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1. Introduction

Throughout this paper all rings will be commutative with identity. A ring R is
called von Neumann regular if for each x e R there exists an a € R with xax=x. Such
rings (not necessarily commutative or with identity) were introduced by von
Neumann in his coordinization theorems for complemented modular lattices (see [9]
for details). von Neumann regular rings are important in multiplicative ideal theory
since they are exactly the rings that are locally fields, i.e., R is von Neumann regular if
and only if R,, is a field for each maximal ideal M of R. Equivalently, R is von
Neumann regular if and only if R is zero dimensional and reduced or if and only if
every element of R is the product of an idempotent and unit. From a homological
point of view R is von Neumann regular if and only if every R-module is flat (hence
the Bourbaki terminology absolutely flat). We define a ring R to be n-von Neumann
regular if given x, -, x,€R, there exist a,, ---,a,eR with (xya;x;,—x;) -
(x,a,%x,—x,)=0. Thus 1-von Neumann regular is just von Neumann regular. We
show that R is n-von Neumann regular if and only if dim R=0 and nil (R)"=0
(where dim R is the Krull dimension of R and nil(R) is the nilradical of R). We
also show that dim R=0 if and only if for each xe R, there exists and ae R and a
natural number » such that (xax —x)"=0. ;

R is called a Boolean ring if every element is idempotent. It is well known that R
is a Boolean ring if and only if R, is isomorphic to Z, (the ring of integers modulo 2)
for each maximal ideal M of R. It is also well known that Boolean rings, Boolean
algebras and complemented distributive lattices are essentially the “‘same things.”
Thus the duality for Boolean algebras can also be stated for Boolean rings. Less well
known ([1], [3], [4]) is that a general such duality theory can be given for arbitrary
commutative rings with the Boolean ring duality as a special case. From this duality,
one is naturally led to the definition of a Boolean-like ring ([1, page 149]). In [2] it is
shown that Boolean-like rings are characterized as the commutative rings R with 1
satisfying 2x=0 and xy(1+x)(1+y)=0 for all x,ye R. We take this for our
definition of a Boolean-like ring. More generally we define a ring R to be n-Boolean if
char R=2 and x, - -x,(1+x,) - -(1+x,)=0 for all x;, ---, x,e R. Thus Boolean
rings are just the 1-Boolean rings and Boolean-like rings are the 2-Boolean rings. We
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show that R is n-Boolean if and only if char R=2, R/nil(R) is Boolean and
nil (R)*=0. Thus R is a Boolean-like ring if and only if char R=2, R/nil(R) is
Boolean and nil (R)*=0. We also show that every Boolean-like ring has the form
R ® M where Ris a Boolean ring and M is an R-module with the multiplication given
by (r, m)(ry, m,)=(rr,, rm; +rm). (R ® M is called the idealization of R and M.)

Our general reference for commutative ring theory will be [5]. R will always
denote a commutative ring with identity. We will use nil (R) to denote the nilradical
of R. Recall that nil (R) is said to be T-nilpotent if given any sequence {x;} =nil R,
there exists an n with x, - - - x,=0. Many of the results of this paper can be generalized
to noncommutative rings or rings without an identity. For simplicity we have made
the assumption that all rings are commutative with identity.

2. Generalized von Neumann regular rings

Let R be a commutative ring with 1 and » a natural number. R is said to be n-
von Neumann regular if given x,, - -, x,€ R, there exist a,, - - -, a,€ R such that
(xpay%; —x1) " - - (x,a,x,— x,)=0. Thus 1-von Neumann regular is just von Neumann
regular. R is said to the T-von Neumann regular if given any sequence {x;} =R,
there exists an » and a,, -~ -, a, e R with (x;a,x; —x,)" - - (x,a,x,—x,)=0. Thus
if R is n-von Neumann regular and m>n, R is m-von Neumann regular and is
T-von Neumann regular. Our first result gives an ideal-theoretic characterization of
n-von Neumann regular rings which generalizes the well-known result that R is von
Neumann regular if and only if R is zero dimensional and reduced.

THEOREM 1. For a commutative ring R the following statements are equivalent.
(1) R is n-von Neumann regular (T-von Neumann regular).

(2) dim R=0 and nil(R)"=0 (nil (R) is T-nilpotent).

(3) R/nil(R) is von Neumann regular and nil (R)"=0 (nil (R) is T-nilpotent).

