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Abstract

An abelian group 4 is said to be quasi-splitting if there exists an integer n such
that n4 <tA®C< A4 where 74 denotes the torsion subgroup of 4. In this paper we
generalize this notion in two ways: first, we move the setting to an arbitrary abelian
category by replacing n4 by the subobject R4 where R is a certain type of right exact
radical which reduces to multiplication by » in the category of abelian groups, and
second, we replace 74 by a subobject B of 4 and call B a generalized direct summand
of 4 provided RA<B®C< 4. A surprizing number of results in the classical quasi-
splitting case are moved into this general setting. We show connections between
RA<SB®C<A and 0B A4 —A/B—0 determining elements in kernels of certain
naturally induced endomorphisms of Ext(4/B, B). Relationships between endomor-
phisms of 4 and of B and of 4/B are explored and finally the question of when a
generalized direct summand is a direct summand is considered.

Introduction

An abelian group 4 is said to be quasi-splitting if there exists an integer n such
that nA<tA®C<A where 14 is the torsion subgroup of 4. This notion was
introduced by C. P. Walker [8] and a nice exposition of results associated with this
notion can be found in Chapter XIV of Volume II of L. Fuchs’ Infinite Abelian
Groups [2]. One is interested in when or under what conditions a group A is quasi-
splitting, and when does quasi-splitting imply splitting. In this paper we generalize
this notion of quasi-splitting in two ways: first, we move the setting to an arbitrary
abelian category and replace the subgroup n4 with a suboject R4 where R is a right
exact radical having a pointwise epic natural transformation from the identity
functor to R. In the category of abelian groups such radicals are precisely the
multiplications by integers n. Secondly, we replace the torsion subgroup t4 by a
subobject B and we say that B is a generalized direct summand of the object 4
provided RASBPC<A.

* The author wishes to express his appreciation to the University of Pretoria, and in particular to the
Department of Mathematics, for providing a visiting appointment during which this work was initiated.
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In [1] the authors studied a similar generalization of quasi-splitting. In that
work, 74 was replaced by S4 where S is a preradical that is compatible with R in the
sense that for each subobject' B of 4, RB contained in SA4 implies B was already
contained in SA. Clearly the torsion subgroup functor is compatible with any n. The
results in [1] showed that there is a very general and rich theory for which quasi-
splitting of the torsion subgroup is just a special case.

In this work, the notion of generalized direct summand is more general than the
notion developed in [1] and the results herein illuminate results in [1] as well as for the
“classical” case of quasi-splitting. For example, we show the relationship between
RA<B®C<A and certain kernels of naturally induced endomorphisms of
Ext(4/B, B) which, when specialized to the category of abelian groups, show the
relationship between n4 < B®C< 4 and 0—»B—A4—A/B—0 determining an element
of finite order in Ext(4/B, B), which subsumes the classical result for the quasi-
splitting of a group 4. We show there is a connection between generalized direct
summands and endomorphisms which are almost idempotent. We study the con-
nections between endomorphisms of 4 which determine a generalized direct sum-
mand B, and endomorphisms of B and of 4/B. Finally, we obtain some results on
when a generalized direct summand is in fact a direct summand, these results, again,
generalize the classical situation in the category of abelian groups.

Preliminaries

Throughout this paper, A shall be an abelian category and R shall denote a
preradical (=subfunctor of the identity) having a pointwise epic natural transfor-
mation 5: 1,—R. The natural inclusion transformation shall be denoted by
p: R—1, and the composite transformation un: 1,—1, shall be denoted by p. The
kernel of 5 induces a natural trnasformation and preradical x: K—1,, and so for
each object 4 of A we have a short exact sequence:

K
0— KAt g M Ra— 0

Here we have used — and — to denote x4, is a monic and #,, is an epic for emphasis.

If A is the category of modules over a commutative ring with identity, then any
such preradical R above is multiplication by some ring element; hence in the category
of abelian groups, R=n for some integer n, and, of course, K=[n], the n-socle. The
following result from [1] gives some further information.

