On h-Divisible Torsion Modules over Domains

by

B. DE LA ROSA and L. FUCHS

(Received November 15, 1984)

Introduction

The concept of an h-divisible module over a domain R was introduced by Matlis in [4]; these modules are by definition the epimorphic images of the injective Rmodules. The purpose of this paper is to continue the study of h-divisibles. We shall denote the field of quotients of R by Q and the R-module Q/R by K, and assume that $R \neq 0$.

It is well known that the torsion part of an h-divisible R-module is a direct summand and that the torsion-free part is isomorphic to a direct sum of copies of Q. This reduces our investigation to the torsion case.

Our basic tool is the concept of an hd-exact sequence which we introduce and study in Section 2. In this we rely heavily on the Matlis duality [3] between the category of h-divisible torsion R-modules T on the one hand, and the category of Rcomplete torsion-free R-modules M on the other hand, under the inverse correspondences

$$T \longmapsto \operatorname{Hom}_{R}(K, T)$$
 and $M \longmapsto K \otimes_{R} M$.

Based on the concept of hd-exactness our concept of hd-projective then amounts to the obvious adaptation of the definition of projective, and the corresponding notion of hd-dimension rests on the readily verifiable version of Schanuel's lemma [2] for hd-projective resolutions, which we tacitly assume. In a similar fashion we apply the appropriately modified version of Kaplansky's lemma [2] for hd-exact sequences in Section 3 where we prove as one of our main results that under the hypothesis p.d.Q = 1, the hd-dimension of every h-divisible torsion R-module is 1 less than its projective dimension. In the final section we prove (under the same condition on Q) that this relationship is maintained between the global hd-dimension of R (defined in the obvious way) and the global dimension of R.

2. hd-exact sequences

An exact sequence $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ of R-modules will be called hd-exact if K =The authors are from the University of the Orange Free State (Bloemfontein) and Tulane University Q/R has the projective property with respect to it.

In this section we establish several characteristic features of hd-exact sequences of torsion modules over an arbitrary domain R.

LEMMA 1. Let $0 \rightarrow A \hookrightarrow B \xrightarrow{\beta} C \rightarrow 0$ be an hd-exact sequence of torsion R-modules. Then B is h-divisible if and only if A and C are h-divisible.

Proof. Suppose that B is h-divisible. Then clearly C is h-divisible, and we may consider A. Let $a \in A$. Since $a \in B$, the h-divisibility of B ensures the existence of a homomorphism $\rho: Q \to B$ such that $\rho 1 = a$. For any $r \in R$ we have that $\beta \rho(r) = \beta(\rho r) = \beta(ra) = r\beta a = 0$. Thus we have that $\mu: K \to C$, $\mu(q+R) = \beta \rho(q)$ is a well defined homomorphism, and obviously $\mu \gamma = \beta \rho$, where $\gamma: Q \to K$ is the canonical map. For this μ there exists a $\nu: K \to B$ as in

such that the triangle commutes. We claim that $\rho - \nu \gamma$ maps Q into A and $(\rho - \nu \gamma)1 = a$. In fact, for any $q \in Q$, $(\rho - \nu \gamma)q \in B$; and $\beta(\rho - \nu \gamma)q = \beta\rho(q) - \beta\nu\gamma(q) = \beta\rho(q) - \mu\gamma(q) = 0$ shows that $(\rho - \nu \gamma)q \in \text{Ker }\beta = A$. Furthermore, $(\rho - \nu \gamma)1 = \rho 1 - \nu(\gamma 1) = a - \nu(1 + R) = a - 0 = a$. Thus we have shown that A is h-divisible.

