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§0. Introduction

An ideal I over a regular uncountable cardinal x is called “v-saturated,” if there
is no collection {Xa| a<v} such that X, ¢/ for every a <vand X, n XzeIfora<f<v.
To consider “Ulam’s problem (see [3]). Let the cardinality of S be N,. Can one define
N, g-additive 01 measures on S so that each subset is measurable with respect to one
of them ? (This version was stated as problem 81 in [4].)”

A. Taylor extended the saturation property to a set of ideals and introduced a
notation “(k: A, u) ——v.” Then Ulam’s problem is restated as

“Does <(¥;:¥;,8;>——2 hold?”

This problem is still open now. In [7] Taylor got a strengthening result of K.
Prikry’s [6], that is,

“SpHy, implies <(N;:N;, 8> —N,.”

In this paper we study a generalization of SpHy,, which will be written
“{x: 4, u} ——v.” This property is stronger than {x: A, u> ——v, and to speak the
truth in [7] Taylor got that

“SpHy, implies {X;:N;,N;} —N,.”

And we also discuss about Fodor’s hypothesis for x which is denoted by FH,.
B. Baumgartner et al. had the next theorem [2].

“SatH, implies FH, .”

We introduce “SatHy,” and show that SatHR, implies FHy,. It will be easy to
know that SatH, implies SatHy. But we do not know whether SatH® implies
SatH, or not.

Let x be a regular uncountable cardinal number. An ideal over « is a set I of
subsets of x satisfying the following conditions:

(1) ¢e€l,

(2 x¢l,

(3) if Xeland Y= X then Yel,
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(4) if Xeland Yelthen XU Yel

Let A be a cardinal number. An ideal I over « is said to be A-complete, if I satis-
fies the following condition:

If v<A and {X,|a<v}<I, then () X,el.

a<v

And an ideal I over « is called uniform, if 7 satisfies the following condition:

If Xckand | X |<k, then Xel (| X | denotes the cardinality of X.)

Throughout this paper, an ideal means a uniform ideal over k. Let I be an ideal
over k. We set

I*={X|Xckand X¢1I},

and say X has a positive measure or is a set of positive measure if Xe/ *. And let
Ael™. we set

I|A={X|X<skand XnAel}.

Then I | A is an ideal over k generated by I U {x — A}. And it is easy to know that if /is
A-complete, then I |A is also A-complete. Let 4 be a cardinal number, and S =
{I,|« <A} be a collection of ideals over x. We set

5= L*.
a<i

Let I be a k-complete ideal over k, then we call I i$ normal, if 1 satisfies the
following:

If Xel* and f is a function on X such that f («) <o for all € X, a#0, then there
isa Y< X such that YeI™ and fis constant on Y.

And another notations are standard. Let k be a cardinal number the k* is the
least cardinal number >k.

§1. Splitting property and saturation property

In this section we introduce a splitting property on a set of ideals. And we shall
show that the large sets of normal x-complete ideals has the saturation property or
splitting property if every single normal ideal has the same one. Here “large” means
that size of the completeness.

Definition ([7]). Let # be a set of ideals over x, then the symbol

s gy o
means the following assertion:

If £#={1, | y<A}S4 is a set of at least u-complete ideals over k, then there
is a collection {X,|a<v}<.S* such that X, n Xze(),<,], for a<f<v.
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If # is the set of all ideals over k, we omit £.

Definition ([7]). We say SatH, (saturation hypothesis for «) holds if
kil Ky —k*.

Hence it means every x-complete ideal over « is not x*-saturated.

Definition. A" denotes the set of all normal ideals over «.
Taylor showed the next theorem.

THEOREM 1 ([8]). The following assertions are equivalent.

M) kik k) 2okt

Q) 1, x> =2 ket
(3) SatH, holds.

Definition. Let # be a set of ideals over x, then the symbol

fe: iy o

means the following assertion:

If s ={Iy|y<l}g.% is a set of at least u-complete ideals over k, then there
is a collection {X,|a<v}<=.#* such that | X, X,|<x for a<f<v.

We also omit £, if Z is the set of all ideals over «,
Definition ([7]). We say SpH, (splitting hypothesis for x) holds if
{k:1,k} — k™.
R . . R
LEMMA 2. {x: 4, u} —— v implies (x: A, pp —— v.

Proof. Trivial.
The next lemma of Baumgartner et al. is helpful to study the relation between

N N .
{x: x,k} — k* and {k:1, k} — k*. Of course from left to right is trivial.

LEMMA 3 ([2]). Let I be a normal ideal over x and {Xal a<k*}cI™ such that
X, Xgel fora<B<x*. Then there is a collection {Y,|a <k*} such that Y,< X, and
X,—Y,elforalla<k™ and |Y,n Y| <k for a<f<k*.

