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Let S, and S, be non-singular curves in P? with normal crossings. In this paper,
we shall study some of n-sheeted coverings of P? branched along S; U S,. Our main
result is the following theorem.

THEOREM. A 3-sheeted covering space of P? branched along S, U S, is either
a normal surface whose singularities are all rational double points (in this case we have

1
Py=9(81)+4g(S,) 9 (51 —28,)(28,-5,))
or a normal surface whose singularities are all rational triple points (in this case we have
2
Py=9(51)+9(82) =5 (1~ 52)%).

Here p, is the geometric genus of the non-singular model of the covering surface and
g(S,) is the genus of S,.
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§1. Ramification curves and contractible curves

Let S=(JS; be a curve on a non-singular algebraic surface X" with normal
i=1
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164 S. YAMAMOTO

crossings such that each irreducible component S; of S is non-singular. In this section
we consider a surjective holomorphic map ¢ : X— X between non-singular algebraic
surfaces which satisfies the following conditions:

(i) The restriction map of ¢ to X—¢ ~*(S) is an unramified n-sheeted covering
over X —S.

k
i) o 1(S)= UIA“ is a curve on X with normal crossings such that each

irreducible component A, is non-singular and ¢(4,) is S; or a point of S; N S; (i%)).
(iii) If @(4,)=S,, then for an arbitrary point j e 4,, there are local coordinate

systems (,, t,) and (z,, z,) around j and p = @(p) respectively, such that the defining

equation of A4, is ¢, =0, the defining equation of S; is z; =0 and ¢ is expressed as

(1.1) (21, 2) =", 1, ,

where a, b, d are non-negative integers with adx0.

(iv) If o(4,)=p, where pe S;n S;(ix)), then for an arbitrary point p € 4,, there
are local coordinate systems (¢,, ¢,) and (z,, z,) around p and p respectively, such that
the defining equation of 4, is ¢; =0, the defining equation of S; is z; =0, the defining
equation of S is z,=0 and ¢ is expressed as

(1.2) (21, z)=(t,"t,", 1,°8,%),

where a, b, ¢, d are non-negative integers with ad—bc x0.

It is easily checked that the integer a in (1.1) and the pair of integers (a, ¢) in (1.2)
do not depend on the choice of local coordinate systems (¢,, ¢,) and (z;, z,) such as in
(iii) and (iv) respectively. Since A4, is connected, it follows from this that the above
integer a (or the pair of integers (a, ¢)) is uniquely determined by 4,.

We call 4, a ramification curve of type (g, S;) (or a contractible curve of type (a,
¢, S;, S;) respectively).

We denote by R, the ramification divisor of ¢. The proof of the following
proposition is easy.

PROPOSITION 1. Let ¢: X—X be a surjective holomorphic map of non-singular
algebraic surfaces which satisfies the conditions (i), (ii), (iii) and (iv). We suppose that
the map ¢ has ramification curves S; (i=1, - - -, n) of types (n;, S;) and contractible
curves A, (a=1, - -+, 1) of types (p,, 45> Si» S;). Then we have

n A
R(p= Z (”1—1) Sl+ Z (pa+qa_1)Aa .
i =1

i=1 a

§2. Torus embeddings
We put

X=C? with coordinates (t,, t,),
Y=C? with coordinates (z,, z,),

A={(t,, ,)e C*|1,1,=0} ,
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B={(z1, )€ C?|2,2,=0}
and let g: X—A—Y—B be a holomorphic map which is given by
(21, 2)=(1",", 1,°1,™),

where «, B, ny, n, are integers with an,— fn, >0. Then the map g is continued
uniquely to a finite holomorphic map g’: X'—Y.

We can construct g": X’— Y by the theory of torus embeddings as follows. Let
N=2Z? and N’ be a submodule of N generated by («, f) and (n,, n,). We denote by
ig: N g— Np the linear map induced by an inclusion i: N'—>N, where Ny=N'®R
and Ny=NQ®R. If we put e, =(1, 0), e,=(0, 1) and e{=(a, B), e;=(n,, n,) and we
take {e;, e,} as a basis of N and {e;, e;} as a basis of N, then the linear map i is
given by

. o n

(ir(e’), ir(e2))=(ey, €2) (B n:)
Let o be the cone in Ny defined to be 6= Rye, + Rye,, where R, is the set of non-
negative elements in R. We put

o'=ig'(0).

It is easily checked that ¢'= Ry(n,e{ — e ;) + Ro(—n, e +ae;). We denote by 4” and
4 the r.p.p. decompositions of ¢’ and ¢ respectively. Then an inclusion i: N'»>N
induces a map A’: (N’, 4")—>(N, 4) of r.p.p decompositions. Therefore we have the
map of torus embeddings f: Ty. emb (4”)— Ty emb (4) corresponding to 4’ (see Oda
[7]). We see easily that fis a finite morphism and equivalent to g’: X'> Y.

Let d,(d,) be the greatest common factor of « and », (B and n,, respectively). We
put

ny, -B\ , —n , a
f1=i'el+<f>eza f2=<_d1—1>el+d_1—e2’
T;'=R0.fi and Ti=ROei (l=1, 2) .
Then we have

0'=Rofi+Rof> -

(I)  First we assume that ¢” is not a non-singular cone. By Mumford et al. [6],
the minimal resolution of Ty. emb (4”) is Ty emb (4), where (N, A) is a subdivision
of (N’, 4”) defined as follows.

(i) Let > =convex hull of 6’ n N'—{0}.

(i) Letf, vy, -+, v, f, be the points of N’ on 6Z between £, and f,.

(iii) Subdivide ¢’ by the set of rays Ryv; and denote the sectors between them by

61=Rofi+Rovy ,
0;=Rov;—1 + Rov; (=2, -+, k),
Or+1=Rovi+Ro /> -
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(iv) Let
Z={ai(i=1’ T k+l)’ Xi (l=1’ Y k)’ T4 Té, {0}} s
where y;=Ryv; .
Let n: Ty, emb (4)— Ty emb (4) be the map of torus embeddings corresponding
to a map A: (N, A)—(N, 4) and put v

Ai=°rb(Xi) (l=19 Y k)9
S,=orb () (i=1,2),
S;=orb (1) ((=1,2) and S=S,uUS,.

Then it is elementary that there exist integers a; (i=1, - - -, k) such that (i) a,< —2, (ii)
Sitv+av; =0, 0,40, +a;,10;4,=0 (i=1, -+, k=2) and vy_, + f, +av,=0. It
holds that A7?=a, (cf. Proposition 6.7 in Oda [7]). We see that A; is isomorphic to a
non-singular rational curve P!, n(S)) =S, and n(4;)=0, where 0=orb (0).

We put .

Ui=kie1+liez (l=19 ”.7k)s
and we denote by m; (i=1, 2) the degree of the restriction map of = to S..

THEOREM 1. A map n: Ty emb (4)— Ty emb (4) satisfies the conditions (i),
(i), (iii), (iv) of § 1. Furthermore we have the following.

Q) 7 US)=S,uS,ud, U - UA, and they intersect transversely and no
three intersect at a point.

(i) S, is a ramification curve of type (n/d,, S,) and S, is a ramification curve of
type (n/dy, S,).

(iii) A, is a contractible curve of type (ko+1n, kif+1n,, S, S,).

k k
(v) wS,=7Si+ Y (katln)ds, w*S,=1Sp+ ¥ (B+lm)A;.
i 1 i=1

2 i=1
) my=kp+0Ln, and my=k,o+1n,.

Proof. By Mumford et al. [6], we have (i). Let M’ and M be the duals of N" and
N, respectively. Let {m, m;} be the basis of M’ dual to {e;, e;} and (m,, m,} be
the basis of M dual to {e,, e,}. We denote by i*: M— M the injection induced by an
inclusion homomorphism i: N’—N. Then it is easily checked that

*(my)=oam{+nmj,
2.1 .
@D i4(ms) =B +nym
Let 6;,=Ryv;_y + Ryv; (i=2, - - -, k) be the cone in N ¢ and denote by &; its dual in
Mz=M’'®R. Then by elementary computations we see that 6, M’ '=Zyw/_; +
Zyv|, where

2.2) viy=Ilm{—km; and v/=-I_m{+k,_m;
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and Z, is the set of non-negative elements in Z. From (2.2) we have
2.3) m{=k;_w{_+kv; and my=L_v/_;+lv;.
Substituting (2.3) in the relations (2.1), we have

i*(my) = (k;_yo+1;_yn)vi_y +(ka+ln)v/,
*(my)=(k;_ B+ 1;_ny)v_y +(kf+1ny)v].

Let 7, be the restriction map of # to an affine open subset U(c;) =HOMunit-semigr
(6, M’, C). The map n;:U(g;)— Ty emb (4) = HoMunitsemig: (6 N M, C) is induced by
the map h: Ty=Hom (M’, C*)-»Ty=Hom (M, C*). Since h is defined by
h(w')(m)=p'(i*(m)), if we put u=mnuw), z;=p(m;) (j=1,1), x;=pvi-,) and y;=
uiv)), then =, is given by

(25) (Zla 22)=(xki-1¢+li—1"1y?ia+li”1, xifl’—lﬁ"‘li—l"Zy’ifiﬂ"'li”z) X

i

(2.4)

On the other hand, we see easily that 4, ;=orb (y;_,) and 4;=orb (x;) are
defined by the equations x;=0 and y;=0 respectively in U(s;) and S; (i=1,2) is
defined by the equation z;=0. Therefore 7 satisfies the condition (iv) in §1 and
A;_, is a contractible curve of type (k;_jo+1;_yny, ki1 f+1;_1n,5, Sy, S,;) and 4;is a
contractible curve of type (ko +/ny, kif+1ny, Sy, S2).

Similary, we see that the restriction maps of n to U(g;) = Homunitsemigr (67 N M &
C) and U(oy 1) =HoMunitsemigr (O3 +; N M, C) are given by

(26) (Zl’ 22)=(xn/d2yli:1a+lln1, ylltlt“- llnz) ’

2.7 (215 22) = (e em, x byt by iy
respectively, where
xi=u(f1))  (fi=hmi—kmj),

! ! ﬁ ! n !
y1=m(0h) <01=d—2m1+d_zm2 s

_ , , e, ny
X+ 1= M+ 1(V3) <Uk—zm1+:1: mz)»

Vir1=Me+1(f2) (fo=—lm' +km}),
and z;=u(m)) (j=1, 2).

Since S; and S, are defined by the equations x; =0 and y,,; =0 respectively,
we see that 7 satisfies the condition (iii) in § 1 and S, is a ramification curve of type
(n/d,, S;) and S, is a ramification curve of type (n/d;, S,).

From (2.5), (2.6) and (2.7), it is easy to check (iv) and (v).

(II) Next we assume that ¢’ is a non-singular cone. In this case, 7. emb (4") is
non-singular and by the same arguments as in Theorem 1, we see that a map
f: Ty emb(4)— Ty emb (4) satisfies the conditions (i), (ii), (iii) of § 1 and we have
the following.

G f7'S)=38,uS, and they intersect transversely.
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(i) S is a ramification curve of type (n/d,, S;) and S, is a ramification curve of
type (n/dy, S,).
n
1

(i) f*S,=—8, and f*s,="L3%,.
d, d

. n n
(iv) m1=a and m2=z.
Here S;=orb (z)), S;=orb (z,) and m; is the degree of the restriction map of f to S
i=12).

§3. Coverings of P? branched along S, U S,

Let S; and S, be non-singular curves in P? with normal crossings. By Oka [8],
the fundamental group of P>—S,uUS, is abelian and m,(P>—S,uUS,)=
Zy1+ Zy,/(v1y1 +v,7,), where y; is a small loop about S; and v, is the degree of S,. We
denote 7,(P*—S,; U S,) by G. Let H be a subgroup of G whose index in G is n (n=2).
Then we have a unique covering y : X— P* associated to H (see Kawai [5]). ¢ : X— P2
is an n-sheeted covering of P> whose branch locus is S, (i=1, 2) or S S,.

The following proposition is easily proved by virtue of Proposition in Kawai [5].

PROPOSITION 2. Let y: X—>P*> be the covering associated to H which is
determined by the subgroup of Zy, + Zy, generated by ay, + By,, nyy;, +nyy,. Then for
an arbitrary point pe S; N S,, we have a local coordinate neighborhood U of p and a
local coordinate system (z,, z,) on U such that

(i) S; is defined by z;=0 (i=1, 2),

(i) ¥ NU-S,0US,) is connected and an unramified covering of U-S, U S,
associated to the subgroup of n,(U—S, U S,) generated by aa,+ Pa,, nya, +n,a,,
where a; (i=1, 2) is a small loop about S; in U~ S; U S,.