Conversely, take any preassigned $b \in B$ and set $\beta b = c$. Let $\phi: Q \to C$ be a homomorphism with $\phi 1 = c$. Since C is torsion, $\ker \phi \neq 0$. Let $0 \neq r \in \ker \phi$. Then for the canonical map $\theta: Q \to Q/Rr \cong K$ and $\kappa: Q/Rr \to C$, $\kappa(q+Rr) = \phi q$, we have that $\phi = \kappa \theta$ so that $\kappa(1+Rr) = c$. Since the row in the diagram below is kd-exact, there is a homomorphism ψ as inserted which makes the triangle commute:

Now $c = \kappa(1 + Rr) = \beta \psi(1 + Rr)$ together with $\beta b = c$ shows that $\psi(1 + Rr) - b \in \text{Ker } \beta = A$. Hence there exists a homomorphism $\eta: Q \to A$ such that $\lambda 1 = \psi(1 + Rr) - b$. The homomorphism $\psi \theta - \eta: Q \to B$ maps 1 onto b.

LEMMA 2. For every h-divisible torsion R-module C there exists an hd-exact sequence of the form $0 \rightarrow A \rightarrow \oplus K \rightarrow C \rightarrow 0$ in which the kernel A is also h-divisible.

Proof. For every $c \in C$ we may fix a homomorphism $\phi_c : Q \to C$ with $\phi_c 1 = c$ and

a $0 \neq r_c \in \text{Ker } \phi_c$, and construct a homomorphism $\psi_c : K \to C$ with $c \in \text{Im } \phi_c$ as in

This property of C ensures that the induced map

 $\bigoplus_{\phi \in \operatorname{Hom}_R(K, C)} C$ is epic, and we have the exact sequence

$$0 \longrightarrow \operatorname{Ker} \Phi \longrightarrow \oplus K \stackrel{\Phi}{\longrightarrow} C \longrightarrow 0.$$

That K has the projective property with respect to this sequence is guaranteed by the construction. Finally, since $\bigoplus K$ is torsion and h-divisible, $\operatorname{Ker} \Phi$ must also be, by Lemma 1. \square

The following two lemmas assert that exact sequences in the category of R-complete torsion-free R-modules and hd-exact sequences in the category of h-divisible torsion R-modules are correspondents under the Matlis duality.

LEMMA 3. If $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ is exact, with A, B and C R-complete and torsion-free, then in the induced sequence

$$0 \longrightarrow K \otimes_R A \longrightarrow K \otimes_R B \longrightarrow K \otimes_R C \longrightarrow 0$$

the modules $K \otimes_R A$, $K \otimes_R B$ and $K \otimes_R C$ are torsion and h-divisible, and this sequence is hd-exact.

Proof. By the Matlis duality the sequence is exact and the three tensor products in this sequence are h-divisible and torsion. To prove hd-exactness we must show that the induced left exact sequence

$$0 \longrightarrow \operatorname{Hom}_{R}(K, K \otimes_{R} A) \xrightarrow{\alpha_{*}} \operatorname{Hom}_{R}(K, K \otimes_{R} B) \xrightarrow{\beta_{*}} \operatorname{Hom}_{R}(K, K \otimes_{R} C)$$

ends up with β_* epic. This follows from the existence of natural isomorphisms (cf. [3]) as indicated in the commutative diagram

$$0 \longrightarrow \operatorname{Hom}_{R}(K, K \otimes_{R} A) \xrightarrow{\alpha_{*}} \operatorname{Hom}_{R}(K, K \otimes_{R} B) \xrightarrow{\beta_{*}} \operatorname{Hom}_{R}(K, K \otimes_{R} C)$$

$$\downarrow \cong \qquad \qquad \downarrow \cong \qquad \qquad \downarrow \cong$$

$$0 \longrightarrow A \longrightarrow B \longrightarrow C \longrightarrow 0$$

and the exactness of the bottom row. \Box

LEMMA 4. Let $0 \rightarrow S \rightarrow T \rightarrow U \rightarrow 0$ be an hd-exact sequence with S, T and U h-divisible and torsion. Then

$$0 \longrightarrow \operatorname{Hom}_{R}(K, S) \longrightarrow \operatorname{Hom}_{R}(K, T) \longrightarrow \operatorname{Hom}_{R}(K, U) \longrightarrow 0$$

is exact, and $\operatorname{Hom}_R(K, S)$, $\operatorname{Hom}_R(K, T)$ and $\operatorname{Hom}_R(K, U)$ are R-complete and torsion-free.