Proof. Clearly (2) and (3) are equivalent since dim R=dim R/nil(R) and
dim R/nil (R)=0 if and only if R/nil (R) is von Neumann regular. (1) = (2). Suppose
that dim R >0, so that there are primes P & M. Let xe M— P. Then there exist
a,, - ,a,€R with (xa;x—x)'--(xa,x—x)=0€P. Since x¢P, we have some
ax—leP= M. But xeM, so 1eM, a contradiction. Hence dim R=0. Let
X, x,€nil(R). Then O0=(x,a,%, —x,) (X8, X, — X)) =X "X (a;x;—1)" -~
(a,x,—1) for some q,, -, a,eR. But since x;enil(R), a;x;—1 is a unit. Hence
x,--x,=0, so nil(R)"=0. 3)=(1). Let x,, --,x,eR be given. Since R=
R/nil(R) is von Neumann regular, there exists an a;€ R with x,a,x;=Xx;, that is,
x;a:x;— x;€nil (R). Since nil (R)"=0, we have (x,a,x; —x,) - - (x,a,%,— x,)=0.

The proof of the equivalence of (1), (2) and (3) in the T-nilpotent case is similar.

In a similar manner, we can give a characterization of zero dimensional rings.
The proof being similar to the proof of Theorem 1 will be omitted.
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THEOREM 2. For a commutative ring R, the following statements are equivalent.

(1) Given xeR, there exists a positive integer n and an ac R such that
(xax—x)"=0.

(2) Given xeR, there exists a positive integer n and a,, * - -, a,€ R such that
(xa;x—x)- - - (xa,x—x)=0.

(3) dim R=0.

(4) R/nil(R) is von Neumann regular.

In the definition of a von Neumann regular ring, the element a with xax=x
depends on x. Suppose that there exists an ae R with xax=x for all xe R. Then for
x=1, we have a=lal=1, so x¥*=xlx=x for all xeR so R is a Boolean ring.
Conversely a Boolean ring is a von Neumann regular ring with x1x=x. It is easily
seen that R is n-von Neumann regular if and only if given x,, - - -, x, € R, there exist
a;, ", a,€R with x;- - -x,(1+a,;x;) - -(1+a,x,)=0 and that R is Boolean if and
only if there exists an ae R such that x(1+ax)=0 for all xe R. Thus we are led to
consider rings satisfying the following condition: there exists a beR with
x; 0 x,(1+bxy)- - -(14+bx,)=0 for all x,, - -+, x,€ R. Our next theorem shows that
there is no loss in generality in taking b=1.

THEOREM 3. For a commutative ring R and natural number n the following
Statements are equivalent.

(1) There exists a beR with x; - -x,(1+bx;)---(1+bx,)=0 for all
Xy, 7, X, €R.

2 x;x(+x) - -(1+x,)=0 for all x,, -+, x,eR.

(3) For any unit ue R, x,- - x,(1+ux,) - -(1+ux,)=0. Moreover, any element
b e R satisfying condition (1) must be a unit.

Proof. (3)=(2). Take u=1. (2) = (1). Take b=1. (1) = (3). We first show that
b must be a unit. Let x, =+ =x,=1, so (1+5)"=0. Then 1+5 is nilpotent and
hence is contained in every maximal ideal, so b is a unit. Let e R be a unit and
let x/=b"'ux; Then 1+4+bx{=1+ux; and O=x{ - -x,(1+bx]) - -(14+bx)=
(b~ 'u)"x; - - x,(1+ux;)- - -(1+ux,). Since (b~'w)" is a unit, we have O=x,- -
X (14ux) - - (1 +ux,).

Analogous to Theorem 1 we have the following result.

THEOREM 4. For a commutative ring R and natural number n the following
conditions are equivalent.

M x; o x,(14x) -1 +x,)=0 for all x,, -, x,€ R. (Given any sequence of
elements {x;} < R, there exists an m such that x,- - - x,(1+x,) - - (1 +x,)=0.)

(2) R/nil(R) is a Boolean ring and nil (R)" =0 (nil (R) is T-nilpotent).

(3) dimR=0, for each maximal ideal M of R, RIM=Z, and nil(R) is T-
nilpotent).

Proof. (1)=(2). Let x=x;,=""+ =X, so x"(1+x)"=0. Hence in R= R/nil(R),
(®%(T+x))"=0. Since R is reduced, %(1+ %)=0. Replacing X by —x shows that ¥ = %>
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and hence R is Boolean. Let x;, - - -, x,€nil (R). Then 1 +x,, - - -, | +x, are units, so
0=x; " x,(14+x;)---(1+x,) implies that x, - - - x,=0, so nil (R)"=0. (2) = (3). Since
R is a Boolean ring, so is R/M =~ R/M. Since R/M is a field, we must have R/M~Z,.
(3)=(2). Since R is zero dimensional and reduced, R is von Neumann regular.
Moreover, for each maximal ideal M of R, Ry=~R/M~R/M~Z,. Hence R is a
Boolean ring. (3)=(1). Let x;, - - -, x,€ R. Since R is a Boolean ring, %,(1+x,)=0,
80 x;(1+x;) enil (R). Since nil (R)"=0, we have x, - x,(1+x;)---(1+x,)=0.
The proof of the T-nilpotent case is similar.

If R satisfies any of the equivalent conditions of Theorem 4, then setting
x,=---=x,=1, shows that char R=2". For any natural number #, the ring Z/2"Z
satisfies the conditions of Theorem 4 for n, but not for n—1. In particular the ring
Z/AZ satisfies xy(1+x)(1+y)=0 for all x, y but has characteristic 4.

Analogous to Theorem 2, we have the following result whose proof will be
omitted.

THEOREM 5. For a commutative ring R the following statements are equivalent.
(1) Given x€eR, there exists a natural number n with x"(1+x)"=0.

(2) R/nil(R) is a Boolean ring.

(3) dim R=0 and for each maximal ideal M of R, RIM=Z,.

3. Boolean-like rings

Let R be a commutative ring with identity and » a natural number. Then R is
called an n-Boolean ring if charR=2 and x;---x,(1+x;) --(1+x,)=0 for all
Xy, "+, X,€ R. Thus Ris a 1-Boolean ring if and only if R is a Boolean ring and Ris a
2-Boolean ring if and only if R is a Boolean-like ring. We further define R to be a
T-Boolean ring if given any sequence {x;} < R, there exists an m with
X1 X1+ %) - (1 +x,,)=0. Before giving our characterization of n-Boolean rings
(Theorem 7), we need a preliminary result which generalizes [2, Theorems 17, 18].

THEOREM 6. Let R be a ring with char R=2. Then B={beR|b=0b*} is a
Boolean subring of R. R=B+nil(R) (and hence R=B @ nil(R)) if and only if
R=R/mil(R) is a Boolean ring. In this case, R~ B.

Proof. The fact that char R=2 easily yields that B is a Boolean subring of R.
If R=B+nil(R), then the map B—R—-R/nil(R) is an isomorphism since
B il (R)=0. Conversely, suppose that R is a Boolean ring. Let re R. Then in R,
F=F2. Let x=r—r?, so r=r?+x and x is nilpotent. Since x is nilpotent, x*'=0 for
some natural number /. Since char R=2, r2'=(r2+x)*' = (?)*' + x*'=(*)*' =(*')?, so
' is idempotent. But 7=72', so y=r—r?'is nilpotent and r=r*'+ye B+nil (R), so
R=B+nil(R).

THEOREM 7. For a commutative ring R the following conditions are equivalent.
(1) R is n-Boolean (T-Boolean).
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(2) R/nil(R) is Boolean, char R=2 and nil(R)"=0 (nil(R) is T-nilpotent).

(3) dimR=0, char R=2, RIM=~Z, for each maximal ideal M of R and
nil (R)"=0 (nil (R) is T-nilpotent).

(4) char R=2, every element of R is the sum of an idempotent element and
nilpotent element and nil (R)"=0 (nil (R) is T-nilpotent).

Proof. The equivalence of (1)—(3) follows from Theorem 4. The equivalence of
(2) and (4) follows from Theorem 6.

As an immediate corollary to Theorem 7, we get the following characterizations
of Boolean-like rings. The implication (1) implies (2) and the equivalence of (1) and
(4) is given by Foster [2].

THEOREM 8. For a commutative ring R the following statements are equivalent.

(1) R is a Boolean-like ring.

(2) R/nil(R) is a Boolean ring, char R=2 and nil (R)*=0.

(3) dimR=0, charR=2, RIM=Z, for each maximal ideal M of R and
nil (R)?=0.

(4) char R=2, every element of R is (uniquely) the sum of an idempotent element
and nilpotent element and nil (R)*=0.

Suppose that R is a commutative ring with identity and M is an R-module.
Then R*=R@®M is a commutative ring with identity under the sum
(r,m)+(ry, m)=(r+r,,m+m;) and the product (r, m)(r,, m;)=(rr,, rm, +r,m).
This is the so-called method of idealization. Note that R~R®O0 is a subring of
R* and M~0®M is now an ideal of R*. It is easily seen that nil(R@M)=
nil(R)® M.

THEOREM 9. Suppose that R is an n-Boolean ring and N is an R-module. Then
R*=R®N is an n+1-Boolean ring. R* is an n-Boolean ring if and only if
nil (R)""!N=0.

Proof. Since charR=2, 2x=0 for all xeN, so charR*=2. Since
R*/mil (R*)=R*/nil (R)@N= R/nil (R), R*/nil (R¥*) is a Boolean ring. It is easily
proved that nil (R*)"=nil (R)"@®nil (R)" ' N for each natural number m. Hence if
R is n-Boolean, then nil(R)"=0 so nil(R*)"*!=0. If R* is n-Boolean, then
nil(R)""*N=0 and conversely.

The proof of the previous theorem shows that the analogous theorem for n-von
Neumann regular rings is also true. If R is an n-von Neumann regular ring, then
R*=R®N is n+1-von Neumann regular and R* is n-von Neumann regular if
and only if nil (R)""*N=0.

Thus if R is a Boolean ring and N is an R-module, then ring R¥*=R®N is a
Boolean-like ring. In Theorem 10 we show that every Boolean-like ring is of this
form. Suppose that R is a Boolean ring and M is a fixed maximal ideal of R. Then
R/M=Z, and any 2-elementary abelian group N (every element has order 2) has a
natural R-module structure induced by the homomorphism R—R/M=~Z,. Thus
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R*=R®N is a Boolean-like ring. This was already observed (in different termi-
nology) by Foster [2] and slightly generalized by Harary [6]. (In our terminology,
Harary allowed N to be a direct sum of simple R-modules, i.e., semisimple.) The
Boolean-like rings constructed by Harary turn out to be the so-called atomic-based
Boolean-like rings. (See [8] for details.) However, not all Boolean-like rings are
atomic-based (since an R-module need not be semisimple). A complete structure
theory of Boolean-like rings is given by the next theorem.

THEOREM 10 (Structure Theory of Boolean-like Rings). If B is a Boolean ring
and N is an B-module, then the idealization R=B®N is a Boolean-like ring.
Conversely, suppose that R is a Boolean-like ring. Then R= R/nil (R) is a Boolean ring
and R= R®nil (R) where nil (R) has the natural R-module structure induced by the
homomorphism R— R. Equivalently, if we let B={be R|b=>}, then B is a Boolean
ring (with B=~R) and R=B®nil(R) where nil(R) is given the natural B-module
structure induced by the inclusion B— R.

Proof. The first statement follows from Theorem 9. Suppose that R is a
Boolean-like ring. By Theorems 6 and 8 R~ B is a Boolean ring. Since nil (R)? =0,
nil(R) has a natural R=R/nil(R)-module structure. Now by Theorem 8 each
element r of R can be written uniquely in the form r =5 +n where b is idempotent and
n is nilpotent. Define the maps ¢,: R—»R®nil(R) and ¢,: R—»B®nil(R) by
0,(r)=(b, n)=(F, n) and @,(r)=(b, n). Clearly the maps ¢, and @, preserve addition
and using the fact that nil(R)>=0 it easily follows that ¢, and ¢, preserve
multiplication. Hence ¢, and ¢, are ring homomorphisms. The existence and
uniqueness of the representation r=b+n gives that ¢, is an isomorphism. If
b+n=rekero,, then /=0 in R and n=0. But then r=»b is idempotent and
benil (R), so r=b=0. Hence o, is injective. Let (x, n)e R®N. By Theorem 6, there
exists an idempotent element be R with 5=x in R. Let r=b+n. Then ¢,(r)= (b, n)=
(x, n). Hence ¢, is surjective.

A natural question is whether Theorem 10 can be extended to n-Boolean rings
for n>2 and to n-von Neumann regular rings. If R is von Neumann regular and N is
an R-module, then R*=R®@N is 2-von Neumann regular. However, if R*=Z/4Z,
then R* is 2-von Neumann regular but R* does not have the form R*=R® N where
R is von Neumann regular and N is an R-module. For since R* is not von Neumann
regular, we must have R=Z, and hence R* would be a Boolean-like ring which isn’t
the case since Z/4Z has characteristic 4. This same example shows that a ring
satisfying the identity x;x,(1+ x,)(1 +x,)=0 need not be the idealization of a ring
satisfying x;(1+ x;) with a module.