Let f: Ty emb(4’)—>Tyemb (4) be the same as in §2. Then we have
Tyemb (4)=C?2. Put

V={(z,, 22)€C2||Zi| <e,
V'={(z, 22)6C2|0<|2i| <&},

where ¢ (i=1, 2) is a small positive number. We denote by f,,: f "1(V)>V the
restriction map of f to f ~1(V).

THEOREM 2. Let y: X—P? be a covering which is the same as in Proposition 2.
Then for an arbitrary point pe S; N S,, we have a local coordinate neighborhood U of P
such that the restriction map of Y to ¢ ~*(U) is equivalent to f,,: f ~Y(V)—-V.

Procf. Let N be the fundamental group of ¥’. Then we may assume that N=
Zb; + Zb,, where
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by: (zy, Zz)=<El 8—29i0> 0=0=<2m,

22
by (2, z2)=<’%1 e, %) 0<6<2x.

Let N’ be a subgroup of N generated by ab, + fb,, n,b; +n,b,. Since f is equivalent
tog’: X'-»Y=C?in§2, it is easy to see that f; is a covering associated to N’. On the
other hand, by Proposition 2, we can take a local coordinate neighborhood U of p
such that U is isomorphic to ¥ and the restriction map of ¥ to y "}(U—S; U S,) is an
unramified covering of U—S; u S, associated to the subgroup of =, (U—S; U S,)
generated by aa, + fla,, n,a, +n,a,. Hence the restriction map of ¢ to Y ~!(U) is
equivalent to f,: f~Y(V)-V.

§4. The main theorem

Let ¢ : X— P? be an n-sheeted covering of P? branched along S; U S,. If X has
singularities, then we consider the desingularization of X obtained by the procedure
of reducing singularities such as in §2 and we denote it by o: X—X. We denote the
composition of ¢ and ¥ by ¢: X—P2 Let p be an arbitrary point of S; N S,. By
Theorem 2, we can take a local coordinate neighborhood U of p such that the
restriction map of ¥ to ¥ ~}(U) is equivalent to the map f;,: f~*(V)— V. Hence if
¥ ~1(U) has a singularity, then the restriction map of ¢ to ¢ ~“}(U) is equivalent to the
map 7,: 7 '(V)—V, where V={(z;,z,)€ C?||z;]| <¢} is an open subset of Ty
emb (4)=C? and f;, and =, are the restriction maps of f: Ty. emb (4")— Ty emb (4)
to f7(V) and n: Ty emb (4)—Tyemb (4) to n~'(V), respectively. Our main
theorem is the following.

THEOREM 3. Let Y :X—P?> be the covering which satisfies the following
properties:

(i) ¥ is an n-sheeted covering of P? branched along S, U S,.

(if) For an each point pe S; N S,, there is a local coordinate neighborhood U of p
such that the restriction map of ¥ to Y ~*(U) is equivalent to the map f,.

(I) If o’ is not a non-singular cone and a subdivision (N’, A) of (N, A’ is defined
to be

A={o, (i=1, -+, k+1), ; (i=1, -+, k), 7], 75, {0}}

as in §2, then the first Chern class c,(X) and the second Chern class c,(X) are given by
the following formulas:

cl(X~)=<p*c1<P2)—<£;— 1) i —(;i"—l— 1) 5

- X Ek: {ki{o+B)+1iny +ny)—1}4;,,

peSinSz i=1
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co(X)={20my +m;)—n} +2n—m,)g(S,)
+2(n—my)g(S,)+(k+n+1—m; —m,)S, S, .
Here S, is the proper transform of S; by ¢, A;,=orb (y,) and n, m,, d; are the same as in

§2. g(S)) is the genus of the non-singular curve S..

) If ¢’ is a non-singular cone, then X is non-singular and the Chern classes
c(X) (i=1, 2) are given by

c(X)=y*c,(P*)— (‘_— 1>§ (c_l—_ 1>Sz,
1
2(X)={2(m; +my)—n} +2(n—my)g(S,)

+2(n—myg(Sy) +(n+1—m; —m,)S, S, ,
where S, is the proper transform of S; by .

Proof. We shall prove (I). By the property (ii), we may assume that the
restriction map of ¢ to ¢ ~*(U) is n: Ty emb (4)— Ty emb (4). Then, by the same
consideration as in the proof of Theorem 1 of §2, we see that ¢ : X¥— P? is a proper
surjective holomorphic map satisfying the conditions (i), (ii), (iii), (iv) of §l By the
same theorem, it is easy to check that the map ¢ has a ramification curve S, of type
(n/d,, S;), a ramification curve S, of type (n/d,, S,) and contractible curves A
(=1, -+, k, peS; nS,) of types (ka+Iny, kif+1n,, S;, S,). Therefore it follows
from Proposition 1 that the ramification divisor of ¢ is given by

R¢Qr4ﬁ+§“o&+ » Z{MH&HMﬁ%)U%
2 peS1nSzi=

On the other hand, for a surjective holomorphic map ¢: X¥—P?, the divisor
R,—@*c,(P?) is a canonical divisor on X. Therefore we have

a®)=g*c,(P)~R,.

Hence we have the formula:

ci(X)=o*c,(PH)— <——1>s1 <d— 1>§
1

-y Z {kia+P)+1{ny +ny)—1}4,,.

pPeES1nS2i=1

To obtain the formula for the second Chern class, we ~shall calculate the Euler
characteristic y(X) of X. First, taking a triangulation of X in which ¢ ~1(S; U S,)
appears as a subcomplex, we have

(4.1) AX)=2xX =0 (S; U S))+ (e (S, U SY) .

Next, taking a triangulation of ¢ ~!(S; U S,) in which ¢~!(S; N S,) appears as a
subcomplex, we have
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4.2) X(‘P—I(S1 v Sz)=X((P_1(S1 v Sz)—¢—l(s1 nS,)
+X(‘P-1(S1 NSy)).

On the other hand the restriction map of ¢ to X—¢ (S, U S,) is an unramified »-
sheeted covering over P>2—S; U S,. Thus we have

(4.3) KX =018, U S))=ny(P>—5,US,).
Since
¢~1(S1 YU Sz)—‘P_l(Sz N S,) =i=k#2 {S;i_gi N (P—I(Sl N S,)}

and the restriction map of ¢ to §;—S;n @ ~(S; N S,) is an unramified m-sheeted
covering over S;—S; NS,, where m; is the degree of the restriction map of ¢ to
Si—S;ne~1(S; N S,), if we take a triangulation of S; in which S, @~1(S, N S,)
appears as vertices, then we have

4.4) e~ '(S v Sz)—("_l(sl N 83) =mx(S; =81 N 8) +my(S,— 851N S,) .

