let p and ¢ be right congruences on a semigroup S. Then x is
an elements of N(p, o) if and only if x, oy, =(xy), for all ye S.
Definition 2.3. Let p and ¢ be right congruences on a semigroup S. If
x€ N(p, 6), then the mapping &,,(x) from S, to S, is defined as follows:
palX): ¥, (XV)ss V€S,

PROPOSITION 2.3. Let p, o and t be right congruences on a semigroup S. Then
(1) If xeN(p, o) and ye N(o, 1), then yxe N(p, t) and

$po(X) Eo(1) = Epe(¥X) -

(2) If xeN(p, 0) and y,=x,, then &,,(x)=Cp0(y).

(3) Let x, yeN(p, 0). If there exists a right identity modulo ¢ then &, (x)=
épa(y) lf and only lf Xe=DVe+

(4) If S is a monoid and x, ye N(p, 6), then & ,,(x)=&,,(y) if and only if x,=,.

Definition 2.4. Let p and o be two right congruences on a semigroup S and let e
be a left identity modulo p. Then we define the subset N (p, ) of N(p, o) to be the set
of all xe N(p, o) such that xeox.

If p=o0, then we shall write N,(p) instead of N(p, p).
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PROPOSITION 2.4. Let p and o be two right congruences on a semigroup S and
let e be a left identity modulo p. Then

(1) N.(p, 06) is a union of c-classes.

(2) N.(p) is a left ideal of N(p) [2, p. 279].

(3) If xeN(p, o), then xee N (p, 6) and & pa(X) =& o(xe).

(@) I x, yeNJp, ). then &,o(x)=¢,,(3) if and only if x,=y,

(5) If, in addition, e is also a right identity modulo o, then N (p, 6)=N(p, o).

Proof. (1). Let xeN,(p, o) and yex,, then ye N(p, 6) by (1) of Proposition
2.1. Since yeoxe, xeax and xoy, we have that yesy and ye N,(p, o).
(3). Let xeN(p, o) and a, beS. Then

apb = eapeb = ea(ox)eb => xeacxeb = a(oxe)b .

Hence xee N(p, o). €’pe implies (xe)eaxe, and so xee N,(p, o). Moreover, for any
a,€S,,
(a,) Epo(x)=((ea),) - & po(x) = (xeq),=(a,) - £ ,(x€) .
4. If x,=y,, then &,,(x)=¢&,,(y) by Proposition 2.3.
Conversely, if £,,(x)=¢,,(»), then (e,)-£,,(x)=(e,) {,,(»). Hence (xe),=(ye),.
Since xeox and yeay, we have x,=y,.
(5). If xeN(p, g), then xee N, (p, o) from (3). Since e is also a right identi-

ty modulo o, we have xesx. Therefore we must have that xe(xe), = N, (p, 0).
Q.E.D.

THEOREM 2.1. Let p and o be two right congruences on a semigroup S and f be a
mapping from S, to S,. If p is modular, then for all y€ S,

Wn, f=f-(y)m,
holds if and only if f= & ,,(x) for some x € N(p, 6), where e is a left identity of S modulo
.
Proof. It is easy to see that if xe N(p, 0) and f=¢,,(x), then (y)r,- f =1 (y)=,
for all ye S. Hence it suffices to treat the “only if” part. Assume that (e,) f =z,, then
for any yeS,

o) =(e,) Nmy)f =((e,)) (M, =(2,) (y)m,=(2), -

Since f'is a mapping of S, the equality w,=y, implies (w,) f =( ¥,)f and so (zw), =
(2y),- Hence ze N(p, 0) and f =¢,,,(z). This proves that f=¢,,,(ze) and zee N,(p, o) by
(3) of Proposition 2.4. Q.E.D.

PROPOSITION 2.5. Let p and o be two right congruences on a semigroup S, and
let Cy(m,, m,) be the set of all mappings f from S, to S, such that X)), f=f-(0)m, for
all xe S. If p is modular, then we have

M 1Cs(my, n)| S 1S,1.
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(2) In particular, the order of the centralizer of (S)m,, S,) is less than or equal to
[S, 1.

