On a Fixed Point Theorem of Contractive Type

by

Cheng Chun CHANG

(Received November 25, 1981; revised January, 8, 1982)

The main purpose of this paper is to extend a fixed point theorem of Jungck [3] to a great general form.

In 1976, Jungck [3] proved a stronger form of the Banach contraction principle (motivated by a geometrical consideration). His result is:

THEOREM 1. Let (X, d) be a complete metric space. Let f and g be commuting continuous self-maps on X such that $g(X) \subset f(X)$. Suppose that there exists a constant $\alpha \in (0, 1)$ such that for all x, y in X,

$$d(g(x), g(y)) \leq \alpha d(f(x), f(y))$$
.

Then f and g have a unique common fixed point.

The following theorem is an extension of Theorem 1.

THEOREM 2. Let (X, d) be a complete metric space. Let f, g and h be three selfmaps on X such that

- (A) f is continuous;
- (B) f and g, f and h are commutative, $g(X) \subset f(X)$ and $h(X) \subset f(X)$;
- (C) there exists a real-valued function $\phi: [0, \infty)^5 \rightarrow [0, \infty)$ such that

$$d(gx, hy) \leq \phi(d(fx, fy), d(fx, gx),$$

$$d(fx, hy), d(fy, gx), d(fy, hy))$$

for all $x, y \in X$, where ϕ is upper semi-continuous from the right and non-decreasing in each coordinate variable such that $\phi(t, t, at, bt, t) < t$ for each t > 0 and $a \ge 0, b \ge 0$ with $a+b \le 2$.

Then f, g and h have a unique common fixed point in X.

To prove Theorem 2 we need the following result [4].

LEMMA 1. Suppose $\psi: [0, \infty) \to [0, \infty)$ is upper semi-continuous from right and non-decreasing. If for every t > 0, $\psi(t) < t$ then $\lim_{n \to \infty} \psi^n(t) = 0$, where $\psi^n(t)$ denotes the

16 C. C. CHANG

composition of $\psi(t)$ with itself n times.

Proof of Theorem 2. Let $x_0 \in X$ be given. Construct a sequence $\{x_n\}$ defined by

$$gx_{2n} = fx_{2n+1}$$
,
 $hx_{2n+1} = fx_{2n+2}$, $n = 0, 1, \cdots$

By (B), the iterates are well-defined. For simplicity of the notation, let

$$\alpha_n = d(fx_n, fx_{n+1}), \quad n = 0, 1, \cdots$$

we claim that

$$\alpha_{2n+1} \leqslant \alpha_{2n}$$
 for $n=0, 1, \cdots$.

Indeed, assuming that for some non-negative integer n,

$$\alpha_{2n+1} > \alpha_{2n}$$

Then by (C), we have

$$\begin{split} \alpha_{2n+1} &= d(fx_{2n+1}, \, fx_{2n+2}) \\ &= d(gx_{2n}, \, hx_{2n+1}) \\ &\leqslant \phi(d(fx_{2n}, \, fx_{2n+1}), \, d(fx_{2n}, \, gx_{2n}) \, , \\ &d(fx_{2n}, \, hx_{2n+1}), \, d(fx_{2n+1}, \, gx_{2n}), \, d(fx_{2n+1}, \, hx_{2n+1})) \\ &\leqslant \phi(d(fx_{2n}, \, fx_{2n+1}), \, d(fx_{2n}, \, fx_{2n+1}) \, , \\ &d(fx_{2n}, \, fx_{2n+1}) + d(fx_{2n+1}, \, fx_{2n+2}) \, , \\ &d(fx_{2n+1}, \, fx_{2n+1}), \, d(fx_{2n+1}, \, fx_{2n+2})) \\ &\leqslant \phi(\alpha_{2n}, \, \alpha_{2n}, \, \alpha_{2n} + \alpha_{2n+1}, \, 0, \, \alpha_{2n+1}) \\ &\leqslant \phi(\alpha_{2n+1}, \, \alpha_{2n+1}, \, 2\alpha_{2n+1}, \, 0, \, \alpha_{2n+1}) \\ &\leqslant \alpha_{2n+1} \end{split}$$

yielding a contradiction. A similar argument shows that $\alpha_{2n+2} \leq \alpha_{2n}$ for $n=0, 1, \cdots$. Thus $\{\alpha_n\}$ is decreasing. Since

$$\begin{split} \alpha_1 &= d(fx_1, fx_2) \\ &= d(gx_0, hx_1) \\ &\leq \phi(d(fx_0, fx_1), d(fx_0, gx_0), d(fx_0, hx_1), \\ &d(fx_1, gx_0), d(fx_1, hx_1)) \\ &\leq \phi(\alpha_0, \alpha_0, 2\alpha_0, 0, \alpha_0), \end{split}$$

it follows by induction that $\alpha_n \leq \psi^n(\alpha_0)$, where

$$\psi(t) = \text{Max} \{ \phi(t, t, 2t, 0, t), \phi(t, t, 0, 2t, t) \}$$

Thus by Lemma 1, we have

$$\lim_{n\to\infty}\alpha_n=0$$

We show next that $\{fx_n\}$ is a Cauchy sequence. To show that $\{fx_n\}$ is Cauchy, in view of (1), it suffices to show that $\{fx_{2n}\}$ is Cauchy. Suppose that $\{fx_{2n}\}$ is not a Cauchy sequence. There is an $\varepsilon > 0$ such that for each even integer 2k, there are even integers 2m(k), 2n(k) such that

