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§1. Introduction

The aim of this paper is to clarify some problems of finite groups in the case of
infinite integral representation type, and to construct explicitly infinite series of
indecomposable integral representations of finite abelian p-groups. These problems
are closely related to unsolved arithmetical problems.

One of the basic problems in the theory of integral representations is to know all
the indecomposable representations. Even if it should be settled, we still have to find
the full set of direct sum invariants, since the Krull-Schmidt-Azumaya theorem
cannot hold in our situation.

The first treatment of integral representations of finite groups was due to F. E.
Diederichsen (in 1938) in the case of cyclic group of prime order. The necessary and
sufficient conditions for a finite group to have infinitely many indecomposable
integral representations has been established (in 1962) by several mathematicians
(Berman, Heller-Reiner, Jones, Dade).

The development of integral representation theory has been much influenced by
algebraic number theory. In 1978, Reiner almost completely settled the integral
representation problem of cyclic group of prime power order p2. However, it has not
been accomplished how to determine explicitly all the indecomposable integral
representations of non-cyclic groups with infinite integral representation type (except
for the Klein’s four group). It should be noted that Berman and Gudivok (in 1964)
have established a method, which is used to construct families of integral repre-
sentations parametrized by several matrices (parameter matrices) and which can be
applicable to the construction of indecomposable integral representations of finite p-
groups.

The second section is devoted to the notations needed in the rest of this paper,
and to a notice in the general integral representation theory of orders. The Berman-
Gudivok theory will be described in § 3. Berman-Gudivok used the Jordan normal
blocks as parameter matrices for the construction of infinite series of indecomposable
integral representations of an abelian group of type (p, p).

The main motivation of this paper is to know another explicit informations of
infinite number of indecomposable integral representations.
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104 M. ISHIBASHI

The fourth section is the heart of the present paper, where we investigate a
relation between sizes of parameter matrices and indecomposability of integral
representations. We also construct infinite series of indecomposable integral repre-
sentations, and show how to relate the problem to arithmetical problems (for
example Artin’s conjecture on primitive roots).

This paper contains the major part of the author’s thesis (Rikkyo University,
1983). I would like to express my gratitude to Professor Kinya Honda for his careful
reading and guidance during the preparation of this paper. I would also like to
express my sincerely thanks to Professor Klaus W. Roggenkamp for informing me of
some related papers, and for pointing out an error in §4 in the manuscript of this

paper.

§2. Basic preliminaries

Let us recall the basic definitions and notations in the theory of integral
representations of orders. Let R be a Dedekind domain whose quotient field X is an
algebraic number field, 4 be a finite-dimensional K-algebra, S be an R-order in 4, gL
be the category of left S-lattices (i.e. R-torsionfree finitely generated S-modules), and
n(S) be the number of isomorphism classes of indecomposable left S-lattices.

DEFINITION 2.1. An R-order S is said to be of finite representation type
(resp. infinite representation type) if n(S) < + oo (resp. n(S) = + o).

Let P be a prime ideal in R, K, be the completion field of K at P, R, be the
valuation ring of Kp, and S, be R,®RS. Let H, denote a Sylow p-subgroup of a finite

group G. For an object M in the category gL, let M, be the Sp-lattice Sp@sM
(=Rp®@rM)in g L.

Then the following propositions and theorems are well-known.

PROPOSITION 2.2.  n(S)< + oo if and only if n(Sp) < + oo for all prime ideal P in
R.

PROPOSITION 2.3. Let Psp and p||G|. Then n((RG)p)< + oo if and only if
n((RH,)p) < + 0.

PROPOSITION 2.4. (i) If H,, is non-cyclic or | H,|2p?, then n((RH,)p)= + c0.

(i) If H, is cyclic and | H,| <p?, then n((ZH,)p) < + co.

THEOREM 2.5. n(ZG)< + o if and only if H, is cyclic and | H,|<p* for every
rational prime divisor p of | G|.

The above Proposition 2.4 (ii), Theorem 2.5 were generalized by Dade,
Jacobinski, Drozd-Roiter, and Roggenkamp.

The crucial step of the proof of the necessity in this theorem is the construction
of infinite series of indecomposable integral representations. Furthermore, the set of
degrees of the above infinitely many indecomposable integral representations is
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unbounded in the case of infinite integral representation type.