(3) Let e be a left identity modulo p. If S is commutative and p < g, in addition if e
is also a left identity (equivalently a right identity) modulo o, then | Cy(n,, m,)| =|S,|.

(4) If S is commutative, then (S)n,, S,) is its own centralizer.

Proof. (1). This is true by Theorem 2.1 and Proposition 2.4.

(2). Follows from (1).

(3). Since p is a congruence, N(p, )=S by (4) of Proposition 2.1. From (5) of
Proposition 2.4 we have N,(p, 6)=S. Since | Cy(m,, 7,) | is equal to the number of o-
classes of N,(p, 6), we have (3).

(4). From (3) we have that |Cs(n,, n,)| =|S,|. Since (S)=m, is commutative,
Cs(m,, m;) 2(S)n,. Thus

|8, 1=1Cs(mp, m)| 2 [((S)mp, S 2 1S, QE.D.

It is known that N (p)/p is anti-isomorphic to the centralizer of ((S)x,, S,) (cf. [2,
Theorem 11.28]). The assertions (2) and (4) of Proposition 2.5 will be found,
respectively, in [8] and [4, Theorem 5.4.1] in terms of endomorphism semigroups of
cyclic automata.

3. Semicyclic z-semigroups

Let S be a semigroup and V be a finite set. A homomorphism « from S into the
full transformation semigroup on ¥ is called a representation of S by a z-semigroup
on V. If a is a bijection, then o is said to be faithful. We say o is a semicyclic [resp.
strictly cyclic] representation if (S)a is a semicyclic [resp. strictly cyclic] ¢-semigroup.

Tully [13] presented the following result:

A necessary and sufficient condition for a semigroup S to have a strictly cyclic
faithful representation is that there exists a modular right congruence p such that p
contains no left congruence except for the equality relation.

In this section we shall consider the above result.

Definition 3.1. Let R=(p,, p,,"*, p,) be an n-tuple of right congruence on a
semigroup S. The condition

ﬂ ﬁ pix=¢g

xeS i=1

is called ‘Separation condition’ or ‘SP-condition’ simply.

PROPOSITION 3.1. Let p be a right congruence on a semigroup S. If p is modular,
then the following two conditions are equivalent. '

(1) (\xespx is the equality relation ¢. In other words, R=(p) satisfies the SP-
condition.

(2) p contains no left congruence except for the equality relation e.
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Proof. (2)=(1). It follows from Lemma 3 of [9]. Q.E.D.

Definition 3.2. Let R=(py, p,, " * -, p,) be an n-tuple of right congruences on a
semigrouop S, and let 0 be a symbol such that 0 ¢ 4, where A= )7, S, If a vector
(X)) (1=i=n) satisfies the following conditions, then (X)) is called an (R, S)-vector:

(1) For each i (1<i<n), the component X; is an element of the set S,, U {0}.

(2) There exists a unique number k (1 <k <n) such that X, #0.

By V(R, S§) we denote the set of all (R, S)-vectors. From the definition, an
(R, §)-vector is a monomial vector and the cardinality of V(R,S) is equal to
;l=1 | S Pi I

Definition 3.3. Let R=(p,, p,, * ' *, p,) be an n-tuple of right congruences on a
semigroup S. For each xeS we define the transformation (x)rngz on ¥ (R, S) by

(X)TCR: (Os Y aﬂi’ T, 0)—'(05 "‘,(ClX)pi, 50)

PROPOSITION 3.2. If (S, V) is a semicyclic t-semigroup, then there exists an n-
tuple R=(p,, p,, * -, p,) of modular right congruences on S, such that R satisfies the
SP-condition, and such that the t-semigroup ((S)ng, V(R, S)) is equivalent to (S, V).

Proof. Let {V; | i=1,2, - -, n} be the set of all minimal blocks of (S, V). Then
V=", V; and for each V; there exists an element s,, € V; such that (s;))S= V;. The
relation p; (1<i=<n) on S is defined by for x, ye S,

xpiy <= (Si)x=(s;0)y .
This p; is a modular right congruence on S. Let g, be S. If
a< N N p,~x> b,
xeS§ i=1

then we have that xap,xb for all xe .S and all i (1 <i<n). This yields that ((s;))x)a =
((s;0)x)b for all xe S and all i (1<£i<n). Hence a=b.
Put V;={s;;|j=0, 1, - - -, | ¥;|—1}, and define the mapping « from ¥ to V(R, S)

by
o s;=0, -+, x,, -+, 0) if (sp)x=s;.

Then « is a bijection. 7y : S—(S)ng is an isomorphism and (s)xo= (s&) : (x)nx for all
seV and all xeS§. Q.E.D.

b’

By an argument similar to the previous one we have the following theorem.

THEOREM 3.1. A4 necessary and sufficient condition for a semigroup S to have a
semicyclic faithful representation is that there exists an n-tuple R=(p,, p,, ***, p,) of
modular right congruences on S such that R satisfies the SP-condition.
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4. (R, S)-matrices

In the next section we shall give a representation of centralizers of semicyclic #-
monoid. For this purpose, in this section, we define the (R, S)-matrix.

Notation. Let S be a semigroup and R=(p,, p,, ' * *, p,) be an n-tuple of right
congruences on S. If no confusion will arise, we write ¢;(x) instead of ¢, , (x) for
all xeN(pi’ p]) (la.]=19 29 T, n)'

Definition 4.1. Let R=(p,, p,, - * -, p,) be an n-tuple of right congruences on a
semigroup S. We set

F/={€ij(x)|XEN(Pi:'Pj) i, j=1,2, ---, n}.

Let 0 be a symbol such that 0¢I"" U (| J7-,S,). In the set I'=I"" U {0}, we introduce
the operation (-) as follows:

(1) 0-8,(x)=£,x)-0=0 and 0-0=0.

2 . — éiq(yx) if ]=p,

@ ¢y r:,,q(y)-{o it ip.

Definition 4.2. Let R=(py, p,, * " *, p,) be an n-tuple of right congruences on a
semigroup S. An nxn matrix X =(X;;) is called an (R, S)-matrix if it satisfies the
following conditions:

(1) Foralliandj(,j=1,2, - -, n), X;erl.

(2) Foreachi(i=1,2, -, n), there exists a unique number k such that X;, #0
(i.e., X is a row-monomial matrix over I').

(3) If X;,#0, then X;,=¢,(x) for some xe N(p;, p;)-

By M (R, S) we denote the set of all (R, S)-matrices.

Definition 4.3. Let X=(X;;) and Y=(Y;;) be two elements of M (R, S). The
product XY is an (R, S)-matrix Z=(Z;;), where Z;;=3}-, X, Y;;for all iand j (1 <1,
Jj=n).

Remark. 04X, =X, +0=X, for all X;eI'. The elements of M (R, S) might
be regarded as a matrix over the semigroup ring K[I'], where K is a field of
characteristic zero.

Definition 4.4. Let X=(X,) be an (R, S)-vector and let Y=(Y)) be an (R, S)-
matrix. The product XY is an (R, S)-vector Z=(Z;), where Z;=Y ;-1 X, Y,; for all i
(1£i<n) and

1) XiYiu=(x,)&(»)=(yx),, if Xi,=x,, and Y;;=&(»).

2 X, Y,=0if X;,=0 or Y,;=0.

(3) 0+X;=X;+0=X; for all X;in S,

To make the definitions clearer we include the following example.
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Example. Let S be a monoid such that the multiplication table for S is

e a b c

e e a 4

b b a a

b

a a a b a
b
b

c c a 4

The right congruences p and ¢ are given by the following partitions of S:
p:e,={e, b} a,={a,c}, a:e,={e, ¢} az={a, b} .
Then
N(p)={e, b} 5,,,,(e)=<j’

4

N =ta b}, Gula=(" ¥).

N(o)=S5, éa,(e)=(j’ Z) é,,,(a)=<f; Z)

G (4

N(o, p)=¢.
Let R=(p, g), then

V(R, S)={(e,, 0) (a,, 0) (0, &,) (0, a,)}
and

(e 0 e 0 ] [0 &a] [0 @
MR, S)‘{[ 0 é,,,(e)]’ |0 fw(a)]’ [0 :“(e)]’ [0 éaa(a)]}'

[épp(e) 0 ] K épa(a)]=[0 f,w(a)]
0 L@ [0 &o@] [0 &oa)
[0 ¢,.(a)

€90 ¢ (@

:|=(0, a,) .

5. Representation of centralizers of semicyclic 7~monoid

In this sections we show the main theorem of this paper.

THEOREM 5.1. If S is a monoid and R=(p,, p,, * * *, p,) is an n-tuple of right
congruences on S, then the t-monoid M(R, S) on V(R, S) is the centralizer of the
t-monoid (S)rng on V(R, S).
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Proof. Let C be the centralizer of ((S)ng, V(R, S)). We show that M(R, S)<
C. To prove this, take an element
©, -, a,, -, 0€eV(R,S)

and an element X =(X;;)e M(R, S). If X, = £,(x) for some xe N(p,, p,), then we have
that for all ye S,

0, -, a,, "+, 00X) (Mrg=(0, -, (xa),,, -+, 0):(y)ng
=@, -, (xay)pk, )}
=, -, (ay)m’ <o, 0)X
=0, ---, a,, -, 0):(VnRX.

Thus we obtain M(R, S)=C.
Next, we shall show that the reverse inclusion holds. Let e be an identity of S and
let f be an element of C. If

©, -+, e,, -+, 0)f=(0, e X, e, 0),
then for any ae S we have
O, a,, -, 0f=(0, -, e,, 0 (@) f
=((0, .'.’ePi’ ce ey O)f').(a)nR
=(, -, (xa)pj’ e, 0).
If a and b are elements in S such that ap;b, then
(o, "‘,(Xa)p,., <,0)=(0, - - -, a,, -, 0)f
=(0, ""bm’ L0 f
=(0, "',(Xb),,j, <, 0).

Therefore if ap;b, then xap;xb and xe N(p;, p)). If x, =y, , then &;(x)=¢;(y) from
(4) of Proposition 2.3. Thus f is expressible in the form

J-th
)
©, -, a,, -, 0f=0, -, (@) x), -, 0).
For each f e C we consider the n x n matrix f,=(X;) as follows:
Y- éij(x) if 0, -, e s 0 =0, -, Xpp T 0)
Y 0 otherwise.

Then f), is an (R, §)-matrix and vf=vf), for all ve V(R, S). This means that f = f;,
as a transformation and hence M(R, S) contains C. Q.E.D.

Let S be a t-submonoid of the centralizer of a t-semigroup (7, V), then T is a
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subsemigroup of the centralizer of (S, V). If (S, V) is semicyclic, then (S, V) is
equivalent to (S)rng on V(R, S) by Proposition 3.2, where R is some n-tuple of right
congruences on S. Therefore the centralizer of (S, V) is equivalent to (M(R, S),
V(R, S)) by Theorem 5.1. Thus (7T, V) is equivalent to a subsemigroup of M (R, S).
Therefore we have the following theorem.

THEOREM 5.2. Let (S, V) be a submonoid of the centralizer of a t-semigroup
(T, V). If (S, V) is semicyclic, then there exists an n-tuple R=(py, p,, * - *, p,) of right
congruences on S, such that R satisfies the SP-condition, and such that (T, V) is
equivalent to a subsemigroup of (M (R, S), V(R, S)).

Since any permutation group (G, V) is a semicyclic #~-monoid, from Theorem 5.2
we obtain the next theorem.

THEOREM 5.3. If a permutation group (G, V) is a subgroup of the centralizer of
a t-semigroup (T, V), then there exists an n-tuple R of right congruences on G, such that
R satisfies the SP-condition, and such that (T, V) is equivalent to a subsemigroup of
(M(R, G), V(R, G)).

Let G be a group and H be its subgroup. Define the relation p on G by for
a, be G, apb if and only if Ha= Hb. Then p is a right congruence on G. Conversely,
all right congruences on G are obtained from the decomposition of G into cosets
with respect to some subgroup H. Consequently, the properties of right congruences
on a group G can be written in terms of subgroup of G. We list those correspon-
dences:

R=(p19 P2 "7 pn) A R=(H1a st "',Hn)a

where H; is a subgroup of G which corresponds to a right congruence p; on G

i

(1Zign).
a,, (aeG) & Ha, (ae@G)
©, - a,, -, 0eVR G) < (0, -, Ha -0
px, (xeG) < x'Hx, (xeG)
N(p, p)={xeG|p;Spx} < {xeG|H;=x 'Hpx}
N (n\p,—x=s - N ﬁ x 'Hx={e},

xeG i=1 xeG i=1

where e is the identity of G.
Xp, 0 V0 S(xy),, < (Hx)Hy)sHpxy

fij(x):apie(xa)pj « *Hix): Ha—Hxa



Centralizers of Finite Semicyclic Transformation Monoids 31

ll: gij(x):l eEM(R,G) < 1|: *(Hjx):'

J J
The (R, G)-vector (0, ---, Ha, ---, 0) and (R, G)-matrix correspond to “the
generalized group-vector” and “the generalized group-matrix” of Ito [6], respectively.
Theorem 5.3 is essentially in [6], though it is stated in terms of automorphism groups
of automata. :

6. Centralizers of semiregular 7~-monoid

Let S be a semigroup and R=(p,, p,, - - *, p,) be an n-tuple of right congruences
on S. In this section, for the special case in which S is a monoid and all p; in R are the
equality relation ¢ on S we consider the monoid M (R, S) and its submonoids.

To each xe S we assign the transformation *x: y—»xy (y€S). Then *S, where
*S={*x | xe S}, forms a t~-monoid on S. If we will not make a distinction between a
one-element set and the single element it contains, then (*S, S) is regarded as the
centralizer of ((S)=,, S,).

We recall that if S is a monoid and p;=¢ for all i (1<i<n), then

(1) N(p;, p)=Sforalliandj(1=i j=<n).

(2 a,=a,={a}=aforallaeS and i (1=i=n).

(3) &ij(x)=¢&(y) if and only if x=y.

(4) &j(x)=*x for all xeS and i, j (1=i, j<n).

Therefore M(R, S) is a set of all nxn row-monomial matrices over the semigroup
*S U {0}, and V(R, S) is a set of all monomial vectors of order n over the set S U {0}.

Notation. Let S be a monoid and »n be a positive integer. By M (n, *S) we
denote the set of all #n x n row-monomial matrices over *S U {0}, and by V(n, S) we
denote the set of all monomial vectors of order n over Su {0}.

Definition 6.1. Let S be a semigroup and n be a positive integer. For each
x €S the transformation (x)n” on V(n, S) is defined by

G, -,y o5 0) o> (0, yx, e, 0)
forall 0, ---, y;, -+, 00 eV(n, S).

Definition 6.2. Let (T, V) be a semicyclic +-monoid and let {V, V,, - - -, V,} be
the set of all minimal blocks of (T, V). A semicyclic --monoid (7, V) is said to be
semiregular if | T |=| V;| for all i=1, 2, -- -, n.

PROPOSITION 6.1. Let (T, V) be a semiregular t-monoid with n minimal blocks.
Then (T, V) is equivalent to (T)=%, V(n, T)).

PROPOSITION 6.2. Let S be a monoid and n be a positive integer, then
(M(n, *S), V(n, S)) is the centralizer of ((S)n}, V(n, S)).
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Before studying the -monoid M (n, *S) we describe the relationship between the
t-monoid M (n, *S) and the wreath product.
Let S be a monoid and (7, V) be a full transformation semigroup on the set V=
{1, 2, - -+, n}. The wreath product (*S, S)wr(T, V) of (*S,S) by (¢, V) is a set
{(f, )|teT, f is a mapping from V to *S}
with the multiplication

(f1s t1)(f2: tz)'—’(fsa 1ity),
where (i) f; =) f1(it,) f, for all ie V.
The action of (*S, S)wr(T, V') on the set Sx V is given by
(s, 5 D= B, D) .
If (f, tye (*S, S)wr(T, V), then define the matrix M (f, t) by

for if j=0,
M(f, t)ij—{ 0 otherwise .