(2)
$$d(fx_{2m(k)}, fx_{2n(k)}) > \varepsilon \quad \text{for } 2m(k) > 2n(k) > 2k.$$

By well-ordering principle, for each even integer 2 k, let 2m(k) be the least even integer exceeding 2n(k) satisfying (2), that is,

(3)
$$d(fx_{2n(k)}, fx_{2n(k)-2}) \leq \varepsilon \text{ and (2) holds.}$$

Since

$$\varepsilon < d(f x_{2n(k)}, f x_{2m(k)})$$

$$\leq d(f x_{2n(k)}, f x_{2m(k)-2}) + \alpha_{2m(k)-2} + \alpha_{2m(k)-1},$$

we have by (2) and (3) that

(4)
$$\lim_{k \to \infty} d(fx_{2n(k)}, fx_{2m(k)}) = \varepsilon$$

By the triangle inequality, we have

$$|d(fx_{2n(k)}, fx_{2m(k)-1}) - d(fx_{2n(k)}, fx_{2m(k)})| \le \alpha_{2m(k)-1}$$

and

$$|d(fx_{2n(k)+1}, fx_{2m(k)-1}) - d(fx_{2n(k)}, fx_{2m(k)})| \le \alpha_{2m(k)-1} + \alpha_{2n(k)}$$

Thus by (4),

$$d(fx_{2n(k)}, fx_{2m(k)-1}) \rightarrow \varepsilon$$

and

$$d(fx_{2n(k)+1}, fx_{2m(k)-1}) \rightarrow \varepsilon$$

By hypothesis (C), we have

$$\begin{split} d(fx_{2n(k)}, fx_{2m(k)}) &\leq d(fx_{2n(k)}, fx_{2n(k)+1}) + d(fx_{2n(k)+1}, fx_{2m(k)}) \\ &\leq \alpha_{2n(k)} + \phi(d(fx_{2n(k)}, fx_{2m(k)-1}), \alpha_{2n(k)}, \\ \phi(d(fx_{2n(k)}, fx_{2m(k)}), d(fx_{2m(k)-1}, fx_{2n(k)+1}), \alpha_{2m(k)-1}), \end{split}$$

by upper semi-continuity of ϕ ,

C. C. CHANG

$$\varepsilon \leq \phi(\varepsilon, 0, \varepsilon, \varepsilon, 0) \leq \phi(\varepsilon, \varepsilon, \varepsilon, \varepsilon, \varepsilon) < \varepsilon$$
 as $k \to \infty$,

yielding a contradiction. Thus $\{fx_n\}$ is Cauchy. By completeness of X, $\{fx_n\}$ converges to a point $\zeta \in X$. Thus

$$\{gx_{2n}\}$$
 and $\{hx_{2n+1}\}$

also converge to ζ .

By the continuity of f,

$$f(fx_n) \rightarrow f\zeta$$
,
 $f(gx_{2n}) \rightarrow f(\zeta)$ and $f(hx_{2n+1}) \rightarrow f(\zeta)$.

It follows that

$$f(f\zeta) = f(g\zeta) = g(f\zeta) = g(g\zeta) = f(h\zeta) = h(f\zeta) = h(g\zeta) = g(h\zeta) = h(h\zeta).$$

If

$$g\zeta \neq h(g\zeta)$$
,

then

$$d(g\zeta, h(g\zeta)) \leq \phi(d(f\zeta, f(g\zeta)), d(f\zeta, g\zeta), d(f\zeta, h(g\zeta)),$$

$$d(f(g\zeta), g\zeta), d(f(g\zeta), h(g\zeta)) \leq \phi(d(g\zeta, h(g\zeta)), 0, d(g\zeta, h(g\zeta)),$$

$$d(g\zeta, h(g\zeta)), 0) < d(g\zeta, h(g\zeta)), \quad \text{a contradiction.}$$

Hence

$$a\zeta = h(a\zeta)$$
.

Thus $g\zeta$ is a common fixed point of f, g and h.

Let u and v with $u \neq v$ such that u, v are common fixed points of f, g and h. Then by (C).

$$d(u, v) = d(gu, hv)$$

$$\leq \phi(d(fu, fv), d(fu, gu), d(fu, hv),$$

$$d(fv, gu), d(fv, hv)) \leq \phi(d(u, v), d(u, v),$$

$$d(u, v), d(u, v), d(u, v)) < d(u, v), \quad \text{a contradiction}.$$

Therefore the proof is completed.

Remark. Theorem 2 extends an earlier result of [2]. Theorem 2 also extends an important fixed point theorem of Boyd and Wong [1]. In fact, our argument is motivated by Boyd and Wong's paper.

References

- BOYD, D. W. and WONG, J. S. W.; On nonlinear contractions, Proc. Amer. Math. Soc., 20 (1969), 458–464.
- [2] CHANG, C. C.; Common fixed points of maps, Chung Yuan Journal, 5 (1976), 43-45.
- [3] JUNGCK, G.; Commuting mappings and fixed points, Amer. Math. Monthly, 83 (1976), 261-263.
- [4] MATKOWSKI, J.; Fixed point thorems for mappings with contractive iterate at a point, Proc. Amer. Math. Soc., 62 (1977), 344-348.

Department of Mechanical Engineering National Central University Chung Li Taiwan, R.O.C.