The complete classification (i.e. complete description of the indecomposable
representation modules up to isomorphism, and finding the full set of direct sum
invariants) of integral representations of a finite group which has infinite integral
representation type, has been considered to be too complicated to treat. In the case of
infinite integral representation type, we shall distinguish the representation types into
tamely and wildly.

DEFINITION 2.6. (cf. [3]) An R-order S is said to be of wildly representation
type if there exist a full subcategory U of L, a field F, and a representation equivalent
(i.e. full, dence, isomorphism-reflecting additive) functor T such that T: U— gy, nM
(F[X, Y] is the polynomial ring of two variables X, Y over F, and gy, M is the
category of finitely generated F[X, Y]-modules.) Otherwise, S is said to be of tamely
representation type.

In the case of wildly representation type, it seems to be quite hopeless to classify
completely the indecomposable representations.

An integral R-matrix representation of an R-order S is a ring-homomorphism
from S into M,,(R) (the ring of full set of (m, m)-matrices with entries in R). For two
objects 4, B in gL, let r;: S—>Endg(4) and r,: S->Endg(B) be integral R-linear
representation of S afforded by A and B, respectively. It is said that r, is R-equivalent
to r, if there exists an R-isomorphism j from A4 onto B such that r,(x)=j ~'r,(x)j for
all xeS.

The difficulty of integral representation theory arises from the fact that the R-
order S is not always of finite representation type and several useful theorems in the
ring theory (for example, the Krull-Schmidt-Azumaya theorem) do not hold.
However, some of these hold in the case of local integral representations, and hence
we can treat some Z,-representations. Suppose that the class number of Ris equal to
1 and rankz4 =m. Then, by the well-known structure theorem of finitely generated
torsionfree modules over a Dedekind domain, we have that M,,(R) =~ Endg(4). In this
case, integral matrix representations coincide with integral linear representations.

Let a be a non-square natural number, and P, be the set
{g; rational prime | (Z/gZ)*=<a mod ¢)} .
Let p be an odd prime, and P, be the set
{g; odd prime | g¢l| p*"' =1, (Z/gZ)*={p mod ¢}} .

Remark. Ifm |n (m divides n) ahd m? y n (m* does not divide n), then we denote
m||n.

In the rest of this paper, we assume the following conditions;
(i) The set P, is an infinite set.
(ii) The set P, is a non-empty set.
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Remark. The condition (i) is called Artin’s conjecture on primitive roots.

Let C, be a cyclic group of prime order p, and 4 be the class number of the cyclo-
tomic field Q(,) ({,; a primitive p-th root of unity in the complex number field).
Diederichsen began (in 1938) to study systematically the theory of integral repre-
sentations. His result is that n(ZC,)=2h+1. Furthermore, he tried to construct
infinite series of indecomposable integral representations of finite group, but didn’t
succeeded. In 1933, Latimer-MacDuffee had established a relation between integral
matrices and ideals in an order. Let W(X) be a fixed monic polynomial of degree » in
Z[X] such that W(0)#0, and W ,(X) denotes the minimal polynomial of a matrix A.
Their result is that there is a one-to-one correspondence between the Z-similarity
classes of (n, n)-matrices A with entries in Z such that W ,(X)= W(X), and the classes
of nonsingular ideals in the ring Z[X]/(W(X)).

Throughout in this paper, let &,(X) denote the m-th cyclotomic polynomial
(deg @,,(X)=¢(m), where ¢ is the Euler function), and (3) denote the Legendre
symbol.

§3. The method of constructions by Berman-Gudivok

Berman and Gudivok [1] has established a framework of the indecomposable
Z,-matrix representations of finite p-groups. Let M, ,.(R)=M(n,, n,; R) denote the
full set of (n,, n,)-matrices with entries in a ring R. In the case of n, =n, =n, we briefly
write M,(R), and let E, be the unit matrix in M,(R). In the rest of this section, we fix a
rational prime number p. For brevity, let {,(={,r) be a primitive p’-th root of unity in
C (the field of complex numbers). Then End, (Z,[(,]) = M, ,-(Z,) with respect to the
fixed basis {{}; 0<j<o(p")—1} of Z,[(,], where @(p")=p" '(p—1). Thus, there
corresponds the matrix

0 1
0 1 0
£ = 0
0 1
—1 * . . . * *

to the endomorphism of left multiplication by {, of Z,[(,]. Furthermore, let {™ be
the Kronecker product

cr®En = e eMn(P(P’)(ZP) .

. i~
~

Let {c) be
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0 0 ay

a  |eN(p), 55 Z,) s

0 0 Qo(pry-1
o(p)—1 .
where c= Y alieZ[(] (r,seN).
i=o

We choose suitable s(e N) to substitute each {c) in a block of matrix. For every B=
(ci)) € M(ny, ny; Z,[L,)), let (B be ({c;;») € M(nyo(p"), nys; Z,). The matrix <B) is
called the blowing up of B.

Let C,.=(a) be a cyclic group of order p'(=3).

THEOREM 3.1 (Berman-Gudivok Theorem 3.1in [1]). Let m,, m,, ms, i, j, k be
rational integers such that 1<my, m,, my<t, m;#m,, m; #m;, m,#m;, 0=
i<p(p™), 0Zj<e(p™), 0=k<i, 0Zk<j, and let r be min {p(p™)—i, e(p™)—],
i—k,j—k}. In the case of r= o(p™*)—i or r=j—k, assume that (p™*)#i+j—k. For a
matrix B (parameter matrix) in GL, (Z,[(,,,]), let W,(B)(a) be

44 (1 =L )VE (1 =L )B>
0 Nglll <(1 - sz)jEn>
0 0 g

Then W(B) is a Z -representation of C,., and W,(B) is Z ,-equivalent to W,(B’) if
and only if B is similar mod (1—{,, )" to B" in GL,(Z,[(,,,]). Furthermore, W,(B) is Z -
indecomposable if and only if B is indecomposable mod (1 -, )".

THEOREM 3.2 (A generalization of Berman-Gudivok Theorem 3.2 in [1]). Let a
be a generator of the cyclic group C,r. Letdber—3 (5<reN)and W, (B, - - -, By)(a)
be the following matrix,

[0 (Ey {(=(p)Byy - (1 =L, ) *Basyd (B
fw  <(E» CEy CE» CE»
g 0
0 tw
E,

whererzm;>m,>--->m,_;>0,j,=0(p™***)—-1(1<k<d—1=r—4)andB,, - - -,
B, are parameter matrices in GL,(Z,[(,,]). Then W(By, - - -, B,) is a Z -representation
of Cp, and W, (B, - - -, By) is Z,-equivalent to W,(B;, - -, B}) if and only if there
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exists. H in GL(Z,[(,]) such that H™'B,H=B; (mod(1-{(,)) (1<v=Zd).
Furthermore W,(By, - -, B,) is Z,-decomposable if and only if there exists a suitable
invertible matrix H in GL(Z,[(,,]) such that

H'IB,,HE(;" L")(mod(l—cml» (1<v=d),

where the sizes of square matrices Sy, - - -, S, (resp. Ly, - - -, L,) are equal to each other.

Proof. To begin with, let us notice that there exists a one-to-one cor-
respondence f such that
f(B)=§ € R < Mw(p’"n( )

| ) Endy (M) .
u

B eM\(Z](,,)) = Endg, (M)

where Ry ={XeM,,m (Z,) | X{® =" X} and M is a free Z Z,[{,J-module of rank n.
Without loss of generahty we may assume that (2=(, _, (m—l 2, -
Since {}={,/(;=(2" 1 is a primitive p’-th root of unity G=Ck P71 where 0<i<

JjeZ) and {5 ‘{(C/C,)" T G+ =T, we have
{Wn(Bla S Bd(a)}p

oz 0 (BB ED o0 (DLl By
Chete) (P Lm) By - (DLl B
_ Cs:;p(_p)) 0
0 ' Cg:fu(tlﬂ)
E,

Thus the (1,3)-block of the matrix {W,(B;, - - -, B))(a)}"™ is
<¢v(f’1)¢p(c'z)"'¢p(cim) IT ¢! E">=0’
j=1

because of @,((;)=0. Using the similar method, we see easily that all the blocks
except the diagonal blocks of {W,(B,, - - -, B,))(a)}¥ (r=m,) are zero matrices with
suitable sizes, and {W,(B,, - - -, B,)(a)}¥ is a unit matrix. Therefore W.(By, -+, By
is a Z, representation of C,. Suppose that C'W,(B,, - -, B)a) C=
W.(B1, - -+, Bj)(a), where
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By the lemmas with respect to the basis changes of Berman-Gudivok [1], we can take
the matrix W, (B, - - -, B;)(a) to the following form W’;

F® 0 (Hi'Hyy {(1={n Y H{'BiH,) - <(1 ~{w Y4 'H{'By_\H, ><{H{'B,H,)

{@W(H;'Hs) (H;'Hyy o (H;'H,_) (H3'H,)
7(n)
m3
0
0
£
E,.
Now
Emv(p"'x) ! Emp(p"';)
* *
E'W’(Pmr-l) w’ Enq;(pm,_l) = Wn(Bl,s Y B,;),
0 0
E, E,
we have

H{'H,=E, (mod(1—{,)), H;'H,=E,((mod(1-{,,)) (B=k=sr),

(1 —le)j"Hl_lBkaﬂ, =( —Cm‘)jkB /(mod (1 _le)q,(pmk”))
(12kgd-1, ji+ 1=0(p™+?)),

H{'B,H,,3=E,mod (1-{,,).
Hence H,=H,=---=H,(mod (1—{,,)). Consequently,
® H{'BH, =Bjmod (1-{,,)) (1sk<d).

Conversely, if the condition () is satisfied, then it follows that W,(By, - - -, By) is Z,-
equivalent to W,(B{, - - -, Bj) by suitable basis changes. Suppose that W,(B;, - - -,B,)
is Z,-decomposable. By considering the companion representation

(5,'3 <E,,>)
o I

of W,(B,, - - -, B,), it decompose as follows;

m <E.D> m (Ep
(5 w)e(s @)

where n=n, +n,, 0<n,, n,€ N. Thus
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iy ) meda—,),

H;lHks((;‘ E°> (mod (1~¢,,) k<),

S
Hl_lBka+3E<0k 2) (mod(l—le)) (1=k=d—1=r—9),
k
—i S; 0
H; 1Bde+3.E<Od La) (mod (1-{,,)) .
Hence Hy=H,="--=H, (mod (1—{,,)). Therefore,
(% HI‘BVH15<% h ) (mod (1-{,,) (1<v=d)
(i-e. simultaneously decomposable). Conversely, if the condition (*+) is satisfied, then
it follows that W,(B,, - - -, B,) is Z ,-decomposable. Q.E.D.

THEOREM 3.3 (Berman-Gudivok Theorem 3.3 in [1]). For the non-cyclic p-
group C,xC,=(a)x(b) and an arbitrary matrix B in M(Z,,]), let W,(B)a),
W (B)(b) be the following matrices

gm 0 0 (B>
E(p—l)n E(p—l)n 0 ,
o
0 E,
E(p—l)n 0 E(p—l)n 0
7(n)
& ~0 2% , respectively .
. w0
E,

Then W,(B) is a Z -representation of C,x C,, and W,(B) is Z equivalent to W,(B’) if
and only if B is similar mod (1—{,) to B’ in M (Z (). Furthermore, W,(B) is Z,
indecomposable if and only if B is indecomposable mod 1-¢y).

By virtue of Theorem 3.2 (resp. Theorem 1 in [5]), the description of the Z,-
representations C,. (r=5) (resp. C,x C,) involves the matrix pair problem (i.e.
simultaneous similarity transformation of two parameter matrices). Therefore, it is
one of the problems to find indecomposable pair of parameter matrices. In the
remark in §4, we will describe an example of indecomposable pair of matrices (in
My(2)).
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§4. Infinite series of indecomposable representations

The indecomposable matrices in M,,(C) are similar to the Jordan normal blocks

a 1

Ja,m =
0

a

which is a well-known fact in linear algebra. For the time being, we shall consider the
indecomposability of a matrix L in M, (Z). Let K be an arbitrary algebraic number
field, Ok be the ring of algebraic integers in K (i.e. the integral closure of Z in K),
U(Og) be the group of units in Ok, and define the group GL,(Oy) as follows;

GL,(Og)={BeM,(0y)|det Be U(Og)} .
If there exists 4 € M, (Og), Be M, (Og) and Ce GL (K) (resp. Ce GL,(Oy)) such that

A4 0
0 B

then we say that the matrix L is K-decomposable (resp. Og-decomposable), otherwise
L is said to be K-indecomposable (resp. Og-indecomposable). If Og-indecomposable
matrix L is not similar to any Jordan normal blocks J, ,, where ve O and K is an
algebraic number field such that all the eigenvalues of L are contained in Ok, then
we can choose an appropriate D in GL,(K) such that

F O
0 H) for some FeM,(0x), HeM,(O)

for some Fe M, (Og), He M, (Og) (i.e. L is K-decomposable).

C“LC=< ) (n=n,+n,),

D'ILD=<

One of the basic problems in the integral representation theory is to find all the
Oy-indecomposable matrices in M,(Oy), where K (< C) is a finite extention field over
an algebraic number field F. Another problem is to clarify the forms of the Og-
indecomposable matrices other than the Jordan normal blocks.

We define 4,(a; by, - - -, b,,) to be the matrix in M, (Z) as follows;

a b,

b,, 0o - -- 0 a
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Then the Jordan normal block J,, can be written as A4,(a; 1, ---, 1, 0). The
characteristic polynomial f; ,.p, ..., (X) of the matrix 4,,(a; b,, - -+, b,) is

(X—a)'”—.ﬁ b,eZ[X].

DEFINITION 4.1.  For two integral matrices 4=(a;;), B=(b;)) in M,(Z), we
write 4=B (mod p) if a--=b.. (mod p) for every i, j (1Zi, j<m).

DEFINITION 4.2. An integral matrix 4 € M,,(Z) is said to be similar modulo p
to a matrix Be M, (Z), if there exists a matrix C e M,,(Z) such that AC= CB (mod p)
and p tfdet C. Otherwise we write 4 ;pr B.

PROPOSITION 4.3.
Jog ~ Afa; 1, -+, 1),

mod p

Ja 2r ’7" AZ"(a 1 17 b)a

mod p

where p and q are distinct odd primes, and b#0 (mod p).

Prbof. Let us compare the multiplicity of eigenvalues.

M fr, X=X-a), f;, (X)=X-a)*. _

@ qu(a;l, .- .,1)(X)=(X—a)‘1— l’fAz’(a;l, . -,b)(X)=(X_a > —b.
The polynomials in (2) are separable over Z/pZ. However, all the roots over Z/pZ of
the polynomials in (1) are @ (=a mod p). Thus the above matrices cannot be similar
modulo p. Q.E.D.

DEFINITION 4.4. Let F,(=Z/pZ) be the prime field of characteristic p>0. An
integral matrix 4 in M,(Z) is said to be strongly F,indecomposable if the
characteristic polynomial f,(X) is irreducible in F,[X].

PROPOSITION 4.5. Let
[l b;#0(modp), a bjeZ (1<j<m).
j=t

If 4,(a; by, - - -, b,,) is strognly F,-indecomposable, then the rational prime divisor of m
is 2 or that of p—1.

Proof. Suppose that g | m for some odd prime g such that G.C.D. (p—1, g)=1.
Since b ™' =1 (mod p) for every p ¥ b, and there exist g, & such that g(p—1)+hg=1,
we have

[ bjeFs.
i=1
Thus

Jan@bs, - b X)=H{X =" —bH{(X —a)" @ V(X —a)" @ Dp' 4 - - - a1}
(mod p),
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where
m=qm', and b?=][] b, (modp).
j=1
Q.E.D.
PROPOSITION 4.6. Let y#0, 2<reZ, and let p be a rational prime. If
Ayda; 1, -+, 1, —y) is strongly F,-indecomposable, then y# +1 (mod p).

Proof. If y=—1 (modp), then it is obvious that f,.q; ..., -»X)=
(X—a)* —1 (mod p) is reducible.

In the case of y=1 (mod p), we have £y .1, . - .1, - (X)) =(X—a)* +1 (mod p)
(the latter polynomial is equal to @,7** (X —a), which is irreducible in Q[X]). Now we
prove the reducibility of the cyclotomic polynomial @,"** (X)=X?"+1in F,[X]. Itis
enough to prove that X*+1 is a reducible polynomial in F,[X]. If p=2, then X*+1=
(X2 =1)(X%>—1) (mod 2). If p is an odd prime, then

.

X4+1=X*—(-1), (X2+1)2-2X2%, (X*-12—(-2Xx?2.

p ’ p ’ p ’

At least one of them must be + 1. Therefore X*+1 is reducible in F,[X]. Q.E.D.

LEMMA 4.7 (E. Artin). Let k be a field and n be an integer>2. Let ack and
a#0. Assume that for all prime numbers p such that p | n we have a¢ k?, and that in the
case of 4 | n we have a¢ —4k*. Then X"—a is irreducible in k[X).

For the proof, see Lang [6], p. 221-223.

THEOREM 4.8. Let p, q be distinct odd primes, and a, reN. Then
Afa; 1, ---,1,1) and A,(a; 1, - - -, 1, —1) are Z-indecomposable matrices.

If

@ p=1(mod4) and <

SRR
N———
Il
|
—

<

(i) p=7 (mod8) and ( >=1 and y¢Fy or

(i) p=3(mod8) and

TN
o e B

>=1 and y¢4F;,
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then the matrices Ay(a; 1, '+, 1, —y) (r=2, 3, - - ) are strongly F -indecomposable.

Proof. The characteristic polynomial fy,ri, ... 1, - (X)=(X—a)* +1 is.
equal to @,,.:(X—a), which is irreducible over Q, hence A4,.(a; 1, ---, 1, —1) is Z-
indecomposable. Suppose that A a; 1, ---,1,1) is Z-decomposable. Then there
exists B=(b;;) in GL,(Z) such that

€11 €12 ot C1,q-1 0
Ca1 €22 T G- 0
BA a1, -+, 1,1) = B,
Cq-1,1 Cq-1,2 T G191 0
0 0 co e 0 a+1

because Fy .1, ....1,X)={X—(@+DH{X—-a)? '+ - +(X—a)+1}; where the
second factor is irreducible over Q, and Q[X] is factorial (i.e. unique factorization
ring). By the equality of matrices, we write out the components as follows;

abu +b1q ab12+b11 ot abl’q_1+b1’q_2 ab1q+b1’q_1
aby+by abp+by - aby,q-1+bg,q-2 abyy+by,q-1
q-1
;1 Cusbis 1<k<g—1
- ! 1<s<q
(a+1)by - - - (a+1)b,,
Thus we have
q q-1 q
(@+1)y b= Y c,,j< b,.k> (I<h<gq-1),
i=1 i=1 k=1
and b, = - - =b,, (for brevity, we write ). Therefore
q q
Z blk Z bli
k=1 i=1
(cyy) : =(a+1)
a q
Z bq—l,k Z bq—l,i
k=1 j=1

Assume that

(i blka T, i bq—l,k>=(oa B 0),

k=1 k=1
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then
0 by, -+ by
by, by,
t1=detB = : =qb
0 byoyz - by, by—1,2 - by—1,4
gb by by

This is a contradiction. Hence a+1 is an eigenvalue of the matrix (c;;). On the
other hand, the number a+1 cannot be any roots of f ,(X)
(=X—a)* '+ +(X—a)+1). Therefore A a;1,---,1,1) must be 2Z-
indecomposable.
In order to prove the second half of our theorem, we will apply Lemma 4.7.
In case (i), it follows that

(;)___(_ 1)(p-1)/2=1 .
ZH - o
p) \p \p) S YRR

Since —4F;<(—1)F2=F2, we have —y¢ —4F}. In case (ii), it follows that

(—;):—1 and <%>=(—1)<P"1>/8=1.

Hence —y¢ F2 and 4F4=F3. Thus we have —y¢ —4F3. In case (iii), it follows that

o
(-

Consequently, the polynomial f, .1, . . .1, —y(X)=(X—a)* —(—y) is irreducible in
F,[X] by means of Lemma 4.7. This completes the proof the theorem. Q.E.D.

Hence

Hence

Applying the Berman-Gudivok theorems to indecomposable (2, 2")-matrices
(r=2,3,4, ---) constructed in Theorem 4.8, we have obtained infinite series of
indecomposable integral representations. Then the corresponding indecomposable
ZG-lattices are not necessarily projective ZG-modules in view of the Nakayama’s
proposition with respect to Z-rank. For example, in the case of Theorem 3.3, since
px¥n(B3p—2) (m=q or n=2") and Z-ranks of these lattices are
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n(p—1)+n(p—1)+n(p—1)+n=n(3p—2), it follows that these lattices are non-
projective.

Remark. Let B,, B; be triangular matrices as defined below;

a 1
where |a—b|#1,
a 1 0
By=Bs(a, b,c) = 0 b 1 | eM,(2Z),
0 0 c ’

where |[a—b|#1, |b—c|#1, a#c.
Suppose that there exists a

Z-matrix <’s‘ ‘;) in GL,(Z)

n(e)-( 06 )

Then s=0 and t=v(b—a). Hence
u

u v v
il_det(s t)=0 v(b—a)‘

This is a contradiction. Therefore, the matrix B, is Z-indecomposable.
By the similar method, assume that

/d u v

such that

=uv(b—a).

duwv ax0 a 0 x duwv
e s t]|B=[0bO0]){est] or [ObLO]|[le st
fgh 00 c/\fgh 00c/\fgh
for some
d u v
f g h
In the first case, it follows that e=f=g=0 and s=(b—c)t. Hence
d u v
+1=det| 0 s t |=(Mb—otdh.
0 0 h

This is a contradiction. In the second case, it follows that e=f=g=0 and d=(a—b)u.
This also implies a contradiction. Thus the matrix B; is Z-indecomposable.
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m 1 m 1
0 m+1)’ 0 m-1

While two matrices
are decomposable by

respectively. In fact

m 1 m 0 andbm 1 m 0
0 m+1/z\0 m+1 0 m—1/z\0 m—-1)"

However these two matrices cannot be decomposed simultaneously by any matrix in
GL,(F,), since x# —x (mod p) for odd rational prime p such that p } xy.

Under the same notations in Theorem 3.1, let P be the prime ideal of Z,[{,m,]
generated by 1—{,..,. Then it follows that (p)=P?*™" and Z,[{,m,]/P=F,=Z|pZ.
Thus, (p) is completely ramified in Z,[{,m,] over Z,.

Since 1<r, we have

W,(B) is Z ,indecomposable —= B is indecomposable mod P"

|

GL,(F,)e B is indecomposable —= GL,(Z ol mi]/P) € B is indecomposable
(B denotes the reduction mod P of B)

Therefore, for constructing infinite series of Z -indecomposable representations, it is
sufficient to find infinitely many number of indecomposable F,-matrices which are
non-similar to each other. For distinct odd primes p, ¢, let ®(X) (the g'-th
cyclotomic polynomial) be Y'c; X7 € Z[X] (co=c ) =1), and let C (g be the following
normal form associated with @,.(X) (i.e. the companion matrix of @,.(X));

0 1
0 1 0
Cfp(q') = 0
0 1
—Co -G B ~Cogn-1

The ideal (p) is unramified in Q({,) over Q, since p Dy, -, (discriminant of the field
0(,)- Let P; (1<i<g) be all the prime ideals of Q({,,) such that P, Z=(p). Then
the order of the element p mod ¢" in (Z/q"Z)* is ¢(q") if and only if g=1 (i.e. (p)
remains prime in Z[{,]) (cf. [2] pp. 327-328). Furthermore, (p) remains prime in
Z[{ ] if and only if the polynomial &,(X) is irreducible in F,[X] (cf. [2] pp. 233-234).
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Consequently the Z,-representation W,,(C,qr) is Z,-indecomposable if p is a
primitive root of Z/q"Z.

By the assumption (i) in § 2, for an odd prime p (=a), there exist infinitely many

Z -indecomposable representations W1 (¢,), Where g€ P, and r=1. While, by
the assumption (ii) in § 2, there exist infinitely many Z -indecomposable representa-
tions W,n(Cpry) (r=1, 2, 3, - ) for some odd prime g. Suppose that ¢, g’ P ?
and g#¢q’, then W,,.(C,r)r’'=2, 3, - -) are not Z,-equivalent to W, (Cpr)

(r=

[1]

[2]
[31]
[4]
[5]
(6]
[7]

[8]
[91]

2,3, --), because of ¢(q")# ¢(g "').
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