Moreover, taking a triangulation of P? in which S; U S, appears as a subcomplex, we
have

(4.5) A(P? =81V S)=x(P*)—x(S; U S,) .

It is easily checked that

(4.6) X(8;—S81 N 8)=x(S)— 5,5, ,

4.7 XSy U 83)=x(Sy) +x(S2)— 85, ,

(4.8) W~ (S N Sy))= Z X( U Aip>
peS1nS> i=1,--,k

={i§1 AP —(k— 1)}5152
=(k+1)S,S, .
Hence we infer from (4.1), - - -, (4.8) that
1E)=ny(P*—S; U S) + (97 (S; U S)— 97 1(S; N S,)
+2(971(S N SY)
=n{)(P*)—1(S; U S)} +myx(S; — 51 N S,)
+myx(S,—S; N Sy) +(k+1)S;S,
=n{x(P*) = 1(S1) — x(S2) + 818} + {my x(S;)
+myx(S,)—(my +my)S; S} +(k+1)S,.S,
=ny(P?) —(n—m)x(Sy) — (n—my)x(S,)
+{n—(m+my)+k+1}S.S, .



172 S. YAMAMOTO

Noting %(S;)=2—2¢(S;) and y(P*) =3, we have
X(Y) ={2(m; +my) —n}+2(n—m,)g(S,)
+2n—my)g(S,)+(n+k+1—m;—m,)S,S,.

The second assersion is proved in the same manner as (I).

§5. 2 and 3-sheeted coverings of P>

Let y : X— P? be the n-sheeted covering of P? associated to a subgroup H of G
which is generated by oy, +fy,, nyy, +n,y, as in §3. We have n=on,—fpn,. By
Theorem 2, we can take a local coordinate neighborhood U of p (peS; N S,) such
that the restriction map of Y to y "(U) is equivalent to the map fy.. f; is the restriction
map of f: Ty emb (4")— Ty emb (4) to f ~'(V), where V={(z,, z,)€ C*|| z;| <¢;} is
a small open subset of Ty emb(4)=C?. The above (N’, 4’) is the r.p.p decom-
position of ¢’ = Ry(n,, — )+ Ry(—n;, @) in N;. We put

0=(0,0),
pi=(ny, —P),
p2=(_n1’ Ot)

and we denote by 4(o, p,, p,) the triangle with o, p,, p, as vertices. Then since
an, — PBn; =n, we see that the area of 4(o, p;, p,) is n/2. We put

_ (N2 B
)]

B e R
f2_< dl’ d1>’

where d; is the same as in §2. Then ¢’ =R, f; + R, f,. We see that ¢’ is a non-singular
cone if and only if the area of 4(o, p,, p,) is equal to 1/2. If ¢’ is not so, then we
consider the subdivision (N’, 4) of (N’, 4") consisting of non-singular cones o;
(i=1, ---, k+1) such as in §2, where

01=R0f1+R001, .
ai=R0vi—1+Rovi (l=29 "',k),
Orr1=Rov+Ro f .

Here v;=(k;, [}). Then, since each o; is a non-singular cone, the areas of triangles 4(o,
1, v1), 4(0, vy, v,), -+, A(o, vy, f,) are all equal to 1/2.

If X has singularities, then we denote by ¢: X—P? the composition of the
desingularization ¢ of X and y. We denote by ¢ and p, respectively the irregularity
and geometric genus of X or the non-singular model X of X. By Kawai [5], we see that
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g=0.

() First, we shall examine the case in which n=3. Since the area of 4(o, p,, p,)
is equal to 3/2, we see easily that (N, 4”) is equal to one of the following two r.p.p
decompositions 47 and 4,

(1) 4{={6’=R,f;+R,f, and its faces}, where

fi=(n, —f) and fz=<‘?"‘, %)

(2) 43;={c"=R,f,+R,f, and its faces}, where

n, —B
f =<?2, T) and f,=(-ny, o),
or (N, 4’) has one of the following two subdivisions 4; and 4,
(3) 43={0;=Ryf1+ Rovy, 6, =Ry, + Ryv,, 63=Rov,+ R, f, and their faces},
where

—n, +2 -
fi=(ns, —P). v1=< nt "2,“325>,

—2n,+n, 20—
vz=< ; 2, 3B) and f,=(—n,, o),

(4) 4,={0,=Ryf,+ Rov;, 0,=Ryv;+ R, f, and their faces}, where

f1=(n2a _ﬂ)> vl=<Ms a*;—li> and f2=(_nla OC).

3

)=/, D= fo

22

3) )

THEOREM 4. A 3-sheeted covering space of P* branched along S, U S, is
either a normal surface whose singularities are all rational double points (in this case
we have

1
Pa=9(51)+9(55) =5 (5, =28,)(25, - S,),
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or a normal surface whose singularities are all rational triple points (in this case we have
2
Pg=g(S1)+g(Sz)'? (S, _Sz)z) .

Proof. Let p be an arbitrary point of S; N S,. By an appropriate choice of the
local coordinate neighborhood U of p, we may assume that the restriction map of
toy "Y(U)is fy. If (N, A") is 4, or A4,, then one of S; is not a branch locus. If (N, 4")
has the subdivision (N, 4;), then ¥ ~'(U) has a singularity and its minimal de-
singularization is given by Ty emb (4;). Then it is easily checked that 4?=—2
(i=1,2), where 4;,=orb (x;) and y;=R,v;. By Artin [1], we see that the singulari-
ty of Y ~1(U) is a rational double point. If (N’, 4°) has the subdivision (N’, 4,),
then the minimal desingularization of y ~'(U) is given by Ty emb (4,). Then we
have A4%=—3, where 4, =orb (x,) and y, =R,v;. By Artin [1], we see that the
singularity of y ~(U) is a rational triple point.

We shall calculate the geometric genus p,.