Proof. By the Matlis duality, $\operatorname{Hom}_R(K, S)$, $\operatorname{Hom}_R(K, T)$ and $\operatorname{Hom}_R(K, U)$ are indeed R-complete and torsion-free; and we must only prove exactness. Now the exactness of $0 \to S \xrightarrow{\eta} T \xrightarrow{\chi} U \to 0$ implies that of

$$0 \longrightarrow \operatorname{Hom}_{R}(K, S) \xrightarrow{\eta_{*}} \operatorname{Hom}_{R}(K, T) \xrightarrow{\chi_{*}} \operatorname{Hom}_{R}(K, U)$$

and we must show that χ_* is epic. This, however, is an immediate consequence of the fact that K has the projective property with respect to $0 \to S \to T \to U \to 0$.

Finally, in this section we briefly introduce our notion of projectivity with respect to hd-exact sequences: an h-divisible torsion R-module is said to be hd-projective if it has the projective property with respect to hd-exact sequences. Standard arguments lead to the following characterization of the hd-projectives:

LEMMA 5. The hd-projective R-modules are exactly the direct summands of direct sums of copies of K. \square

3. The hd-dimension of an h-divisible torsion module

An hd-projective resolution of an h-divisible torsion R-module H is an hd-exact sequence

$$\longrightarrow P_n \xrightarrow{\delta_n} P_{n-1} \longrightarrow \cdots \longrightarrow P_1 \xrightarrow{\delta_1} P_0 \xrightarrow{\delta_0} H \longrightarrow 0$$

of hd-projective modules P_i . The validity of Schanuel's lemma for these resolutions secures the following concept of dimension as an invariant for h-divisible torsion modules: the hd-dimension of H, in notation hd.d.H, is equal to n if there is a smallest index n with $\text{Im } \delta_n$ hd-projective, or to ∞ if no such n exists. The theorem below compares hd-dimension with projective dimension under the hypothesis p.d.Q = 1.

THEOREM 6. Let R be a domain such that p.d.Q = 1, and let T be an h-divisible torsion R-module. Then p.d.T = k (≥ 1) if and only if hd.d.T = k - 1.

Proof. Corollary 10.10 of [3] provides our basis for induction: p.d.T. = 1 if and only if hd.d.T = 0. Assume that the theorem is true for $k \ge 1$. Let T be an h-divisible torsion R-module with p.d.T = k + 1. Tensoring the exact sequence $0 \to R \to Q \to K \to 0$ by the R-complete torsion-free R-module $A = \operatorname{Hom}_R(K, T)$ and keeping in mind that $A \otimes_R Q$ is torsion-free and divisible, we obtain an exact sequence

$$0 \longrightarrow A \longrightarrow \oplus Q \longrightarrow T \longrightarrow 0.$$

Since $p.d. \oplus Q = 1$, Kaplansky's lemma applied to this sequence gives p.d.A = k. Now consider a free resolution of A:

$$0 \longrightarrow H \longrightarrow F \longrightarrow A \longrightarrow 0$$
.

By [3], the induced sequence $0 \to \tilde{H} \to \tilde{F} \to \tilde{A}$ of completions is exact, and as $\tilde{A} = A$ in the present case, we have a short exact sequence $0 \to \tilde{H} \to \tilde{F} \to \tilde{A} \to 0$ of *R*-complete torsion-free *R*-modules. In view of Lemma 3, the induced sequence

$$0 \longrightarrow K \otimes \widetilde{H} \longrightarrow K \otimes \widetilde{F} \cong K \otimes F \longrightarrow K \otimes A \cong T \longrightarrow 0$$

is hd-exact. