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This is a sequel to the author’s works [10], [11] and [12]; these are all concerned
with the ‘“definability problems” in certain areas of analysis. For the author’s
standpoint in this connection, we refer the reader to [10] and [11].

In the present paper we investigate the logical structure of the abstract theory of
integration, and show that it is definable relative to the given spaces.

The definable formulation of the theory is mostly routine, and hence we restrict
ourselves to giving a brief account of such a procedure in each topic. One needs some
elaboration in defining the class of simple functions, which is necessary for the
product integrals. This being done (Section 9) the Fubinis’ theorem can be
formulated in our theory (if we do not take the “quotient” modulo null sets). As is
remarked in Chan [5], the unconditional Jordan’s decomposition of a signed integral
cannot be hoped for, but a “relative existence” of such a decomposition can be
definably formulated (Section 11).

We have included only the basic properties of the abstract integral. We are
planning to continue our study and formulate the theory of L?-spaces in our system.

Mathematically we have almost exclusively followed [1]; its presentation of the
subject is itself quite “definable,” and it has been very helpful to our endeavors. We
have also consulted [4] and [6]-[8]. The acquaintance with [9]-[11] is assumed
throughout. The proof-theoretical background which is required here is exactly the
same as that of [11], and so we do not repeat it. Mathematical notations are often
preferred to the strictly formal ones as in [11]. Mathematical proofs are sketchy, but
the emphasis is placed on the explicit expressions of the definable objects that are
claimed to exist. The fact that they are indeed definable will not be pointed out each
time.

The references [2], [3] and [5] are given for the reader’s convenience. They deal
with constructive measure theory in the framework of Bishop’s constructive analysis.

§1. Axioms and the main theorem

DEFINITION 1.1. 1) Types are defined as in Definition 1.1 of [11] except that
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here we start with two atomic types, one for the rationals and one for the elements of
a space.

2) The language is defined as in Definition 1.2 of [11]. The symbols for an
integration space are X, L, J and eq (X; , ).

3) Definability, terms, formulas, abstracts, min, sequents and substitutiqn are
defined as in Definitions 1.3 and 1.4 of [11]. In particular, X(x), L(¢) and J(¢, ?) are
atomic formulas for appropriate x, ¢ and ¢. The details will become clearer in
Definition 1.3 below.

We follow the notational conventions in [10] and [11].

DEFINITION 1.2. We use abbreviated notations for some defined concepts.
Some of them are adopted from [9], [10] and [11].

«: a definable enumeration of the pairs of natural numbers

R(a): “a is a real number.”

oo : {t}(t=T), where ¢ stands for the rationals.

ept or — oo : the empty set

eR (a): R(@) va= oo va= —oo (a is an extended real.)

mp (¢, X) or mp (¢): VxR ({r}¢(x, 1))

(¢ is a real-valued function defined on X.)

ss (X, C) or ss (C): C is a subset of X.

a¢ : the multiple of ¢ by a real number a

Z[®G); i<n), O[®(); i<n], max [P(i); i<n], min [P(i); i<n]: the sum, the
product, the maximum and the minimum of » functions respectively

Z{a(i); i<n}, Z{u(i); i=1, 2, - - -} : the finite sum and the infinite sum of the reals
{a(i)}; respectively; similarly for the product.

limsup {a(i); i=1, 2, ---}: the limit superior of the sequence of reals {a(i)};
similarly for liminf and lim.

We shall abbreviate these expressions, for example, to Z{a(?); i} or even to Zu().

DEFINITION 1.3. Axioms. The axiom sets &/ and € are those in Definition 1.6
of [11]. & stands for the set of axioms of arithmetic and ¥ stands for the set of
axioms of “definitions by definable induction” (abbreviated to DDI).

The axiom set # consists of the following.

1) The axioms on the space

VxX(x); the equivalence relations on eq (X , ).

We may write x € X for X(x), and x=y for eq (X; x, y).

2) The axioms on L, the class of elementary functions. (We use ¢, ¥, - - - for
the members of L, and @, ¥, - - - for the sequences from L.)

Vé(L(¢) - mp (¢, X))
L(¢) may be written as ¢ L.
1°. VYacRVpeL(apel);
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VYV @(Vi<n(®(i) e L) F Z[®(i); i <n], max [P(i); i<n], min [D(i); i<n]e L)

We shall abbreviate ¢ € L A Vx(¢(x)=>0) to ¢ L(+).
3) The axioms on J, the integral of the members of L

2°. VoeL R({1}J(¢, 1))

We write J(¢) for {t}J(¢, ©).

3°, Vae RV$p e L(J(ap)=al(d));
Vv o(Vi<n(®(@)e L)+ J(Z[®(); i<n]=Z{J(P(i)); i<n});
Vo e L(+)(J(9)=0)

4° VO(Vn(®(n)e L(+)) AVRYX(S(n+1, x) < P(n, x))

AVx(lim {@(n, x); n=1, 2, -+ -}=0) Flim {J(®(n)); n=1, 2, ---}=0)

DEFINITION 1.4. The definable predicate calculus . is defined as in Definition
1.5 of [11].

THEOREM. Let I'— A be a sequent in our language which expresses a theorem of
Daniell integral. Then o/, B, %, - A is provable in &, hence without cuts. In this case
we call ' - A a theorem of ¢.

The subsequent sections of this article are devoted to the proof of this theorem.
The theorem above incorporated with the argument in Section 2 of [11] yields the

Conclusion (Relative soundness). The theory of Daniell integral is sound
relative to 4, the axioms on X, L and J.

DEFINITION 1.5. Two concepts ~ and X’ which can be formulated in our
language and which may have some parameters, say @ and = respectively, are said to
be “mutually definably interpretable” if there are definable @* and Z* such that

2(@)-2(E*(®)) and X'(E)-XZ(O*E))
are both theorems of _#. (See the Theorem above.)

The propositions below are immediate consequences of our axioms and
definitions, and will be frequently used without specific references to them.

PROPOSITION 1.1. 1) The definability property and the subset property are
both preserved under the basic set theoretical operations. (See Theorem 4 of [11].)

2) The definability property is preserved under the following operations on the
reals and the functions; a¢, X, I1, max, min, limsup, liminf, lim, the absolute value, o

and ¢~ , where ¢ and ¢~ are the positive part and the negative part of ¢ respectively.
(See [9].)

PROPOSITION 1.2. The following are theorems of ¢.
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1) 0eL, where we write 0 for {x}{t}(¢t<0).

2) ¢eL—-o¢", ¢, |pleL.
3) We write ¢ =y for ¥ x(¢P(x)=y(x)).

o=y tJ(P)2JW); (@I <J(d]);
J@H<J(¢l);  J@I<J(e); J(0)=0.

§2. The integral of elementary functions

Here and in the sections that follow, the propositions are meant to be the
theorems of #.

DEFINITION 2.1. We shall abbreviate Vn(y(n)e L) to y< L.
1) nis(E, x): ss(X, E)AxcLAVYn(x(n)<y(rn+1))

AVxe€EVr>03n(y(n, x)>r) Alim J(x(n)) e R

(E is a null set by y.)
2) nls’(E, 0): ss(E)AOcLAVxeE(Z0(n, x)=0)AZJ(|0(n)|)eR
3) nls*(E, y): x<L(+)Anls (E, y)

PROPOSITION 2.1. nls, nls’ and nls* are all mutually definably interpretable.
Thus, we are free to use any of these notions to our convenience.

PROPOSITION 2.2. 1) nls(ept, {n}0).
2) nls(E, x), DcE-nls (D, y).
3) Vmnls’ (A(m), E(m))—-»nls’(UA, )
for a definable y*, where | JA=|){A(m); m=1, 2, ---}.

Proof of 3). We may assume
Z{J(l E(m9 n)l); n=19 2a o ‘}Sexp (29 _m)
for each m, where exp (a, b) denotes a’. Define y*(j)= E(m, n) where k(j)=(m, n).

DEFINITION 2.2. Let P be any formula in our language in which x is not
bounded.

ae(x, P, E, y): nls (E, y) AVx¢ E P(x)

PROPOSITION 2.3. 1) D cL(+), Vn(®(n+1) < D(n)),
ae (x, lim {®(n, x); n} =0, E, y)—>lim J(®(n))=0.

2) dcL(+),ae(x, 2d(n, x)=>yY(x), E, x)>ZJ(D(n)=JW).

3) ae(x, 2|®(n, x)| =0, E, y), ZJ(|®(n)|)e R—2J(P(n))=0.

4) @cL, Vn(d(n)<d(n+ 1)), lim J(D(n)) € R—nls (E*, D),
where E* ={x; lim ®(n, x)=0}. “
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Proof. 1) We may assume y(n)>0. Define
n(n, &): () —ex(n) ™,
where ¢ stands for the positive rationals. Applying 4° to 1 and using
() =(D(n) — ex(m) +ex(n) <n(n, &) +ex(n) ,

we obtain the conclusion.

3) ae(x, Z{®(n, x)"; n<m}<ZP(n, x)*, E, y),
and hence 2) above and 2° yield ZJ(®(n)")=ZJ(P(n)*), from which follows the
conclusion.

§3. Integrable functions
DEFINITION 3.1. emp (f): mp (f, X, eR).
(f is a map from X to the extended reals.)
itg(f, D, E, y): =L rae(x, f(x)=2d(n, x), E, x) AZJ(|P(n)|}eR.
(f is integrable with respect to @, E and y.)
JU(f, @, E, y): limsup {Z(J(P()); i<m}; m=1,2, ---}.

This may be abbreviated to J'(f), or even to J(f). Notice that the definiens
above is an extended real.
(J1(f) is the Daniell integral of f with respect to @, E and y if f is integrable.)

PROPOSITION 3.1. 1) yeL—itg (Y, ®*, ept, x*), where ®*(1)=y, o*(n)=0
for n>2 and y*(n)=0 for all n.

2) itg(f, @, E, )—~J(f)=ZJ(d(n))eR.

3) itg(f, D, E, p), itg(f, &', E', x)=J(f, &, E, p=J'(f, &', E', ¥).

Proof of 3). Define A={FE, E’, ept, ept, ---} and E={y, x’, 0,0, ---}, and
apply 3) of Proposition 2.2 to these 4 and E. Then nls’ ({ 4, x*) for a definable yx*,
or nls’ (Eu E’, x*), so that the premises of 3) of Proposition 2.3 are satisfied by
d(n)—P’(n), EVE’ and yx*, and hence ZJ(®P(n)—P (n)) 0, or Z(J(®(n))—
J(@’(n))) =0. This and 2) yield the conclusion.

Note. By virtue of 2) and 3) above, we may write J(f)=2J(®(n)) when f is
integrable (with respect to @, E and y).

PROPOSITION 3.2. @PcL, Vr(d(m)<d(n+1)), lim J(@(n)) e R

—ae (x, lim &(n, x)eR, E*, ®)

Alae (x, f(x)=lim @(n, x), E*, @) Fitg (f, *, E*, ®) AJ(f)=lim J (P(n))],
where

EX={x;Vr>03InVm=>nd(m,x)>r}, @*(1)=d(1) and I*(n+1)=d(n+1)—d(n).
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DEFINITION 32, itg' (f, @', E, ¥'):
@’ =L Anae(x, lim @'(n, x)=f(x), E', ')
Alim {J(|®'(n)—D'(m)|); n, m=1, 2, ---}=0
J'(f): limsup J(@'(n))
itg* (f, V): Y <LAZJ(|P(M)|)<
AVX(Z|¥(n, x)| <ot f(x)=2¥(n, x))

PROPOSITION 3.3. 1) itg’ (f, &', E’, y)=J'(f)=Ilim J(D'(n)) < 0.

2) J'(f) is independent of the parameters.

3) itgand itg’ are mutually definably interpretable with respect to (P, E, x) and
(9, E", X))

4)  JNf)=J'(f) whenever either of itg or itg’ holds.

5) (Mikusinski) itg and itg* are mutually definably interpretable with respect to
(P,E,x)and V. _

Proof. 3) Assume itg and put ¢'(n)=2[P(k); k<n], E‘’=FE and y’'=y. Then
itg’ (f, &', E', ).

Assume itg” and define v(k) by

v(1)=min (n, Ym>nJ(|®'(n)—®'(m)|)<1/2),
vk+1)=min (n, n>v(k) ANm=n(J(| ®'(n)—D'(m)|)
<exp(2, —(k+1)))).
Then (k)= ®’(v(k)) is a subsequence of @', and
Vm>v(k)(J(|0(k)—6(m)|) <exp (2, —k)) .

Put E=F’, y=y’, ®(1)=6(1) and &(k+1)=06(k+1)—0(k).