(i) The case in which (N’, 4’) has the subdivision (N’, 4;). The minimal
desingularization of y ~!(U) is given by Ty. emb (45). Then since we have d, =d, =1,
by Theorem 3, we see that

01(X)=‘P*01(P2)—2{§1 +5,+ Y (A1p+A2p)}

p651 ﬁSz

and since, by Theorem 1, we have m, =m, =1, we see that
2(X)=1+4{g(5))+9(S,)} +45,S, .
On the other hand, by Theorem 1, we have
(p*(S1)=3§1+ Z (2A1p+A2p)’

peSinS2

0*(S,)=35,+ Y (A1,+24,,),

peSinSa

where A;,=orb (y;). Therefore we have

(deg (P)(cl(PZ)» Sl)=<§0*c1(P2) s 3§1 + Z 2A1p+A2p>‘

peSinS,

Hence we have

((p*cl(Pz), §1)=3V1 .
Similary we have

((P*C1(P2)a §2)=3"2 .
Since we have

(§i’ Ajp)"__éij, Ajpz =—2 and (Alp’ A2p)=l s
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we see that

~ 1
512=? (S12_2S1S2) s

~ 1 '
SZZ ="3— (S22—“2S1S2) .

Then by easy computations we have
5 8 8
CI(X)Z = 11 +8{g(S1)+g(S2)} —‘? (S12+S22)+? SISZ .
Since ¢=0, it follows from Neother’s formula that
-~ 1
PdX)=9(8,)+9(S2) —5 (51 —25,)28,-5).
(ii) The case in which (N’, 4”) has the subdivision (N’, 4,). We infer in the

same manner as in (i) that

CI(X)=¢*CI(P2)_2(§1+S2)— Z Aips

PeSINS;
c)(X)=1+4{g(S))+9(S,)} + 35,8, .
And moreover following equations are proved in a similar manner:
(p*ci(PY), §)=3v,  (i=1,2),
(4, S)=1 (i=1,2),

Alpz =_3,

5.2 1 2

1 =—3“ (Sl —5:82),
5.2 1 2

2 =—5‘ (Sz —8:8,).

Then by easy computations we have
ci(X)2=11+8{g(S;)+9(S,)} —% (S,? +822)+% S.S,.
Since g=0, we have
PR) =gl + 05— 5 (8,52,
(II) Next, we shall examine the case in which n=2. Since the area of 4(o, p,, p,)

is equal to 1, we see easily that (N, 4”) is equal to one of the following two r.p.p
decompositions 4, and 4,
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(1) 4,={0’=Ryf1+R,f, and its faces}, where

—n1 o

fi=(ny, —p) and f2=(‘2—, 2>,
(2) 4dy,={0'=Ryf1+R,f, and its faces}, where

f=<"712ﬁ-) and fy=(=n;, %),

or (N’, 4’) has the following subdivision 4,
(3) dy={6,=Ryf,+ Ryv;, 6,=Ryv; + R, f, and their faces}, where

n,—ny; a—p

fi=(ny —B), vl=< 7 o ) and f,=(—ny, a).

b2 p2=1>

Uy

/. p=h =1

0 0

) @ 3

From this, by the same arguments as in above, we see easily that a 2-sheeted covering
space of P? branched along S; U S, is a normal surface whose singularities are all
rational double points (see Perrson [9]). In this case, for the non-singular model X of
X such as in §4, we have

- 3 '
c1(X)*=10+4{g(S,)+9(S,)} +5,S, 5 (8:2+8,%,
c(X)=2+2{g(S;)+9(S,)} +25,5,,

5. 1 1
PfX)=—>{9(51)+9(5,)} -5 G —8,)%.

Remark. Let y: X—P? be a p-sheeted covering of P? branched along S; U S,,
where p is a prime number. In this case, we see that y “}(U) has a rational double
point if and only if (N’, 4”) has the following subdivision 4

A={0;=Ryv;_1+Ryv; (i=1, - - -, p) and their faces} ,

where p:=v,
vo=p1=(ny —P),

vi:(—in1+(p—i)n2 ioc—(p—i)ﬁ>,

b

p p

vp=p2=(—n1’ Ol) .
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From this, by the same arguments as in above, we see that if X is a p-sheeted covering
surface of P? branched along S; U S, and has only rational double points as
singularities, then for the non-singular model X of X such as in §4, we have

cei(X)*=(p+8)+4(p—1){g(S

02()?)=(4—p)+2(p—1){g(Sl)+g(Sz)}+2(p—1)S Sz,
5 1
p 8= g5+ 0052} - ((p 410052+ 5,220 18,5,
§6. The difference of tangent bundles

Let ¢ : X—X be the same as in § 1. We denote by 7 3 and 7, respectively the
tangent bundles of X and X. Then we may assume that for an arbitrary point
peX, there are local coordinate systems (t,, 2,) and (z,, z,) around  and p=0(p)
respectively such that ¢ is expressed as

(21, 22) =(tf13, t513)
where a, b, ¢, d are non-negative integers with the property
(6.1) ad—bcx0.

Then we have a sheaf homomorphism ¢: J 3—@*J 4 defined by
0 0z, 0 0z, 0
o (o) o o 2
0 0z; 0 0z, 0
o (o) o e

where 0/0t; and 0/0z; are tangent vectors.

By (6.1), we see easily that ¢ is a monomorphism.

For each point j e X, we denote by ¢5: (7 25— (9*T x); the homomorphism of
stalks induced by ¢. We shall prove the following lemma.

LEMMA. Let

0
p=g(ty, tz) +gz(t1a tz)

be a section of p*T y over X and we denote by pj its germ at a point p of X. We put p=
(t1, t,). Then we have
(I)  Under the conditions t, %0 and t, %0, p; always belongs to the image of b5
(II)  Under the conditions t; =0 and t,%0, p, belongs to the image of &5 if and
only if, (1) if a, c21, then g, and g, can be written in the forms

g1(t1, ) =15 Yo (&) + 1, B, (ty, 1)},
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9a(t1, ) =1 Hop(t) + 118511, 1)}
where o, B; are holomorphic functions at p and o,(t,) and ay(t,) satisfy the relation
ety () —at5a, (1) =0,
and (2) if c=0 and a, d= 1, then g, can be written in the form
g1(ty, ) =t{"te(ty, 1),

where ¢ is a holomorphic function at p.
(III)  Under the conditions t; =0 and t,=0, p; belongs to the image of ¢ if and
only if, (1) if a, b, ¢, d= 1, then g, and g, can be written in the forms

gi(t, )=t{7 137 (1, 1),
g2(ty, )=15"1157 (11, 1),

where h; is a holomorphic function at p and moreover dh, — bh, and — ch, +ah, can be
expressed in the forms

dhy(t,, 1) —bhy(ty, 1) =1t6,(11, 1),
—chy(ty, ) +ahy(ty, L)=1e(ts, 1),
and (2) if c=0 and a, b, d= 1, then g, and g, can be written in the forms
91ty ) =173 (8, 1)
gt )= 137, 1),

where h; is a holomorphic function at p and moreover dh,—bt h, can be expressed
in the form

dhy(t1, 1) —btihy(ty, ) =161y, 1) .
Here ¢; and ¢ are holomorphic functions at p.

Proof. First we assume that ¢, =0, £,=0 and a, b, ¢, d=1. We suppose that g,
and g, satisfy the conditions in (1) of (IIT). Then we put

1
Sty t)= d be ety ), folty, t2)=m &xlts, 1) -
By the definition of ¢, we have
0 a— 0 6
d)(b?:)—atl za 1+Ct a
g b 4 -1 0
¢<6t2> btltz a—l+dt it2 622'

Then it follows from (6.2) that

6.2)
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a a — 1 a—14+b a c—1.,d a
¢<f1a+fz E>_M 81(‘”1 t2621+c£1 t oz,

0 0
£, (bt‘;t’g“ —+dtd? )

+ oz, oz,

ad—bc

— 1 a=-1,b—-1 a
—ad_—l—)z {tl tz (at281 +bt182) 821

0
+t97 4 (et ye, +dtyey) —}
0z,

— 1 a=1,b-1 0
S l:tl th {a(dhl—bh2)+b(—ch1+ah2)}6—21

+57 16471 c(dh, —bhy) +d(— ch, +ah,)} %}
2

0 0
=ta_1tb_1h _+tc—1td—1h o
1 2 1 Z, 1 2 2622
—g1az1 92622-
Conversely we suppose that there is a section

0 0
fi(ty, t3) 5{1‘+f2(t1, ty) E

of % over a neighborhood of p such that
Then we infer from (6.2) that
91(ty, B)=t1"13" Hanfi(ty, ) +bt fo(ty, 1)},
ga(ty, )=t 8" Het, /i(ty, ) +dt fo(ty, t,)} -
We put
h(ty, )=at, fi(t;, t,)+bt (14, t,) ,
hy(ty, ) =ctofi (1, 1) +dt, f(ty, 1) .
It is easily chekced that
dhy(ty, t,)—bhy(t,, t;)=(ad—bo)t,f(t, t,) ,
—chy(ty, ty)+ahy(ty, t,)=(ad—bo)t, f,(t;, t,) .
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This implies that g, and g, satisfy the desired conditions. Hence we can prove (1) of
(II0).

Next we assume that ¢, =0, 1,50 and a, c=1. We suppose that g, and g, satisfy
the conditions in (1) of (II). We put

filty, ty)= 1 {(day(t2)t5™ 1 —boy(t,)e5 1)

(ad —be)ty*ta-
+1,(dBy(ty, t)t5™ 1 —bP,(ty, t2)t57 N},

. 1 ,
—(ad—bc)tb“—l {—cByty, t2)t5+aPy(ty, ,)t5} .
2

Then, by the same arguments as in (1) of (III), we have

0 0 0 0
¢ (fl E"‘fzg)-% 52—14‘926—22-

Conversely we suppose that there is a section

folty, t)=

0 0
fi(ty, t2) 51—+f2(t15 t5) E

of J ¢ over a neighborhood of p such that
Then we infer from (6.2) that
g:(ty, ) =11"{137H(atr /y(t1, 1)+t o8y, B))}
ga(ty, ) =157t et fi(ty, )+t fo(ty, )} -
Now we put
137N atfi(ty, )40t [ty L) =(t) +1:Bi(4, 1)
t37 ety fi(tys ) +dt fo(ty, ) =0,(1) + 1, B,(14, 1),
6.4 Sty B)=y(t)+ 1,024, 1) .
Then, substituting (6.4) in (6.3), we have

a,(t)=atdy(t,) and o,(t)=ctsy(t,) .

(6.3)

This implies that
ety () —at5o,(1,) =0 .

Hence we can prove (1) of (II).
To prove (2) of (III), we assume that ¢, =0, ,=0 and ¢=0, a, b, d=1. We
suppose that g, and g, satisfy the conditions in (2) of (III). Then we put
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filty, t)= 8( 1’ ‘) and f(ty, tz)zb%)—'

In this case, by the definition of ¢, we have

0 —qra—14b g
¢<a>—at1 2 0z’

0 p—q1 O 0
¢<at2> bt4t) 6—1+dt 6—22.

Then it follows from (6.5) that

4 6_8 a—lbah2 bla 415
(b(fla"‘sz)—;jatl tza_ btit; a—1+dt oz,

1 ., e o 8
={7 it l(dhl—bt1h2)+7t1tg lbhz}'az—l‘i'tg lhzbz_z

(6.5)

91 0z, 92 oz,
Conversely we suppose that there is a section

fi(ty, tz) +f2(tls tz)

2
of ¢ over a neighborhood of j such that

gla%+926%= ¢ <fla% +f26—(3;) .
Then we infer from (6.5) that
91(ty, B)=t{"13"Han fi(ty, L) +bt fo(t, 1)},
9x(ty, )=15"{dfy(1,, 1)} .
We put
hi(ty, t)=at, fi(ty, ;) +bt f5(t1, 1),
hy(ty, t)=df5(t, t,) .
It is easy to see that
dhy(ty, t,)— bt hy(2y, t)=1t{adf (1, 1,)} .

This implies that g, and g, satisfy the desired conditions. Hence we can prove (2) of
(I10).

As the cases in which (I) and (2) of (II) are easily proved, we omit them.

We may assume that J ; is a submodule of ¢*7 5. We shall prove the following
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propositions by a similar argument as in Kawai [5].

PROPOSITION 3. If @(A4)NnS;x, then we have the following sheaf
homomorphism

Vigs: Axl@XF(S)@MA)) - p*T 4/ T 5
for a non negative integer k, where ¥(S;) is the restriction of normal bundle v(S;) of S; in

X to p(A,), v(A,)* is the dual bundle of the normal bundle v(4,) of 4, in X, o, is the
restriction map of @ to A, and A* is the injection of A, into X.

Proof. Let p be an arbitrary point of 4,. By the condition (iii) of § 1, we may
assume that the defining equation of 4, is ¢, =0, the defining equation of S; is z; =0.
With respect to these coordinate systems, we shall define the homomorphism '//’,fta,s,»
by

) d
‘l"ﬁa,si(g(tz) a—ﬁ@dt?")ﬂ’ig(tz) 6_21’

where 0/0z, is considered to be a normal vector on the left and a tangent vector on the
right and dt, is a conormal vector.