PROPOSITION 1. Given R and K as above, R is a right exact (preserves
epimorphisms) radical and K is a left exact socle.

Recall that a preradical S is a socle provided for all objects 4, S?4=S4 and is a
radical provided S(4/SA4)=0 for all objects 4.

If A is an object of A and B is a subobject of 4, then we denote the “inclusion”
morphism by iz: B—A and sometimes, when i, is understood, we write B<A4. If
B< A4 and C< A, then we write C<B to mean i factors through iz; that is, there
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exists a morphism j: C— B such that igj=i.. If B<C and C<B, then C and B are
isomorphic as subobjects of 4 and we write C= B to denote this. Of course if we are
in a module category where we identify subobjects with their image, ="’ becomes
“=". The terms morphism and map shall be used interchangeably.

For an object 4 and subobject B, we define the subobject R“B of A4 by the
following pullback diagram:

4 Na RA By 4
u { PB ’l PB ig
R°B RANB B

In the category of abelian groups, where R=n, we have n"B={ac A:nacB}.

It is clear that, for any subobject B of 4, i, = Rizn, since 7 is a natural
transformation. This implies that B< R” B as R* Bis the pullback of i and n4and Rig
factors through i. On the other hand, it is also clear that RR“B<B.

In [1], the authors studied preradicals S in 4 having the property that for all
objects A and subobjects B of A, the inclusion RB< S4 implies the inclusion B< SA4.
We call such preradicals compatible with R and one may use them to generate
examples in this work.

PROPOSITION 2. If S is a preradical compatible with R, then R“SA=SA for
every object A.

Proof. We already have seen that SA<R“SA4 and that RR“SA<SA. This
latter inclusion, by compatibility, implies R~ S4<SA and so R“SA=SA.

In the category of abelian group, with R=n (n a non-zero integer), it is clear that
the torsion subgroup functor 7 is compatible with n and so n* 14 =14 for every group
A.If A is a mixed group and B is a pure subgroup of 4 containing 74, then n”"B=B.
This example is generalized in the following proposition.

PROPOSITION 3. Let B be a subobject of an object A having the property that
KA< B and that B is R-pure in A, that is, RB=B RA. Then R“B=B.

Proof. We have already seen that, for any subobject B of 4, B<R"B. To see
the reverse inclusion, we form the pullback diagram:

p
R°B
o e
B —
o RB

Here, because of the R-purity of B, RB=RA n B and so, without loss of generality,
we may take e: R B—»RB. Define p={—o, f}: PoB®R"B by n,p=—a and



152 T. H. FAY and M. J. SCHOEMAN

n,p=p where n, and 7, are the indicated projection maps. We have the commutative
diagram:

B®R"B L BtE A®A 4
ns®de Na®n4 N4
RB®RB _ Ra®Rs  riera RA
v
Riy
RB

It follows that n,V(iz@wp=0, so there exists a unique map y: P—>K4 such that
y,9=V(iz®u)p, and so we have the commutative diagram:

B
v

K4 V(iz®wp

b

P
Putting all of this together, we have the commutative diagram:

ip

B A
4 ’V
B®B ig@ip Yy
“rt | peper-p_ 2O DOK A@A@kw
V@l rol ly
B@R B 0Du ADA 4

u

=
-
Q
N
=
\
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Here p, denotes the unique map satisfying 7, 4, =0 and n,u, =1,. The commutivity
of this diagram shows that R“ B< B since p is monic and B is epic and up factors
through iz.

Generalized Direct Summands. In this section we study a generalization of the
notion of quasi-splitting in abelian groups (which was introduced by C. P. Walker [8],
see also Section 102 of Volume II of Fuchs [2]) and which in turn generalizes and
illuminates some of the results of [3].

For an object 4 and subobject B of 4, we call Ba generalized direct summand of
A (with respect to R) provided R4 <B@®C< 4 for some subobject C of 4.

In the category of abelian groups, with R=n, the torsion subgroup 74 of a group
A4 is a generalized direct summand if and only if 4 quasi-splits; that is,
nA<tA@C<A. This happens if and only if 0~t4—A4—A4/tA—0 represents an
element of Ext(4/t4, t4)[n] (see Theorem 102.2 of Fuchs [2]). The next two results
generalize this theorem.

THEOREM 4. Let A be an object and B a subobject of -A. If B is a generalized
direct summand of A, then there exists a map a: A— B such that oig=ppg.

1
0 B LI

Ps . &
B
Conversely, if such a morphism exists and KB=0, then RA<B®C<A where C=
ker .

Proof. If RASBOC<KA, let n;: B®C— B be the projection map and let a=
Ty jn4 Where j: RA>—B@®C. Then aiz= pp, as can be seen from the following
commutative diagram

A pq B®C A
i Riy Ty
PB

Conversely, if such an « exists, then define f=p,—izn. Observe that
Sig=p 4ip—igotip=p 4ip —igpp=0.

Since p ,=f4igx, we have
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RA=Im(p)=Im(f +izge)<Im f+Ima.

But of =ap,—aiga=0p,—pge=0, so Imf<kera. Thus we have RA<kero+
Imoa<A. We have Ima< B, so it remains only to see that kera n B=0. To that
end, consider the following commutative diagram:

’ o
kera ¢ A B
‘ PB ip /[ Up
é .
Bnkera B RB

U):]
Since a¢p’ =0, it follows that ppdp=pgnze=0. Thus there exists a unique morphism
J: Bnkeroa— KB such that xkzA=¢. From the hypothesis of KB=0 and . being
necessarily monic, it follows that B nkera=0.

THEOREM 5. Let A be an object and B a subobject of A. If B is a generalized
direct summand of A, then there exists a map B: A/B— B such that ®B=p 4p.

A/B

P Ve

B. Pa/B
7

e

A~ 2 A/B 0

Conversely, if such a B exists and if R“B=B, then RAS B®C< A where C=Im B.

Proof. If RASB®C<A and n,: B&C—C denotes the indicated projection
map, then define f: 4—A4 by f =icm,jn, as indicated in the following commutative
diagram: -

i
B B A_____f____>A
’731 l"’A icT,
rB— iz RA J B&C
1231
Up
B

Here y, is that unique morphism satisfying 7, u; =1 and n,u, =0. First observe that
7, jRig =1, pis=0; thus computing, fip=icm,jRigng=0. Consequently, there exists
aunique map f: A/B— A such that B@=f (here @ is the cokernel of ig). Secondly, it is
easy to see that f +ipm, jn,=p, and &f =P-f +izm; jn ) =®p ,. Thus computing, we
have: ®pd=a&f =Pp,=p, P, and P being epic implies Pf=p,p as was to be
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shown.

Conversely, if such a f exists, then ®f=p 5 implies Im(®p)=Im(p,5), hence
R(A4/B)=(Im B+ B)/B, which in turn implies R4 <Im f+ B. We have the following
commutative diagram:

A/B

PaB

A/B

s "€ /

ImBnB

e

Computing we have: ®p 4ip=p, zPip=PPPip,=Pme=Pizv=0. Thus there exists a
unique map A: P— B such that p,ip=igA. But this implies that there exists a unique
map A*: P—RA n B such that igA*=#,ip and u,A*=4A. This in turn implies that
there exists a unique map A**: P— R B such that uA**=i, and 5 ,A**=1*. Thus we
have P<R"B.

The hypothesis R“B=B implies P<B and so ®i,=0. Hence fdi,=0 and we
have Im(f®ip) =Im(me)=Im p n B=0.

COROLLARY 6. - Let A be an object and B be a subobject of A. If B is a
generalized direct summand of A, then the short exact sequence 0—B—A—A/B—0
determines an element of the kernel of pg,: Ext(A/B, B)—~Ext(A4/B, B) and of the
kernel of p% p: Ext(4/B, B)—>Ext(4/B, B).

If KB=0 and 0—B—A— A/B—0 determines an element of the kernel of pg. or if
R”B=B and 0—B—A— A/B—0 determines an element of the kernel of p% g, then B is
a generalized direct summand of A.

To conclude this section we give an analogue of the connection between direct
summands and indepotent endomorphisms.

PROPOSITION 7. Let A be an object and B be a subobject of A, If B is a
generalized direct summand of A, then there exist endomorphisms ¢,y : A— A such that
¢*=p,p and Y>=yp,.

Conversely, if a: A—B is epic and ¢ =igo: A— A satisfies ¢*>=p ,¢ and if either
KB=0 or R™B=B, then B is a generalized direct summand of A. Dually, if B: A/B—A
is monic, Yy=pP satisfies Yy>=yp,, and either KB=0 or R-B=B, then B is a
generalized direct summand of A. '
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Proof. If Bis a generalized direct summand, then by Theorem 4 there exists a
morphism «: 4—B such that aip=fp. Define ¢ =izx and compute: ¢>=igaiga=
igppot=p 4iga=p4¢. From Theorem 5 there exists a morphism f: A/B—A such
that @f=p, 5. Define y =pd: 4—A4 and compute:

Yr= BPLD=Pp4pP=BPps=Yp, .

Conversely, computing: ¢?=igaigo=p 4igo=ippga; o epic and iz monic imply aip=
pg. If KB=0, then by Theorem 4, B is a generalized direct summand. On the other
hand, note that (p,— ¢)ig=pig—igpp=0, hence there exists a unique morphism
6: A/ B—~A such that 6d=p,—¢. ‘Computing again: ®5@=Pp,—Pp=p 4P —
Qign=p, P, and P being epic implies PO=p 4p. Thus if R“B=B, then by
Theorem 5, B is a generalized direct summand of A4.

If B: A/B— B is monic and y = B satisfies Y>=yp,,, then @ epic and f monic
imply that ®f=p , p for, computing, we have:

‘//2 =popd=Pdp, =ﬁPA/B‘p .

Thus if R™B=B, then by Theorem 5, B is a generalized direct summand of 4. On the
other hand, define ¢ =p ,— f¢. Then computing @¢p=p ,— PP =Dp ,—p 4sP=0,
so ¢ factors through ig. That is, there exists a unique morphism y: 4— B such that
igy=¢. Thus, if KB=0, then by Theorem 4, B is a generalized direct summand.

Relations between Endomorphism Rings. By way of motivation we first discuss
the situation for abelian groups. Let B be a subgroup of a group 4 and suppose that
there exists an endomorphism o of 4 such that ab=nb for all be B, and for every
ae A, oa—mae B where m and n are distinct integers. Then we can describe this
situation by saying that o € E(4), the endomorphism ring of 4, induces the pair (72, )
in E(B) x E(A/B) where 7i and m denote the endomorphisms of B and 4/B defined by
multiplication by n and by m respectively. That there is a connection with generalized
direct summands and this situation is given by a result of [6, 7] which states that given
such an o and # and m, if either B[n —m]=0 or B=(n—m)" B, then B is a quasi-direct
summand. Other results along this line for abelian groups and quasi-splitting of the
torsion subgroups are to be found in [3]. Throughout this section we shall fix the
following notation. We have preradicals S and 7 and natural transformations such
that for each object 4 we have the commutative diagrams:

Pr

p.
A— 2 4 A A
SA TA

(We assume that S# T). We define R by taking the epi-mono factorization of p=
ps— Py, SO that for each object 4 we have the commutative diagram:
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Thus S, T and R are right exact radicals each having a pointwise epic natural
transformation from the identity to themselves. As before, K denotes the kernel
functor defined by p.

THEOREM 8. Let A be an object and B a subobject of A. Let «: A— A be an
endomorphism of A satisfying aig= pgiy and a — py factors through ig. If B has KB=0
or R"B=B, then B is a generalized direct summand of A.

Proof. Define f: A—A by f=o— py. Then computing,

Bip=ip— prig=(ps— pr)ig=p 4ip=1Ippg .
The hypothesis that «a—p; factors through iy implies there exists a morphism
B: A—B such that izf=p. Thus we have igpy=Piz=ipPip and iy monic implies
Big=pg. Thus if KB=0, then by Theorem 4, B is a generalized direct summand.

On the other hand, define y: 4/B— A to be that unique morphism induced from
aip=pgip, and hence we have y@=pg—oa. Comupting again: Pyd=d(ps—a). But
since a— p factors through i, it follows that &(«— p;) =0 or, in other words, Po =
Dpr. Thus yP =P(ps— pr) =(ps— pr)P since pg— py is a natural transformation. It
follows from @ being epic and p,=ps— py, that y&=p . Thus if R“B=B, then by
Theorem 5, B is a generalized direct summand of 4.

Thus the existence of an endomorphism «: A—A satisfying aiz=pgiy and
a—pr=igP for some B: A—»B, and B having either KB=0 or R“B=B implies
RB<B®C<A. In the abelian group case, of couse, S is multiplication by n, T is
multiplication by m and R is multiplication by n—m. We have a converse to Theorem
8 as well.

THEOREM 9. If A is an object, B a subobject of A, and RA<SB®C<A, then
there is an endomorphism o.: A— A of A such that aiy= psiy and «— py factors through
iB-

Proof. From Theorems 4 and 5, we have morphisms ¢: A—Band y: A/B—A

such that ¢iz=pp and &Y =p 5. Define a=izp+izdpyy®+ py. Then clearly a—p
factors through iy computing:

aip=igpp+0+prig=p4ig+ prip=(ps— pr)ig+ prig= psip .

When a Generalized Direct Summand is a Summand. The Problem of when the
torsion subgroup of an abelian group is a direct summand is an important question
and has been considered by many authors (see Chapter XIV of Fuchs [2]). One useful
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results is that if 4 is a mixed group and n4 is splitting (for some integer n #0), then 4
is splitting (Proposition 100.2, Fuchs [2]). In this section we see how this result is a
consequence of the general theory being developed herein and of a special property
enjoyed by the category of abelian groups. We will give results which will tell when a
generalized direct summand is a direct summand.

If Bis a subgroup of the abelian group 4, then a subgroup C of 4 is called B-high
if C is maximal with respect to Cn B=0. The existence of B-high subgroups is
guaranteed by Zorn’s lemma. An important result for our work is the following
(Lemma 9.8, Fuchs [2]): if Bis a subgroup of 4, Cis B-high in 4, then for ae 4, pae C
implies ae BOC< A (p is a prime).

We can extend some of the known results for abelian groups if we assume that
our category satisfies the following axiom.

Axiom *: We say that the category A enjoys Axiom # provided for every
subobject B of an object 4, if C is a B-high subobject of 4, then RTC<B@C< 4.

Although, in the work that follows we shall only use the containment
R-C<B®C<A, it is of some interest to note that there are two other equivalent
statements. We list these in the following lemma; the proof is straightforward
“categorics” and is omitted.

LEMMA 10. Let A be an object in an abelian category A, B a subobject of A, and
C a B-high subobject. Then the following are equivalent:

(1) RFC<B®Cx<4A

(2) K(4/B)y=R"C/C<B®C/C<A/C

(3) there exists a map ¢ making the following triangle commute.

A/C'—ﬁé/c—»R(A/C)

A/B+C

THEOREM 11. If A is the category of modules over a Principal Ideal Domain,
then A enjoys Axiom x.

THEOREM 12 (F. Minnaar). If R is a ring with identity and enjoys the property
that every prime ideal is maximal, then the category of left R-modules enjoys Axiom .

This result, proved in a similar manner as for Lemma 9.8 of [2], is particularly
nice as it shows that the category of left modules over any Boolean ring or over any
Dedekind domain enjoys the axiom.

We shall fix the following notation:
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Na Ha

A RA A
u’ PB l PB lzc
R°C———RANC C

B®C ' A
u
R°C

The following is a generalization of Proposition 100.2 of Fuchs [2].

THEOREM 13. If A enjoy Axiom x and A is an object with subobject B having
Ug: RB— B an isomorphism, and if RA=B®G, then A=B®C where C is B-high and
G<C.

Proof. Choose C to be a B-high subobject of 4 with G C. We have a
commutative diagram:

Pa

_l 1 .
n RA A BEDC#B @1 RBOC J A

My
Let ¢ =(ug'@®1.)An, and observe that ¢={p,, 6,} where o, =n,¢ and 6,=m,¢, 7,

and 7, being the projections of RB@C. Let u, : C—RB@ C be the canonical injection
and note that ¢ —{a,, 0}={0, 6,} = ,0,. We have the commutative diagram:

C
o, 1 ic
4 90O ppec 4
(up'®1p)
e=1,— Rigo, Ha

RA

Consequently we have a unique map X: A— R4 n Csuch that the following diagram
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commutes.

A==
Next, let {P,«, f} be the pullback of #; and pgz'm in, as shown in the next
commutative diagram.

o n A
P A 4 RA B®C
B PB ‘ Ty
B RB B
g b’

Note that « is epic.
Computing we have:

pale—igf)=jpo— p RighpP=jdpo— p,Rigm, (15" D1c)An 40
=jpot— 4 Rigo 0= jpou— igitpo 0 =jpo —jpt; 0,00 =ico01 .

Thus it follows that we have a unique map y: P— R C so that the following diagram
commutes:

MNa
A RA

A is a consequence of Axiom *, we have kdy=puy=a—izf. We also have that
k{B, 0} =igP, so that the following diagram commutes.
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a—igf+igf=a

P

&y +{B, 0} k

B®C

But recall that « is an épic and so k is epic and thus is an isomorphism.
An analysis of the previous proof shows that we obtained the following result as
well.

THEOREM 14. If the category A enjoys Axiom x and A is an object with
subobject B satisfying RB=B and B is a generalized direct summand of A
(RASB@®C<A), then B is a direct summand of A.

The next proposition does not require Axiom .

PROPOSITION 15. If A is an object, B a subobject of A and R(A|B)= A/B, then B
a generalized direct summand implies B is a direct summand.

Proof. Recall that R being right exact means that R preserves epimorphisms
and thus R(4/B)= B+ RA/B=A/B. Consequently, we have

A=B+RA<B+B®C=B@C.
Now putting all of this together we obtain the result:

THEOREM 16. If A enjoys Axiom *, A is an object with subobject B, p=ps—pr
as in the previous section and either KB=0 or R™B= B, and either RB=B or R(4/B)=
A/B, then B is a direct summand if and only if there exists an endomorphism o.: A—A
such that aig= pgig and o.— py factors through ip.

Proof. Suppose B is a direct summand. Then we have an isomorphism
> : A->B®C. We have the following commutative diagrams:

4 2 B®C 4 Ps, 4 4

i i i

Bl 11 B’ B

B B B

Ps,B
@

BOC Pr.e®Pr,C BOC B&C Ps,BOPT,C B&®C
ZVT ‘Z 11 T#l

A A B —— B

Pr,4 Ps,B
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Define a= X~ (ps s@pr,c) £ : A—A. Then computing:

oaig= Z_l(pS,BC'DpT,C):u'l = 2_1/11/’5,3: igPs, = Ps, 4lp -

Furthermore, computing again:

a—pr,a= 2" Yps s®pr.c) Z— 2 o1, s®pPr.0) 2
=2 (ps,p—Pr,p)D0) Z= 2" (pp®0) =
=27 wppmy Z=igpypm; T .

Thus «—pr 4 factors through ip.

Conversely, if such an « exists and if RB= B, then Theorem 14 implies 4= B®C.

If R(A/B)=A/B, then Proposition 15 implies 4=B®C.

To put this last result in perspective we cite the following corollary valid in the

category of abelian groups:

COROLLARY 17 (Mader [S]). If A is a torsion group, B a subgroup of A with

either A[p]=0 or A/B[p]=0, p a prime, then B is a direct summand of A if and only if
there exists an endomorphism o.: A— A such that ab=nb for all be B, xa—mae B for
all ae A where n and m are integers with n—m=p.

Proof. Recall that a torsion group having no elements of prime order p is

necessarily divisible by p.
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