Let R*=Z,[X]/(X®) x Z,, so R* is 3-Boolean, but not 2-Boolean. Now | R* | =
16 and |nil (R*)|=4. Suppose that R*~ R®N where R is 2-Boolean and N is an
R-module. Now R can’t be a Boolean ring for then R* would be 2-Boolean, so
|R|>2. Also |R|#16, so |R|=4 or 8. Now |R|=4 implies |N|=4. In this
case, since 0@N<nil(R®N) and |nil(R*)|=4, R is reduced. But then R is a
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Boolean ring and hence R* would be a Boolean-like ring, a contradiction. Hence
|R|=8 and | N|=2, so N is isomorphic as an abelian group to Z,. Since R* is the
direct product of two local rings, the same is true of R. It is easily seen that
R must be isomorphic to Z,[X]/(X?)x Z,. What is the action of R on N~Z,?
Now (1,1) and (1+x, 1) are units of R, so (1,1)I=1 and (1+x, 1)I=1. Hence
(%,01=0, so nil(R) N=0. It follows from Theorem 9 that R* is 2-Boolean, a
contradiction.

If {X,},c4 is any set of indeterminates over Z,, then R=Z,[{X }J/({X,})* is a
quasi-local Boolean-like ring. Let M=({X,})/({X,})?, the maximal ideal of R.
Then M = M/M? is a vector space over Z, = R/M of dimension | A |. If we consider M
as a Z,-module, then R is isomorphic to the idealization Z,® M. The next theorem
gives a complete characterization of Boolean-like rings with only finitely many
maximal ideals. This of course includes Noetherian Boolean-like rings. More
generally, any Boolean-like ring is a suitable homomorphic image of a polynomial
ring over a Boolean ring.

THEOREM 11. A semi-quasi-local Boolean-like ring is a finite direct product
of quasi-local Boolean-like rings. Let (R, M) be a quasi-local Boolean-like ring.
Let {X,},c4 be a set of indeterminates with |A|=dimg, M/M?*. Then R=x

ZI{XIVAXD).

Proof. Let R be a semi-quasi-local Boolean-like ring with maximal ideals
My, -+, M,. Since M3---M?%=nil(R)*=0, we have R=R/M? x - - - x R/M? by the
Chinese Remainder Theorem and each R/M? is a quasi-local Boolean-like ring. Let
(R, M) be a quasi-local Boolean-like ring. Let B={b|R|b=5b?}. Since R is quasi-
local, B=Z,. Thus by Theorem 10, R=Z,®M. Let {x,},., be a basis for M
considered as a Z,-module and let {X,},., be a set of indeterminates over Z, in one-
to-one correspondence with the basis elements. Define the map ¢: Z,[{X,}]>R
by o(f(X))=f(x,). Clearly ¢ is an epimorphism with kero=({X,})?, so
ZI{X3/{X}) =R.

More generally, it can be shown that a quasi-local n-Boolean ring has the form
Z,[{X,})/I where I is an ideal with ({X,})"< L

Recall that an R-module N is said to be arithmetical if the lattice of R-
submodules of N is distributive. It is well known that N is arithmetical if and only if
for each maximal ideal M of R, the R,,-submodules of N,, are totally ordered. From
Theorem 11 it is easily seen that a quasi-local arithmetical Boolean-like ring is
isomorphic to either Z, or Z,[X]/(X)?. Thus a Boolean-like ring R is arithmetical if
and only if for each maximal ideal M of R, R, is isomorphic to either Z, or
Z,[X]/(X?) or equivalently dimg,,, M/M > <1 for each maximal ideal M of R. This is
observed in [8] where a sheaf-theoretic characterization of arithmetical Boolean-like
rings is given. We end this paper with an alternate structure theory for arithmetical
Boolean-like rings.



76 D. D. ANDERSON

THEOREM 12. If B is a Boolean ring and N is an arithmetical B-module, then the
idealization R=B®N is an arithmetical Boolean-like ring. Conversely if R is an
arithmetical Boolean-like ring, nil(R) is an arthmetical B= R/nil(R)-module and
R=B®nil(R):

Proof. Suppose that B is a Boolean ring and N is an arithmetical B-module.
By Theorem 10, R=B@®N is a Boolean-like ring. Let M* be a maximal ideal of R.
Then M*=M@ N where M is a maximal ideal of B. Then B, ~Z, and N, is a By,-
module whose submodules are totally ordered. Hence N,, is isomorphic to 0 or
Z,, s0 Ry«= By ®N,, is isomorphic to Z, or Z,[X]/(X?) both of which are chained
rings. Hence R is an arithmetical ring. Conversely suppose that R is an arith-
metical Boolean-like ring. Then by Theorem 10, R=B®nil(R). Since R is an
arithmetical ring, nil (R) is an arithmetical R-module. However, since the structure
of nil (R) as an R-module is essentially the same as the structure of nil(R) has a B-
module, nil (R) is also an arithmetical B-module.
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