Then o: (f, )>M(f, ¢) is an isomorphism from (*S, S)wr(T, V) onto M(n, *S)
(Wells [14], Lallement [10, p. 86]). Define the mapping «: Sx V-V (n, S) by

ﬁ:(sa l)_)(O’ L8 e, 0)
1
i-th
Then, by the morphism (o, ), (*S, S)wr(T, V) on S x V is equivalent to M (*S, S) on
V(n, S). As is well known, the order of M(n, *S) is (n|S|)".
Now, let X be an element in M (n, *S). By X;; we denote the (i, j)-component of
X. Let D be a subset of M(n, *S), we put

(a0
and

5-(y 0 xp)-0= 0 By
XeD i,j=1 p,q=1

PROPOSITION 6.3. Let S be a monoid and n be a positive integer, in addition, let
T be a subsemigroup of M (n, *S). Then the t-semigroup (T, V(n, S)) is strictly cyclic
if and only if there exists a number p such that qu= *S forallg=1,2, -+, n.

Proof. Proof of the “only if” part. Let V; be the set of all vectors (0, - - -,
x, - -+, 0) with xe T in the i-th component and 0 otherwise. Since (7, V(n, S)) is
strictly cyclic, there exist a number p and a vector

u=(07 g, o, O)EVp
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such that (W)T=V(n, S). If TM;&*S for some ¢q (1=<q=<n), then {xi*xe qu};éS.
Since S is finite, {xg T,,} is a proper subset of S. Consequently, if

ae(S—{xg|*xe T,.)

and
v=(0’ eea, e, O)EVq,

then v¢ (w)T. This is a contradiction.

Proof of the “if”” part. Let e be the identity of Sand let u=(, ---,e, ---,0)€
V,. Since T ,=*S, for a given element v=(0, ---, a, -, 0)e V, there exists an
element (X J) in T such that X,,=*a and u(X;)=v. Q.E.D.

Suppose that (T, V(n, S)) is a strictly cyclic subsemigroup of M(n, *S). If T'is
generated by a subset D of 7, then every element X in 7'can be written as a product of
some elements of D. Thus each non-zero component *x of X is a product
*x¥x,0 0 ¥, where *x,e D (1<i<k). Since T is contained in the subsemlgroup
(D) and *S= o by Proposition 6.3, the mon01d *S is generated by D. This means
that D contalns a generating system of *S and

| DIz i),
where u(S)=min {|U||USS, <U)Y=S}.

PROPOSITION 6.4. Let (S, V) be the centralizer of a strictly cyclic t-semigroup
(T, V). If (S, V) is semiregular, then
HS)-|S]

ID|z2—+7—>
Vi

where D is a generating system of T and p(S)=min {|U||U<S, <U>=S}.

Proof. If (S, V) has n minimal blocks, then (S, V) is equivalent to ((S)xs,
V(n, S)) by Proposition 6.1. From Proposition 6.2 the centralizer of (S, V) is
equivalent to M(n, *S) on V(n, S). Thus (T, V) is equivalent to a strictly cyclic ¢-
semigroup of M (n, *S). Suppose that H= M (n, *S) and (H, V(n, S)) is equivalent to
(T, V). If D is a generating system of T, then there exists a generating system Dy of H
such that | D|=|Dy|. If X € M (n, *S), then the number of nonzero components in X is
n because X is a row-monomial matrix. Since | Dy | = u(S), we have

(Y 0 )0

XeDyi,j=1

WS)<| Dy l= =|Dyln.

It implies that u(S)-|S|<n-|S||Dy|=n-|S|:|D|. Since |V |=n-|S|, we obtain
u(S)-|S1=I V|| D|. Q.E.D.

THEOREM 6.1. For a given monoid S there exists a t-monoid (T, V') which
satisfies the following conditions:
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(1) (T, V) is strictly cyclic.
(2) The centralizer of (T, V) is isomorphic to S.
(3) T is generated as a semigroup by at most two elements.

Proof. To each xe S we assign the transformation
x*: a—ax, (ael).