COROLLARY 4. The following 2 assertions are equivalent.

A {1y 2wt

@ <1y~ kt,

LEMMA 5. Let 5 ={I,|oz<1c} be a set of normal x-complete ideals over «.
Then

I=N 1,

a<k

is a normal k-complete ideal over k.
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Proof. It is easy to check.
N . e
LEMMA 6. <(x:k, k) —— k" implies {k: k, Kk} — k™.

Proof. Let . ={l,|a<xk} be a set of normal k-complete ideals over k. Then by
hypothesis there is a collection {X,|a<x*}<=S* such that X,n Xze(),<.J, for
a<p<x*.Set I=(),<,l,. Then by Lemma 5, I is a normal k-complete ideal over «.
So we get a collection {X,|a<x*}<=I* with X,n Xzel for a<f<x™. Thus by
Lemma 3 there is a collection {Yal a<x*} such that Y,= X, and X,— Y,/ for all
a<x* and | Y,n Y;| <x for a<f<x*. The proof will be complete if we have
{Y, | a<k*}c S*. Let assume that Y,el; for some a<k* and f<xk. Then
X,— Y, eI I; implies

X,=(X,—Y)uY,ely.
But this contradicts X,e/,;".
Now we have the next theorem.
THEOREM 7. The following assertions are equivalent.
A) {x: 1, 6} —2 k.
@) fx: K 1}~k
B) k1,6~ ket

@ x> 2kt
(5) SatH, holds.

Proof. (3) iff (4) iff (5) follows from Theorem 1. (1) iff (3) follows from
Corollary 4. And (2) iff (4) follows from Lemma 2 and Lemma 6.

This theorem says that large sets of normal x-complete ideals have the satura-
tion property or splitting property if every single normal ideals have the same one.
We do not know whether we can get the same matter or not, if “normal” is
omitted. But Taylor showed small sets of ideals over x have a certain saturation
property, if every single ideals have the same one using the technique of Baum-
gartner et al. Here “small” means the size is less than the completeness.

We can easily modify his proof to assure the next theorem.

THEOREM 8. If A<k, then the following assertions are equivalent.
(1) {x:1, AT} — A%,
2 {k:d, A} — At

As for another equivalence of the same kind, we know the following.

Definition. Let I be an ideal over k. A function f is an I-function if
dom (f)el™.

Definition. Let S ={I, | a<v} be a set of ideals over k. A function f is an -
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function if dom (e £ .

THEOREM 9 ([5]). Let A be a cardinal number with A<k=pu*. Then the
following assertions are equivalent.

(1) If Lis a k-complete ideal over x, then there is a collection of I-functions F=
{f.| <K} such that range (f,) < p for all x<x and

{5|fa(5)=f,,(5)}el for a<B<k.

2 Ifs5={1, | v <A} is a set of k-complete ideals over k, then there is a collection
of F-functions G={g, | o<k} such that range (g,) S u for all « <k and

{6]9.0)=g49)} € ﬂl I, for a<B<k.

COROLLARY 10 ([S]). Let A be a cardinal number with A<x=u*. Then (1)
implies (2).

) If #={1, | v< A} is a set of k-complete ideals over x, then there is a collection
of S-functions G={g,|a<x} such that range (g,) < p for all a<x and

{0|g0)=g40)}e () I, for a<p<k.
v<Ai

2 <(k:iky — k.

§2. SatH® and Fodor’s property

Now we introduce a weak saturation hypothesis “SatH?” and show that this
implies Fodor’s hypothesis when x=1N;.

Definition. Let I be a k-complete ideal over k. Then we say I satisfies Fodor’s
property if I satisfies the following:
If {X,|a <k} <1 then there is a collection {¥, |« <x} =I* such that ¥, X, for

alla<k and Y, N Y= for a<f<k.

Definition. We say FH, (Fodor’s hypothesis for k) holds, if every x-complete
ideal I over k satisfies Fodor’s property.

THEOREM 11 ([2]). Assume that 28 =W, and I is a normal NX,-complete ideal
over N,. And also assume that if for all XeI™ there is a collection {Z,|a <X} =I*
such that Z,= X for all « <X, and (\,.gZ,€1 for each subset E of R, of cardinality
N,. Then I satisfies Fodor’s property. ‘

LEMMA 12. Let I be an N,-complete ideal over N,. Then the following asser-
tions are equivalent.

(1) I has the following property:

For all XeI” there is a collection {Z,|a <R,} SI* such that Z,< X for all a <X,
and (\,egZ,€1 for each subset E of R, of cardinality R,.
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(2) Forall Xel™, I|X has the property formulated in (1) with respect to L.

(3) Forall Xel™, I|X has the following property:

There is a collection {Z,|a <N,} =(I| X)* such that (\,esZ,€1| X for each subset
E of X, of cardinality X,.

Proof. (1)=(2): Let XelI* and Ye(I|X)*. Since YnXel", there is a

collection {Z,|a<X,} <1 such that Z,c Y n X for all a<N, and (), gZ,e] for
each subset E of cardinality N, by (1). Z,n X=Z,eI™" implies

Z,el|X)*.
And ((4e£Z,) N X=()se£Z, €I implies
N Z.el|X).
acE

Hence we get (2).

(2)=(3): Trivial.

(3)=(1): Let XeI*, then by (3) there is a collection {Z,|a<N,}<=(/|X)*
such that (,.zZ,€1| X for each subset E of N, with | E|=X;. Set

X,=Z,nX for ae¥,.
Then we have X,=Z,n Xel* and

N X.= (ZanX)=<ﬂ Za>nXeI foreach E with |E|=N,.

acE acE aeE

Thus we get a collection {X,|a<N,}=I* such that

X,=X forall a<¥, and () X,el

acE
foreach Ec¥, with |E|=N;.
Hence we have (1).

Remark. In (1) of this lemma, we can assume that a collection
{Z,|a<¥,} =1 is a collection of pairwise distinct sets. Because, (),.gZ, €I for each
subset of Ec ¥, with | E|=N, implies that if Z, is same for ae Y=, then Y is at
most countable. Then we can get a collection of pairwise distinct sets, because ¥, is a
regular cardinal number.

COROLLARY 13. Assume that 2%° =N, and I is a normal X,-complete ideal over
N,. And also assume that for all XeI™ there is a collection {Z,|a <R,} =(I| X)* such
that

(\ Z,eI|X foreach E<N, with |E|=N,.

acE

Then I satisfies Fodor’s property.
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LEMMA 14. Let I be a xk-complete ideal over k. Assume that for any XeI* there
is a collection {Z,|a<x*}<(I|X)* such that

( Z,el|X  foreach Eck* with |E|=N,.

acE
Then for any {X,|a<x}<=(I|X)" there is a Ye(I|X)" such that
X,—Ye(l|X)*  forall a<k.

Proof. Let XelI* and {Z,|a<k*}<(I|X)* be a collection of hypothesis.
Assume that there is a collection {X;| B <k} =(I| X)* such that for all a<x * there is
B <k such that X;— Z, e I| X. Then there is ¢ <x and W<k ™ with | W|=x"* such that
X.—Z,elI|X for all xe W. Because I| X is k-complete and X, <x, we have that

U (X.—ZpelI|X foreach EcW with [E|=¥,.

aeE

But by hypothesis (\,.zZ,€1 | X. Then we get

U X;—Z)=X,- ﬂE Ze(I|X)*.

acE

Hence we get a contradiction. This completes the proof.

It is obvious that we can assume that the cardinality of E is « <k, in this lemma.

The next result was given by Taylor and independently by B. Balcar and P.
Vojtas [1].

THEOREM 15 ([8]). Let I be an N,-complete ideal over ,. Then the following
assertions are equivalent.

(1) I satisfies Fodor’s property.

(2) Let XeI*. Then for any {X,|a<R,}=(I|X)* there isa Ye(I|X)* such
that X,— Ye(I|X)* for all a<¥;.

Then we get the next lemma.

LEMMA 16. Let I be an X,-complete ideal over X,. Then the next (1) implies (2).
(1) For any Xel* there is a collection {X,|a<¥,} =(I|X)* such that

(| X.eI|X  foreach EcSRN, with |E|=N,.
acE
(2) 1 satisfies Fodor’s property.
Proof. From Lemma 14 and Theorem 15.
Now we define a property weaker than SatH,, and show this property implies
FH, when k=1,.

Definition. We say SatH? holds if the following condition is satisfied:
If I'is a k-complete ideal over «, then there is a collection {X, |« <x*}<I* such
that
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(| X,el foreach Eck® with |E|=N,.

acE

Now we have
THEOREM 17. SatHR, implies FHy,.
Proof. Let Ibe an X,;-complete ideal over N;. And let Ye I, then / | Yisan ;-

complete ideal over ;. Then by hypothesis there is a collection {X, | a<N, e | Y)*
such that

(| X,eI|Y foreach ESN, with |E|=N,.

acE

Hence by Lemma 16, [ satisfies Fodor’s property. This completes the proof.
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