To show that ¥} s, determines the sheaf homomorphism, we take any other
coordinate systems (¢, t,) and (Z, Z,) such that the defining equation of A4, is z; =0,
the defining equation of S; is Z; =0 and ¢ is expressed as

(&1, Z)=(ii13, fi3) -

Now, we may assume that Wj,w s, 18 given by
Vs G1E) = @S =TiG(E,)
* 0z, 0z,
Then it is sufficient to show that if
0 .0 _
g(t,) E®dt P¢ and §(z,) &.:@dt o
are the same holomorphic sections of 1%[¢ *(V(S))® (v(4,)*)®"], then

0 = 0
thg(t,) . and  tig(t,) ==
Z1 Z4
are the same elements of ¢*7 5/ 5. Since we have
z=ay(Z, )7, and 1, =b(t,, L)1y,

where a,(Z,, 7,) and b(t,, t,) are non-vanishing holomorphic functions, we have the
following relations with respect to (co) normal vectors

0 .., 0 AT 3
a—z_l=a1(21, Z) 2, and  dt; =b(t,, t)dt, .
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Hence we infer from the assumption that
(tz) ®dt and g(tz) ®dt

are the same holomorphic sections that

g(t,)b(ty, 1) =g(tr)ay (4, 2,) -

Therefore, by easy computations, we have the following equations with respect to
elements of ¢*7

o _ 0 0 0zy 0 0z, 0
K I Sy S 1 Zf2 _~
(6.6) gti 0z, gtlaz‘l gtlaz1 gt (621 6zl+52_1 522)

—(0a,_ 0 0z, 0
K 091 - 2
—gti <621 1621+621522>

Here we put

day _ 1 _ da
(6.7) ga(ty, t2)= —gt} 5_—121= "a—l gtk 62'121 ,
0z,

ga(ty, t)=—gth == o,

First we consider the case in which 4, is a ramification curve of type (1, S;). If

el (Aandy),

pxa
then we may assume that ¢, =0, ,20 and ¢ is expressed as
(Zla 22)=(tqt’2” tg) (1’], d;. 1) .

Then it is easily checked that g, is written in the form

g1(ty, 1) =11t5hy(1;, 1),

where A, is a holomorphic function at . Then, by (2) in (I) of Lemma, we see that
the element (6.6) belongs to a germ of (7 x);. If

pe | (4,1 Ap)
Bxa

for some contractible curve 4, (8 a), then we may assume that ¢, = 0,,=0and ¢is
expressed as

(zl’ 22)=(tr1’tg, tg) (’1, ba dZ 1) .

Moreover we may assume that pe S;n S; for some index j (3i). Then, since z, =0
and %, =0 are the defining equations of S;, we have

2, =a,(Zy, 2,)Z,

where a, is a non-vanishing holomorphic function at p.
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Hence we have
0z, Oa, _
Ao =5 Z).
0z, 0z,

Substituting this in the right of (6.7), we have

9a(ty, ty)= =gt - 22,= ——gth——2z,.
z z
This implies that g, and g, are written in the forms
g1(ty, t)=11t5h (1, 1),
9.t )= t3h(1y, 1),

where 4; is a holomorphic function at p. Again, by (2) in (III) of Lemma, we see that
the element (6.6) belongs to a germ of (7 )5

Next we consider the case in which 4, is a contractible curve of type (p, g, S, S -
By the same arguments as in above, we obtain

91(ty, ) =155 (1, 1),
9:(ty, ) =tit5hy (1), 1),
where 4; is a holomorphic function at p. If

pé ) (4.0 4y,

Bxa
then we may assume that 7, =0, #, %0 and ¢ is expressed as
(1, 2)=@tf15, tit3)  (p,q21).

Hence, by (1) in (II) of Lemma, we see that the element (6.6) belongs to a germ of
(7 25 If pe A, n A, for some contractible curve Ay, then we may assume that ¢z, =0,
t,=0 and ¢ is expressed as

(219 22)=(tftga t‘{tg) (P, q, ba d_Z. 1) .

Then, by (1) in (III) of Lemma, we see that the element (6.6) belongs to a germ of
(7 2)5 As the other cases are easily checked, we omit them.

PROPOSITION 4. (1) If A, is a ramification curve of type (1, S;), then we have a
homomorphism

n—2 n—2
V= X Vst Y 23[0 XAS)@MANN®] = 0* T 1/ 4
k=0 k=0
such that the restriction map of 4, tO X —ﬂga (A, N Ap) is an isomorphism.

(2) If A, is a contractible curve of type (p, q, S, S;), then we have a
homomorphism
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p—2 ' q-1
l/IAa= Z ‘llAqui+ Z !//’,;a,s,*

Z 22 ¥(ASN®(M(A,)*) ]+ Z 25[@ ¥ S )®(MAN*) "]
—0*T x| &
such that the restriction map of Y 4, to X— \J (4, A4p) is an isomorphism.
BFa

Proof. We shall use the notations as the same as the proof of Proposition 3.
(1) By the definition, we have

S el @t =St
Val 2 gk(t2)5_®dt1 =), thailts) 2.
k=0 Z2 k=0 Z4
Let j be an arbitrary point of

0
A~ U (A,nAp) and g,(ty, tz) +g2(t1, tz)

Bxa Z3

be an arbitrary element of (¢*7 x);. Then, by (2) in (I) of Lemma, we see that

0 0
g1(ty, tz) +gz(t1’ tz) <Z tlak(t2)>

mod (7 g); Where
n—2
gy(ts, )= o)t +17 Tey(ty, t5).
k=0

This implies that (¥ ,,); is bijective.
(2) By the definition, we have

p-2 Fil q-1 0
‘/’Aa< ) gk(tz)—_®dt P+ Z hk(t2)7®dt i®k>
= = 2

= z t1gk(t2) + z tkhk(tz)’_
Let p be an arbitrary point of
0
A,— ) (4.n4p) and g(ty, )5, +h(t1, t) 5.
Bxa

be an arbitrary element of (¢*7 y);. We put

p—2
glty, t)= Y. thalt)+15 oy (t) +1,B1(t1, 1)}
k=0

q-2
h(ty, t;)= Z thhlt,) + 19" Hog(ty) +1,Ba(ts 1)} .

k=0
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Then we can write A(z,, ¢,) in the form
q-2 q
hty, t)= ), tihlty)+19" 1{“2@2) —;ttz’—d‘xl(tz)}
k=0

_ q _
+t47! {? t5 7% () + 14 Bots, tz)}-

By (1) in (II) of Lemma, we infer that
(t t)i+h(t t,) g and pizt" (t,) 4 +qi1t"h(t) 9
gy, Iy oz, 1 I oz, P 19ill2 0z, & 1l 0z,

are the same elements of (¢p*J y/T %) Where
h _ 494 b4
a-1(t)=0y(t,)— » 3 %y(t,) .
This implies that (y 4,)5 18 surjective. It is obvious from the same lemma that (Y4518
injective.

PROPOSITION 5. (1) If A, is a ramification curve of type (v, S) and Ay is a
ramification curve of type (u, S;), then for an arbitrary point peA,n Ay, the
homomorphism ( 4,1tV Aﬁ)ﬁ is an isomorphism.

(2) Let A, be a contractible curve of type (p, q, S;, S,). If A, is a ramification
curve of type (v, S;), then for an arbitrary point pe A, N A p» the kernel and cokernel of
the homomorphism (Y 4+ 4 s are given as follows:

Ker (l//Aa_'_WAB)ﬁg C(v—l)(p—l) >
Coker ( ., + Yap=C.

and if Ay is a ramification curve of type (u, S;), then for an arbitrary point peA,n A,
we have

Ker (‘/’Aa““pA,;)ﬁgC(u_lm >
Coker (l//Aa+l/lAﬂ)I;§0 .

(3) If A, is a contractible curve of type (p, q, S, S;) and Ay is a contractible curve
of type (s, t, S;, S}), then for an arbitrary point pe A, N Ag, we have

Ker (1//Aa+¢AB S CP D6 Dar
COkCI’ (lpAa+ WA,g),;’E C .
Proof. We shall prove (3). We may assume that ¢ is expressed as
(21, 22) = (215, 1119

and 4, is defined by ¢, =0, Ap is defined by #,=0, S; is defined by z, =0 and S is
defined by z,=0. With respect to these coordinate systems, the homomorphism
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VgtV ag is given by
s 4 ok, % 0 k
Wag+ ¥ ap)| X alt)—®dt P+ Y Bulty)—@dt P
k=0 0z, k=0 0z,
s—2

t—1 a
+ Z Vk(t1)—®dt + 3 5k(t1)5‘®dt?k>
k=0 2

=g4(ts, t2)_+92(t1a tz)"— ,
0z, 0z,

where
p—2 s—2
gilty, t)=Y o(t)th+ Y ek,
= k=0
q—1 t—1
galts, t)= Y. Btdth+ Y. dulty)eh.
k=0 k=0
We put
ak(t2)=2 akitiZ (k=09 Y p_2),
i=0
But)= Y buth k=0, ---,q-1),
i=0
(6.9) ©
'Yk(tl)= Z Ckitil (k=0, "‘,S"'Z),
i=0

Olt)=) dyty (k=0, -+, t—-1).
i=o0

Substituting (6.9) in (6.8), we have

p—2 s—2

© s—2
gi(ty, )= Z Z (ag+cu)tith+ Z Z aatith+ Y Y catith,
i= i=0 k=s-—-1

k= i=p—1 k=0
q-1 t—1 <o) o t—1

galts, )=, Y (by+d)tith+ 2 Y butith+ ) Y dgtits.
i=0 k=0 i=0 k=t i=q k=0

First we suppose that
g1(ts, tz) +92(t1, tz)a
Z3

is the image of ¢ at p. Then, by (III) of Lemma, monomial t?~'z§~! divides g,(t,, t,)
and 5~ 1¢57! divides g,(¢,, t,). Hence we have
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ag+c;=0 @i=0, ---,p—2,k=0, -+, 5s=2),
4,=0 (=0, -+, p—2, k2s—1),
¢i=0 (izp—1,k=0, ---,5-2),
(6.10) by+d;=0 (i=0, ---,g—1,k=0, -+, t=-2)
or (i=0,---,9—2,k=0, ---,t-1),
b, =0 @(i=0, ---,q-2,k=1),
d;=0 (izq, k=0, ---,t=2).

From (6.10) we have
91ty ) =175 hy (4, 1)
9oty ) =111 (1, 1)
where

hy(ty, 1)=0,

oo} 0
hy(ty, t))=(by—11-1+di—y4-1)+ Y diyivg-1ti+ ) by kri-1th .
i=1 k=1

Then, since ¢; (i=1, 2) divides Ah,(¢;, t,), we see that
by—ii—1+di_y4-1=0,
by-1,=0 (kz?),
d,_1;=0 (izq).
Hence we have
by+d,;=0 @(i=0, ---,g—1, k=0, ---, t—1),
6.11) by=0 @@=0, ---,g-1,kz1),
dy=0 (i2q, k=0, -+, 1=1).
From (6.10) and (6.11) we see easily that

Ker (l//Aa+l//Aﬂ)ﬁ—{ < i ’—®dt ®k
i=0
CE (Fas) a5 (5 o) Laast
=0 0z, ! k=0 \i=0 . 0z, 2
Z (qi bt ) 0 ®dt $*
k=0 = 22

ay, by € C} .

Hence we have
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Ker (l//Aa‘l'l//Aﬂ)ﬁgC<p_1)(s_1)+qt .
Next let

0
gi(ty, tz) +g2(t1, tz)

be an arbitrary section of p*J x at p. We put
p=2 s—2

g1(ty, t)= Z al(e)eh + Z bk(t,)th
k=0

+ 870y Hay +1,by(t) +ty04(t) + t1t2d4 (84, 1)},

q-2 t—2
galts, t1)= Y ak(e)th+ Y bh(e et
k=0 k=0

+197 15 1 by(t)) +cp(ty) + 1 t2dy (8, £)))
If we set

uft)=ailt) (=0, -, p-2),

Butr)=al(t,)  (k=0, ---,q-2),

- q
By-1(tr)=t% 1C1(tz)“; they(ty),

))k(tl)=b'{(t1) (k=03 ”.95_2)’
Slty)=bi(t,)  (k=0,----,t-2),

_ t
0, 4(t)=t1 le(tl)__s— t1by(ty),

then, by (IIT) of Lemma, we see easily that

0
{gl(tla ty) — +g2(t1, t2) } { tP 1yt }
9
0z,

p—2 s—2
E(kgo Wt + D et )
<Z Buta)t + Z it )t )

mod (J g);- From this we have

Coker (4, +l//AB)-—{at” lps—1 g
0z,

aeC}.

Hence we have
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Coker (l//A¢+‘l/Ap)ﬁ; C .

The other assertions are proved in a similar manner.
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