5) Assume itg* (f, ¥). Then ae(x, 2¥(n, x)=f(x), E*, x*), where E*=
{x; Z|¥(n, x)| <o} and y*(n)=Z[|P(k)|; k<n]. So itg (f, ¥, E*, y*).

Assume itg (f, @, E, x) and define

D={x; Z|®d(n, x)| <o A f(x)£ZD(n, x)} .

Then nls (D, y). Define. ¥ by ¥(3n—2)=®(n), Y(3n—1)=y(n) and ‘I/(gn) = —y(n).
For this ¥, 2| ¥(n, x)| <oo implies x¢ D, and hence f(x)=2¥(n, x).

By virtue of the propositions above, we may use either one of itg, itg’ and itg*.
§4. Some properties of the Daniell integral

PROPOSITION 4.1. 1) 1°~3° in the axiom set % (Definition 1.3) are satisfied
by the integrable functions. (4° will be proved later.)
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2) The properties which correspond to those in Proposition 1.2 hold for itg and
J

Proof. We work two of the claimed properties as examples.
1. itg is closed under the finite sum; namely, assume

Vi<mitg (F(i), ©(), A@), E(i)) .
We define p, D and 6 as follows. p(n)=Z[O(i, n), i<m] for every n, D= U{A(i);
i<m} and 6(n)= E(i, j) where x(n)=(i, j). Then
J(ZIF(); i<m])=ZJ(p(n))
=X{JC[OM, n); i<m]); n=1,2, ---}
=2{J(F@@)); ism},

and so itg (Z[F(i); i<m], p, D, 0).
2. itg is closed under the finite maximum; namely, assume

Vi<mitg (F(i), ©@), A@), 2(i)).
We shall define ©*, 4* and Z*, and put

H(j)=itg (max [F(i); i<jl, ©*()), 4*(j), E*())),

so that Yj <mH(}).
Notice that in general

max (f, g)=fvg=1/2(f+9)+1/2| f—gl .,

and hence, if the proposition is assumed to hold for +, —, | | and the scalar
product, then there must be definable @, E and y with the appropriate parameters so
that

itg (f, D1, Eqs 1) itg (g, D,, E,, x2)—itg (fvg, D, E, x) .

Write @*[j] for {k} (k<jA©O*(k)). Similarly for A*[j] and E*[j]. Now, if we
abbreviate the totality of

max [F(); i<j—1], F(j), @*(j], 4*[j], E*[], ©()), 40), E0)

to ¥, and if we let H,, H, and H; be the defining formulas of @, E and y respectively,
then @*, 4* and E* are defined by the DDI-axioms applied to H,(¥), H,(¥) and
H,(P) respectively; @*, A* and E* are regarded as the DDI-predicates. Vj <mH(j)
can be proved by induction on j applied to H (), which is a definable formula. (In fact
this is a simultaneous definition of ®*, 4* and E*, but the original form of DDI can
be easily adjusted to this case.)

PROPOSITION 4.2. There is a definable W* with parameters f, @, E, y, &, such
that



144 M. Yasuat

itg(f, D, E, y), e>0->P*cL
nae(x, Z¥*(n, x)=f(x), E, y)
AZU(Pm)|); n=2}<enJ(| f—P(D])<e
AZJ(IPM ) <J(f])+2e.
Proof. Define
mo=my(f, P, E, 1, &
=min (m, Z{J(|D(k)|); k=m+2}<¢),
and
YD) =2Z[dk); k<my+1],
Y*(n)= d(my+n) for n>2.
PROPOSITION 4.3 (Beppo-Levi theorem). There are definable E*, y* and 6*
(with parameters F, &, A, E, g) such that
Vnitg (F(n), ®(n), A(n), Z(n)), ZJ(|F(n)|)< o0
—ae (x, ZF(n, x)< oo, E*, y*)
AVx ¢ E*¥g(x)=2F(n, x) Fitg (g, 0%, E*, x*) AJ(g)=ZJ(F(n))] .
Proof. Let P* be the object defined in Proposition 4.2 above, and define
o(n, k)=Y*(F(n), d(n), A(n), E(n), exp (2, —n—1), k),
| 0*()=o(n, k) where x(l)=(n, k),
E*={x; 2|0*(l, x)|diverges} u | )4,
r*()= E(n, m) where «k(j)=(n, m).
From Proposition 4.3 follows
PROPOSITION 4.4. There are E* and y* such that
itg(f, ®, E, ), JUSD=0
—ae (x, f(x)=0, E*, x*).
PROPOSITION 4.5 (The monotone convergence theorem; the increasing case).
There are W*, E* and y* such that

Vnitg (F(n), O(n), A(n), E(n)) ,

“{F(n)}, is increasing,”

IrVu(J(F(n)) <r) —ae (x, lim F(n, x)< oo, E*, x*)

Alae (x, g(x)=lm F(n, x), E*, x*) | itg (g, ¥*, E*, x*) AJ(g)=1im J(g(n))].
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Proof. Put G(n)=F(n+1)—F(n), 0(n, 2j+1)= E(n, j) and 6(n, 2j)= E(n+1,)).
Then, by virtue of Proposition 4.1,
itg (G(n), {O(n+1, k)—O(n, k)},, A(n+1) U A(n), 6(n)) .
2[G(n); n<m—1]=F(m)—F(1)
and
2G(n, x)=lim (F(m, x)— F(1, x))
if the limit of either side exists.
IVmE{JI(|1Gm)|); n<m—1}<r+ |J(F(1))|),

and so 2J(|G(n)|) converges and ae (x, ZG(n, x) <o, E*, y*) by Proposition 4.3,
where E* and y* are defined in terms of {A(n+1) U A(n)}, and 6. Thus,

x¢ E*>lim F(n, x)=2G(n, x)+ F(1, x),

or ae (x, lim F(n, x) <oo, E*, y*). The latter assertion then follows from Proposition
4.3.

The monotone convergence theorem for the decreasing case can be stated and
proved in a similar manner. This and Proposition 4.1 imply

PROPOSITION 4.6 (The continuity property). itg and J! satisfy 4°.
PROPOSITION 4.7 (Fatou’s lemma). There are ¥*, E* and y* such that
Vnitg (F(n), ©(n), A(n), E(m)) ,
Vn ae (x, F(n, x)=0, A(n), E(n)),
liminf J(F(n)) < co —ae (x, liminf F(n, x) <co, E*, x*)
Alae (x, g(x)=liminf (F(n, x), E*, x*)
Fitg (g, P*, E*, x*) AJ(g) <liminf J(F(n))] .
Proof. We may assume F(n, x) >0 everywhere. Define |
G(n, x)=inf {F(j, x); j=>n}
and
1(n, k)=min [F(j); n<j<n+k—1].

i(n, k)eitg for each (n, k) (by 1 of Proposition 4.1), and {i(n, k)}, is decreasing for
each n. The assertion is then obtained by repeated applications of Proposition 4.5 (the
decreasing case).

PROPOSITION 4.8 (Lebesgue: the dominated convergence theorem). There are
definable p*, E* and y* such that
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Vn itg (F(n), ©(n), A(n), E(n)),
ae (x, lim F(n, x)<oo, E, ¥),
itg (g9, ¥, E', 1)
Vn ae (x, | F(n, x)| <g(x), B(n), A(n))
ae (x, f(x)=lim F(n, x), E, y)
—itg (f, p*, E*, y*) AJ(f)=limJ(F(n)) .

§5. Comparison theorems

We shall henceforth dispense with the explicit denotation of the parameters
unless it is essential.

THEOREM 5.1 (Comparison theorem). Let i be either 1 or 2, let 8; denote the
axiom set B on (X, L;, J;) and let L} and J} be respectively the family of Lintegrable
functions and the L-integral. (See Definitions 1.3 and 3.1.) We assume <f , %,, #, and
% as the axioms.

Suppose L, < L} and V(J,(¢p) =J:(@)). Then L} < L}, and J} and J} coincide on
Li.

Proof. Suppose Li(f, ®, E, y). We may assume L¥(f, 6) for some 0
(Proposition 3.3); hence 6= L, = Lj. So,

VnL3(0(n), O(n), A(n), E(m)) , ZJ,(16(m)|) <0,
Vx(Z |0, x)| <ot f(x)=20(n, x)) .
These relations imply
ZJ3(16m) )=ZJ,(16(n)|) < oo .

By this and Proposition 4.3, we obtain ae (x, Z|6(rn,x)| <o, E*, y*) for some E*
and y*, where ae is understood to be “almost everywhere” with regards to %,, and
hence

ae (x, 20(n, x)=f(x), E*, x*)
in 4,. We can thus conclude Li(f, 0, E*, x*) and
IS5 0, E*, y*)=2J3(6(n), On), An), E(n))
=2J,(6(n))
=Ji(f, @, E, 1) .

COROLLARY. Assume oA, B,, B,, ¥, Lyc L}, L,cL!,YdeL (J($)=T39)),
Ve L(J,()=J (). Then Li=L} and feL}=L3~Ji(f)=J3(f).
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THEOREM 5.2. The coefficient set R (the set of reals) can be replaced by Q (the
set of rationals) in the axioms of # (Definition 1.3). That is, in 1° and 3° of 4,
YaeRVpeL (apeL) and Yae RVp e L(J(ad)=aJ(¢p)) respectively can be replaced
byVreQV¢eL (r¢eL) and Nre QA¢p € L(J(rd) =rJ(¢)).

This means that one can develop the definable theory of integration with the
modified axioms. Let us denote the modified # by %4’.

Proof. First note that we can redo the material in the preceding sections with
the coefficient set Q instead of R.
Suppose ae R and ¢ € L.

ap=lim {r,¢; a—(1/n)<r,<a+(1/n)},

where r, is a rational number satisfying the inequalities above, which can be definably
specified by a and »n. From this follows that a¢ € L and J*(a¢)=1im J(r,$) =aJ ().
Let L, and J; respectively denote the L and the J in 4, and let L, and J, denote the
corresponding notions in #’. Then L, =L} and J, =J} on L,. So, by Theorem 5.1,
L}c L} The opposite inclusion is trivial, and thus L}=L}.

§6. Measurability

DEFINITION 6.1. 5°. V@(L(¢)F L(1 A ¢)), where 1 denotes {x}{¢}(t<1) here.
Bo: B+{5°}
From now on (to Section 10) we work in the theory ¢ with %, instead of 4.
DEFINITION 6.2. 1) mbl(f, 0, 4, &):
VéeL(+)itg (mid(—¢, f, ¢), O(¢), A$), E(¢))

(f is measurable with respect to the parameters ©, A and Z; the parameters may
be abbreviated to a single letter W, or even omitted altogether.)

Note. mbl is not a definable notion.
2) mbl'(f, ®, A, E):

VéeL(+)itg (f" A ¢, ©°(1), A°(1), E'(1))
Aitg (f7 A, ©°(2), 4°(2), E'(2))
PROPOSITION 6.1. mbl and mbl’ are mutually definably interpretable.

Proof. This follows from the facts f* A¢p=(mid (— ¢, f, #))* and f~ A¢p=
(mid (— ¢, f, ¢))* and Proposition 4.1.

PROPOSITION 6.2. 1) There is a finite sequence W* of appropriate objects such
that itg (f, @, E, y)—»mbl (f, W¥*).
2) mbl (1, W*) for some W*.
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3) aeR, mbl(f)—“af, f*, f~ and | f| are measurable.”
In fact we claim a more refined result. Consider af as an example. There are
definable ®* and W* (with appropriate parameters) such that

¢ e L(+)->Vn(@*(n)e L(+))
and
¢pel(+), Vn itg (mid (— @*(n), f, P*(n)), W(D*(n)))
—itg (mid (— ¢, af, ¢), W*(¢)) .
From these and by the definable comprehension rule, we obtain
mbl (f, W)-mgl (af, W*).

4) mbl is closed under the finite sum, max and min. See 3) above for the precise
form of our claim.
5) mblis closed under the limit.

Proof. 3) Consider af as an example. Define
g(n)=mid (— ¢, a mid (—n¢, f, nd), ¢)
and &*(n)=n¢. Then pe L(+)->P*(n)e L(+).
itg (mid (— @*(n), f, 2*(n)), W(P*(n)))

implies itg (g(n), U*(n)) for some U*. |g(n)| <¢, presuming that ¢eL(+).
lim g(n)=mid (— ¢, af, ¢) everywhere. So, by the Lebesgue’s dominated con-
vergence theorem,

itg (mid (- @, af, ¢), W*(¢)) .

4) Consider first the finite sum, Z[f(i); i<m]; suppose ¢eL(+). Define
d*(n)=n¢ and

g(n)=mid (— ¢, Z[mid (—ne, (), nd); i<m], §).
Then as above
lim g(n)=mid (— ¢, Z[f(0); i<m], §) and |g(n)| <o,
and hence we obtain Vn(®*(n)e L(+)) and
Vi<mVn itg (mid (— @*(n), f(i), D*(n)), W(D*(n)))
—itg (mid (— @, Z[f(D); i<m], ¢), W*(¢)) .
Tbo deal with the finite maximum, max [f(i); i <m), first recall that
max (f,9)=/fvg=12(f+9)+1/2| f—g| .

Using the results in 3), we obtain
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) deL(+)-Vn(®,(n) e L(+) A Py(n)e L(+))
AVnitg (mid (— @,(n), f, D,(n)), W(P,(n)))
AVn itg (mid (—D,(n), g, P,(n)), W(P,(n)))
b itg (mid (—¢, fvg, ¢), W @),

for some definable @,, @, and W *. Notice that (1) consists of definable formulas with
parameters f and g (among others). By an application of DDI with (1) as the defining
formula, we can construct @* and U* so that

peL(+), j<m-oYnVi<j(O*(i, n)eL(+))
AVi<jVn itg (mid (— @*(i, n), f(i), O*(i, n)), W(O*(i, n)))
Fitg (mid (— ¢, max [f(D); i<j], @), U*(4))] .

The proof is by induction on j (<m) applied to the formula in the succedent, which is
definable.

DEFINITION 6.3. mbl”’ (f, @, A", E"'):
VgVOVE Vy(itg (g, D, E, ) Ag=0
Fitg (mid (—yg, f, 9), @"(W), A”(W), E”(W)))
where W stands for the sequence of relevant parameters.
PROPOSITION 6.3. mbl and mbl’’ are mutually definably interpretable.

PROPOSITION 6.4. If different classes of elementary functions yield the same
classes of integrable functions, then the corresponding classes of measurable functions
are also identical.

This is a corollary of Proposition 6.3 above; namely, mbl’’ is expressed in terms
of integrable functions (the g there).

From Proposition 6.3 follows also
PROPOSITION 6.5. mbl (f, @, A4, E), g=>0,itg (g, D, E, x),
ae (x, | f(x)| <g(x), E, y)-itg (f, ®*, E*, x*)
for some ®*, E* and y*.

PROPOSITION 6.6. mbl forms an algebra; that is, measurability is closed under
the scalar product, the finite sum and the finite product.

Proof. We have only to consider the product. (See Proposition 6.2.) As in the
usual mathematical proof, notice first that

exp (a, 2)=lim {max {2ria—exp (ry, 2); 1 <k<n}; n=1,2, ---},
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where {r,} is a definable enumeration of the rationals, and
ab=[exp (a+b, 2)—exp (a—b, 2)}/4 .

Using these facts and the results in Proposition 6.2, the assertion for the finite
product can be established by an application of DDI in a manner similar to the proof
in 4) there.

DEFINITION 6.4. C(p) will stand for the following condition:
pL(+) AYXVr>0ImV¥n=m(p(n, x)>r).
PROPOSITION 6.7. Under the assumption of C(p), every measurable function is
the limit of a sequence of integrable functions.
Proof. Let f be measurable. Then mid (— p(n), f, p(n)) is also, and
f=lim mid (= p(), £, p(n)) .

We shall henceforth assume the condition C(p), since in most examples of
measurable functions such a p can be found.

DEFINITION 6.5. pu(f, W): limsup J'(mid (— p(n), f, p(n)), W(p)), where W is
a sequence of appropriate parameters.

PROPOSITION 6.8. 1) mbl (f, W)—-“u(f, W) is uniquely determined by f and
u(f, W)eRu {o0}.”

2) itg(f, ®, E, )i f, W=J'(f, D, E, y).

3) mbl(f, W), mbl(f, W), f<g-u(f, W)<ulg, W)).

4) Vimbl (F(i), W(@)->u(ZFG), W*)=ZuF@i), W(i)) for some W*.

5) mbl(f, W), aeR-ulaf, W*)=au(f, W).

Proof of 2).
f=lim mid (—p(n), 1, p(n))

by C(p). If fis integrable, then so is ¢(n)=mid (— p(n), f, p(n)). Since | p(n) | <f, the
Lebesgue’s dominated convergence theorem applies and

- I =limJH(¢m) = p(f) -
§7. Measurable sets

DEFINITION 7.1. P(D, x, t):
(xeDAt<l)v(x¢DAt<0)
xp: (XH}P(D, x, 1)
itgs (D, @, E, y); itg (xp, P, E, 1)
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mbls (D, ©, A, E): mbl (xp, @, A, &)
us(D, ©, A, B): u(xp, @, A, E)

We shall abbreviate the parameters to U, W, ---, or even omit them in the
expressions above whenever possible. We also assume ss (X, D), ss (X, D)) etc.
throughout.

PROPOSITION 7.1. The properties itgs and mbls, and the function us are
uniquely determined by D, independent of the parameters. They respectively express ““D
is an integrable set,” “D is a measurable set” and “‘the measure of D.”

The mathematical proofs go through, now that the basic properties of the
integration and the measurability of functions have been established in our theory.

PROPOSITION 7.2. 1) The following (1) to (5) are all mutually definably
interpretable.

(1) mbl(f)
(2) Vrmbls ({x; f(x)=r})
(3) Vrmbls ({x; f(x)>r})
(4) Vrmbls ({x; f(x)<r})
(5) Vrmbls ({x; f(x)<r})
We have omitted the parameters.
2) Any of (1) to (5) implies
(6) VreQu{—o0, oo} mbls ({x; f(x)=r}).

The mathematical proof goes through since the objects which are used there are
uniformly definable.

PROPOSITION 7.3 (Egoroff). There are definable M* and W* such that
itgs (D, U), Yx¢ D(f(x)=0AVnF(n, x)=0),
mbl (f, W), Vrn mbl (F(n), W), nls (C, 0), CcD,
VxeD—C(f(x)=lim F(n, x)), e>0
—mbls (M *(g), W*(e)) A us(M*(e), W*(e))<e
A“lim F(n)= f uniformly on D— M*(g).”
Proof. Define
A(n, k)={x;eD A | f(x)—F(k, x)| =(1/n)}
and
B(n, m)=){A(n, k); k<m} .
Then

Vn({B(n, m); m>1} is decreasing)
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and
va((\{B(n, m); m>1}<=C).

So, nls ((\{B(n, m); m>1}, ), and hence

lim {us(B(n, m), V*); m=1}=0
for some V*. Thus,

v(n, &)=min (m, us(B(n, m), V*)<eexp (2, —n))

is well-defined. Put

M*@e)=J{Bn, v(n, ¢)); n>1} .

W* can be induced from M *.

§8. Axiomatic measure theory

DEFINITION 8.1. 1) Atomic symbols: X, .#, ¢
2) The axiom set 2: the axioms on the measure space (X, .4, o)

THEOREM 8.1. The axiom set & in Definition 1.3 and the 9 above are mutually
definably interpretable.

Proof. The interpretation of & in terms of % has been carried out in Section 7.
For the converse, let H(¢, n) denote

n(ry, + oo, i) AVISKk({x; p(x)=ri} e M

~o({x; ¢(x)=r;})<oo

NG =2[ryau I<k],
where n~(ry, - - -, r,) expresses that n represents a k-tuple of distinct rationals and
A@={x; ¢(x)=r;}.

v(¢)=min (n, H(¢, n))
is well-defined, presuming that
mp (¢, X, R)A3InH(p, n) .

Now let L(¢) denote mp (¢, X, R)AInH(p,n), and define J(¢) to be
2{r,0(A@); i<k} when v(¢p)~(ry, - -, 1)

The mathematical proof for the fact that 1° to 5° (Definitions 1.3 and 6.1) are
satisfied by these L and J can be formalized in the theory with 2.
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§9. Simple functions

In this section, we consider L, J, itg and J* in the context of Theorem 5.2.

DEFINITION 9.1. We shall use n to denote a natural number in a specific
context.

sqn (n): “n is a finite sequence of distinct rationals, say (r, - - -, r;), arranged in
the natural, increasing order.”

lg (n): the length of m; that is, the / above.

nk): r if 1<k<l

FLola, n, D, E, x): VxI k<lg (n)(a(x)=r ) Aitg (a, D, E, x)
(a is a simple function with respect to n, @, E, x.)

K(a, n, k): xp, where D={x; a(x)=r,}. See Definition 7.1 for y,,.

Jo(a, n, @, E, x): 2{r.J'(K(a, n, k), ¢, E, y); k<lg (n)}

We may omit or abbreviate @, E, y, and even n when the circumstances allow us
to.

PROPOSITION 9.1. 1) The functions and the predicates defined above are
definable. In particular, J, is arithmetically definable.

2) Pola, m, W), Lo(a, n, W,)>m=n.

3) ZLola, n, W)Yk <L (K(a, n, k), U(k)) for some U.

4) Jo(a, n, W) is uniquely determined by o, presuming that & (a, n, W) holds,
and then Jy(o) = J ().

5) &, satisfies the axioms in 1° to 5° for the rational coefficients; that is, the
axioms in B’ are satisfied by ¥ ,. See Theorem 5.2 for &’

Proof. 4) If Fo(a, n, W), then a=Z[r,K(a, n, k); k<I]. Since & o(K(a, n, k))
by 3), itg (K(«, n, k)), and hence

Jo()=2{rJ (K(a, n, k)); k<I}

is well-defined. Jo(«)=J"(x) follows from Proposition 4.1.

5) Let us first take up the finite maximum as an example. Suppose
FLo(a, m, W) and &, (B, n, W,) hold. Then itg (x v B, W*) for some W* (Proposi-
tion 4.1). Let j denote the finite sequence of rationals which consists of all the
distinct rationals among those in m and n and which is arranged in the increasing
order. (j is definable in m and n.) Then Sy(a v B, j, W*). The general case can be
dealt with similarly.

The linearity of J, easily follows from 4) and Proposition 4.1. The continuity of
Jo is also a trivial consequence of 4) and Proposition 4.1.

I Ao=2[min (1, r)K(a, n, k); k<I].

Let j be the sequence of distinct numbers among {min (1, r,); k</} arranged in
the increasing order. Let C(k) be {x; a(x)=r,} and let D(i) beU{D(k); min (1, r) =
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j@®}, i<lg (j). Then itg (xp;) and 1A« is a linear combination of ypq, i<1g (),
with the rational coefficients. Thus Fy(1 A o, j).

PROPOSITION 9.2. Let & denote the class of “integrable” functions based on
(Lo, Jo), and let J§ be the integral of the functions in & ;. (See Definition 1.3 and
Theorem 5.2.) Then & jcitg and J{=J* on &

This follows immediately from Proposition 9.1 and a modified version (in the
context of Theorem 5.2) of Theorem 5.1.

Let us give a more precise presentation of Proposition 9.2. First define nls,,
aey and <. U and V will represent finite sequences of parameters.

nlsy(E, x, U): ss (X, E) AViLo(x()), U)
AN <xG+1)
AVxe ENr>03j(x(j, x)>r)
Alim Jo(x(j), U)eR
agy(x, P, E, x, U): nlsy (E, x, UYAVXx¢E P(x)
Lo, D, E, x, U, ¥, V) ViF(PQ), V(i)
naey (x, f(x)=2V(, x), E, x, U)
AZLL(1PO |, V@)eR

The proposition then claims that there is a finite sequence of definable parameters V'*
defined from f, @, E, y, U, ¥, V such that

LS, E, 1, U, ¥, V)-itg (f, V*)
and Ji(f, ®, E, x, U, ¥, V)=J'(f, V*).
PROPOSITION 9.3. Lc¥(and J=Jg on L.
Proof. Suppose ¢ e L. We can construct ¥ and v so that, for each j,
itg (F(m) A Lo(P(m), v(m) A Jo(F () <J(9) ,

and that {¥(n)}, converges monotonically to ¢ from below. Then, by the monotone
convergence theorem, & ((¢) and

Jo(¢) =lim Jo(¥(m)) =lim J (P(m) =T ($)=J(9) .

We present the explicit construction of ¥ and v, although it is nearly a copy of
the usual mathematical proof. First define E(k, n, i), k=1, 2, 3, 4.

E(1, n, iy=inv (¢, [(i—1)/exp (2, n), ilexp (2, n))), I<i<nexp (2, n)
where inv (f, I)={x; f(x)el}.
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EQ, n, i)=inv (¢, [—ifexp (2, n), —(i—1)/exp (2, n))), 2<i<nexp(2,n).
E@3, n, 0)=inv (¢, [n, 0)).
E@4, n, 0)=inv (¢, (— o0, —n)).

For every x€ X, there is a unique (k, n, i) satisfying a certain condition such that
xeE(k, n, i). Now define

(i—1/exp (2, n) if k=1,

—i 2, if k=2,
ke, m, i) = ilexp (2, n) 1

n if k=3,

—(n+1) if k=4.

For each n, re-arrange {(k, i)}, so that {r(k, n, i)} becomes an increasing sequence, say
s(n, 1)< - - - <s(n, p(n)). Then define

P(n)=Z[s(n, Drey 1<i<p@)],
where E(j)=E(k, n, i) for appropriate k and i. v(n) is defined to be (s(n, 1), - -,
s(n, p(n))).
THEOREM 9.1. ¥ (=itgand J{=J".
This follows from Propositions 9.2 and 9.3, and Theorem 5.1.

Conclusion. We may assume &, as the class of elementary functions in
developing the theory of integration in our definable system.

§10. Integration of functions of two variables

DEFINITION 10.1. 1) Let #, be the theory # with the axiom sets of two
integration spaces ¥ =(X, L,, J,) and #=(Y, L,, J,) in the place of #4. (See
Definition 1.3 and Theorem in Section 1.) The properties which are claimed in this
section are the theorems of #,.

2) Z=XxY={(x,y); xeX,yeY}

(x, )=, v): x=uny=v

3) &,:the Fyfor L,in %
&, the &, for L, in ¥
I, : the J, for &,
L,: the J, for &,
(See Definition 9.1.)
4 Lm,a, &, p,n): Ve<m(F (uk), £()) A F2(B(k), n(k))),
where &(k) and #(k) each stands for four parameters.
5) =w(m,a, B, z): Z{ak, x)B(k, y); k<m},
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where z=(x, y).

PROPOSITION 10.1. 1) #(m, a, &, B, n)>mp (n(m, «, B), Z, Q).

2) & is alinear space with the rational coefficients. The meaning of this assertion
will become clear in the proof.

3) & is closed with respect to the absolute value.

Proof. 2) Assume, for example, #(m, o, &, B, n) and L(n, y, {, 8, 6). Define
I=m+n, a*(k)=a(k) if 1 <k<m, and a*(m+k)=y(k) if 1 <k <n. &*, B* and n* are
defined similarly. Then S(I, a*, £*, B*, n*) and

n(m, a, B)+n(n, y, §)=n(l, a*, p*).
3) What must be shown is that there are n, a*, £*, f* and #* for which holds
Fm, a, &, B, n)>F(n, o*, &*, B*, 1*) A | n(m, a, B)|=n(n, a*, B*).
Suppose the first entry of £ is v. Let
{Mk, i); k<m and i<n for some n}

exhaust all the distinct m-tuples (v(1, j,), - - -, v(m, j,.), ji <1g (v(k)), k <m, which are
different from the origin, and define

(i, y)=2{Mk, )p(k, y); k<m} .

Then w(i)e ¥,, and hence |w(i)|e ¥, (for some definable parameters) if i<n.
(See Proposition 9.1.) Define

D(i)={x; Z{exp (uk, x)— Ak, i), 2); k<m}=0}.
Xpw) €1 Since
|n(m, o, B, 2)| = Z{xpw(x) | w(i, y)|i<n},
we can take {i}xp as a* and {i} | w(i)|as p*.

PROPOSITION 10.2. Put 1,={v}n(m, o, B, x, v) and 1,={u}n(m, o, B, u, y).
Then

SF(m,a, &, B, 1), xeX, yeY
=St ) A F1(1) AL (WHi (7)) A L1 (X} (7))
INIE G ACN))
=I({x}Ly()
=2Z{L (k) L(B(k)); k<m}] .
(We have omitted the parameters, which are definable objects.)

DEFINITION 10.2.  I(m, a, B): I:({y}1,(z,))
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PROPOSITION 10.3. #(m, a, &, B, 1)
_’I(m’ o, ﬁ)'—_li({x}IZ(Tx))
=Z{L (k) (B(k)); k<m}eR.
PROPOSITION 10.4. (&, I) satisfies 1° to 5° (over the coefficient set Q).

Proof. The elementary properties can be derived from Proposition 10.1 by
using DDI and induction (applied to definable formulas). For the continuity, suppose
&< & and that @ decreases to 0. Precisely, let v, ¥, ¥,, Z; and =, be parameters
of appropriate types. Suppose VnS(v(n), ¥i(n), E,(n), ¥y(n), E,(n), ¢n)=
n(v(n), ¥,(n), ¥,(n)) and that {&(n, z)}, decreases to 0 for each ze Z. Let t(n; x) de-
note the 7, in Proposition 10.2, where m=v(n), a=¥,(n) and f=¥,(n). Similarly
for t(n; y). Then

V(&L (1(1; y)) A “1(n; ) decreases to 07 A F (1 (t(n; )

by Proposition 10.2. This and 4° for Z imply lim /; (z(n; y))=0; this and 4° for %
imply lim L({y}1;(z(n; ))) =0, or I($(n)) tends to 0.
To prove 5°, suppose F(m, a, &, B, n). Then
n(m’ o, B’ z)=z{XD(i)(x)a)(ia y); lSn} .
(See the proof of Proposition 10.1.)
(n(m, a, B) A1) (2)=Z{xpe(X) @, y) A1), i<n},
and &,({y}(w(i, y) A 1)) by 5° for . This proves n(m, a, p)Ale .

DEFINITION 10.3. f,: {x}f(x, y)

111, 2, 1: BOWI)

112, 1, f1: LX)

SIS, @, E, x): “f is integrable with respect to @, E and  in the theory of
z,&,1). _

INf, D, E, x): Z{I(®(n); n=1,2, ---}.

PROPOSITION 10.5. Ifae(y, & (f,), E, x) (in ¥), then ae(y, & (L,(f,)),
E* x*) (in %) and I[1, 2, f1€ R for some E* and y*.

PROPOSITION 10.6 (Fubini).
FUS, @, E, 9111, 2, f1=112, 1, f1=1'(f, , E, Y)eR,
where the unwritten parameters are definable in @, E, y.
Proof. Assume Z!(f, @, E, y), or by 5) of Proposition 3.3, assume
Y AZI(|P(m)|)<o
AVzZ(Z |¥P(m, 2)| <ok f(2)=2¥(m, 2)).
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(See the proof of Proposition 10.4 for the notation.)

q](ma Z)=Z{XD(m,i)(x)w(ma i’ y)a lSV(m)}

by the proof of Proposition 10.1, where D(m, i) is the D(i), w(m, i) is the (i) and v(m)
is the n there corresponding to m. By a variation of Fatou’s lemma in %, we have

ae (y, ZL(It(m; y)| <oo, E*, x*),
where t(m; y) denotes the 7, for ¥(m) (Proposition 10.2).
y#E*—>ae (x, Z|Y(m, x, y)| <oo, E', x)
for some E' and x'. So y¢ E* implies
ae (x, f(x)=2t(m; y)(x), E*, ).
Thus “f, is integrable in Z,” and
I(f)=2L(xm; y)) .
Define 0(m, y)=1I,(t(m; y)). 0(m) is “integrable in #.”
1Li(t(m; y)) = Z{L,(Xpgm, )x(m, i, y); i<v(m)}
and
Li(120m; y) ) =2 (tom, n | @0(m, 1, y) |5 i<v(m)} .
Thus | I;(z(m; ))| <IL,(|t(m; y)|), and so
ZL([t0m; y)|) < 0o—>Z | L (1(m; y)) | <0,
hence X1, (t(m; y)) is convergent.
201, 2, 16(m)|1=2111, 2, | I(<(m; y)) ]
<ZI1, 2, I,(|t(m; y)|)]< o0 .
So by Beppo-Levi theorem,
ae(y, 20(m, y)<o, E”’, ') .
Since I(f,)=26(m, ),
111, 2, fl=L(y}I()
=Z15(0(m)) = ZI;(I,(x(m; y)))
=ZI(P(m)=I'(f)
(by Mikusinski).
The other half can be proved by symmetry.

PROPOSITION 10.7 (Tonelli). Assume mp (f, Z, R). The following (i) and (ii)
are mutually definably interpretable (in Z).



Definability in the Abstract Theory of Integration 159
i £'(f, 9, E, p.
(i) mbl(f, O, A, E) AYmP (X umy> ['(m), B(m), A(m))
AVz¢ ()4 (f(2)=0)
A, 2, fleRVIR2, 1, fleR).

Proof. Assume (i) and define A(m)={z; | f(z)| =(1/m)}. Then f vanishes off
(U4, and xS ! follows from Proposition 6.5.

I, 2, f1=112, 1, f1I=1'(f)eR

by Fubini’s theorem.

Assume (ii) and define Y(n)= x4y, Where A[n]= (J{4(@); i<n}. Suppose
IM, 2, fleR. {n¥(m) A |f|}, is an increasing sequence of integrable functions,
and | f |=lim (n¥(n)) A |f] everywhere. By Fubini’s theorem,

F(n¥m) A | fD=I11, 2, @) A | f1])
<I[1,2,|flleR.

So, by the monotone convergence theorem in Z, | f| is integrable. The integrability of
f is then immediate.

§11. Signed integral

DEFINITION 11.1. Let 2 be the axiom set £ (in Definition 1.3) modified as
follows.

(a) The primitive symbols 6, JJ, J, and 1 are added.

(b) The condition Y¢ e L(+)(J(¢)=0) is eliminated.

(c) The continuity property 4° is replaced by a stronger one:

4. Ve>0VpeL(||¢ll<det |J(@)| <e),

where || ¢ ||=sup {|$(x)|; xe X}.
(d) The axioms on J, J, and 1 are added.

VoeL(+);

Jo@), Jo(@), uPeER,

J3(@)=sup {J(); 0<y<¢, yeL(+)},

Jo (¢)=—inf {J(¥); 0<y <o, yeL(+)},
(p)=sup {Jg(W)—Jo (V); 0<y<¢, YyeL(+)}.

(Here the sup in the right hand side is not a formal object, but the entire equation
represents a relation which determines the property of J 4 (¢) (or 1(¢)). Similarly for
inf.)
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Let #’ be the theory obtained from # by replacing £ by 2. ¢’ will be called the
theory of signed integral and J will be called a signed integral on L.

In this section we work in #’, and all the functions are supposed to be in L.

PROPOSITION 11.1. 1) 4° is provable in ¢’.

2) If'I, and I, are integrals (in the original sense) on L, then J=1I, — I, satisfies D
except (d). (This is provable in ¢.)

3) ¢eL(+)-J5()2J (@) AJTg(9)=—J(P).

4) J(0)=0.

5) Jg and Jg are linear on L(+) with respect to the non-negative coefficients.

DEFINITION 11.2. J*(¢): J5 (@) —J5 (D7 ); T (@): J5 (M) —T5 (7).

PROPOSITION 11.2. 1) ¢peL(+)->J (p)=J5 () AT (d)=J; ($).

2) J* and J~ are respectively unique extensions of J§ and J§ to L.

3) J* and J~ are integrals (in the original sense) satisfying 4’ on L(+).
4 J=J*r—J".

Proof of 4). Suppose first ¢ € L(+), and let G(i, &) denote
VEL(H)AY<LSOAT (P —JW)+e.
) Ve>03WG (Y, ¢)
by the axiom on J~; here J~=J, .
@ >0, GW,)-d—YeL(+)AP—Y<PpA(J+I )¢)—¢
<J(@—¥)<I* ().

By applications of the 3y in the antecedent and the cut applied to (1) and (2), we
obtain

J+I )P <T*(9).

Notice that, in deriving (1), no comprehension is involved. The opposite direction can
be established in a similar manner. Thus J*=J+J~ on L(+), or J=J*—J  on
L(+). The general case follows from the fact that ¢ =¢* — ¢, the linearity of J and
the definitions of J* and J~ on L.

DEFINITION 11.3. 1) For any two integrals (in the original sense), we say I,
and I, are compatible by K if

VoeL(+)(K(¢)€ R A K(¢p)=sup {I,())—L,(¥); 0<y <¢, yeL(+)}).

In such a case, define I; AT, to be I, — K (on L(+)).
2) IfI; Al,=0on L(+), wesay I, and I, are mutually singular (with respect to
K).

PROPOSITION 11.3. 1) J* and J~ are compatible by 1.
2) J* and J~ are mutually singular.
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3) J=J*—J" is the unique decomposition of J by mutually singular integrals.

Proof. 2) ¢eL(+)—>u(d)=J"($), and so (J* AJ " )¢)=0.
3) Suppose there is another pair (I;, I,) satisfying the condition. Then for any

¢eL(+), K(¢)=J*(¢) is obvious, and hence I, AL=1,—J " =0, or [,=J" on
L(+). This also implies I, =J~. The equations extend to L.

By virtue of the proposition above, (J*,J~) can be regarded as the Jordan

decomposition of J.
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