Then (S*, S), $* = {x* |xe S}, is the centralizer of (*S, S) because S is a monoid. It is
obvious that (*S, S) satisfies the conditions (1) and (2) of our theorem. If S is
generated by a single element (i.e., if S is cyclic), then (*S, S) satisfies the condition
(3). Therefore we suppose that S is not cyclic semigroup.
Let D be a generating system of S such that |D|=n (n=2) and D={a,, a,, - - -,
a,}. Let X=(X;;) be an element of M (n, *S) such that X;; =*a; (1=i=n, g, ;€D) and
let Y=(Y;;) be an element of M (n, *S) such that Y, ;,=%*e (1=i<n), where e is an
identity of S and « is a permutation such that (z)oc— i+1 fori=1,2, ---,n—1 and
(n)a=1. Therefore

*q, 0---0 0 *o 0---0
*a, 0 0 0 0 *e 0
X= R Y=
*q, 0---0 *o 0 0---0

Put T=(X, Y, then T is a submonoid of M(n, *S) because Y" is an identity of
M(n, *S). For any fixed k (1 <k <n) we define the subset T}, of T as follows:

Taw={ZeT|Z=(Z;), Zy#O0 for all i=1,2, ---, n}.

Therefore, if Ze T, and r #k, then the r-th column of Z is a zero vector.

(1). We shall show that (T, V(n, S)) is strictly cyclic. From Proposition 6.3 it
suffices to show that T1 =*S for all g=1, 2, ---, n. Since the set of all (1, 1)-
components of X, YX, ---, Y" 1X is equal to {*a|aeD} we have

2{*a|aeD}.

*S is generated by {*a | ae D} and T;, contains the subsemlgroup of T generated by
the set {X, YX, ---, Y" 'X}. Therefore, we have that T,,=*S, so that for an
arbitrary *x in *S there exists an element Ze Ty, such that (1, 1)-component is *x.
Consequently, by considering ZY? (1<g<n) we have T g="*Sforal g=1,2, ---,
n. Note that Z=ZY"e Ty, ZYe Ty, =, ZY" ' €Ty,

(2). Now we shall prove that the monoid S is isomorphic to the centralizer of
(T, V(n, S)). Let *x be an arbitrary element of *S, then there exists an element Z=
(Z;)) € T, with Z,,=*x. Observe the matrices YZ, Y?Z, ---, Y""!Z, then we have
that for all *xe*S and for all integrers p and ¢ (1 <p, g<n) there exists an element
Z=(Z;))e Ty such that Z,, =*x. Let V; be the set of all vectors with ae S in the i-th
component and 0 otherwise, and let (C, V(n, S)) be the centralizer of (7, V(n, S)). By
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Proposition 6.2, C contains (S)r?. We need to show that C=(S)n”
LetfeCandletu=(0, ---,e, - - -,0)e V,. Suppose that uf=v, where v=(0, - - -,

», ==+, 0)eV,. For any xeS there exists an element Z in T, such that its (p, p)-
component is *x. Note that (V)T , <V, for all p and g, then, since fZ=Zf and for
w=(0, -+, x, - -+, 0) in V, the equality w=uZ holds, we have

wf=uZf=ufZ=vZeV,.
This means that (V,)f =V, forp=1,2, - - -, n. Furthermore, we have that for all xe S
and (0, - -+, x, -+, 0)eV,

(0, S X, ,0)f=(0’ cee, XY, "',O)GVP

holds. Let

ui=(0’ ceeLe, e, O)E Vi
fori=1, 2, - - -, n. Assume that

u1f=(a, ceey 0, RN O)
and
u =@, -+, b, -+, 0) ev,,
where g # 1. Since the (1, g)-component of Y4 ! is *e¢ and u, Y7~ ! =u,, the equalities
uf=u, Y 'f=u fyYi?
=@, --,0, -+, 0)ye!
=, - -, a, -+, 0) (qu)

are valid. Thus we get a=b, that is, f=(a)n?. Therefore we conclude that C=(S)rn".
Q.E.D.

Remark. Let (T, V) be a t-semigroup. If for any pair of elements s, te V there
exists an element x e such that sx=¢, then (7, V) is called a transitive z-semigroup.
The following result have already been given in [7] (in terms of automorphism groups
of automata).

Let G be a group, then there exists a transitive ¢-semigroup (7, V) such that the
centralizer of (7, V') is isomorphic to G, and such that T is generated by at most two
elements.
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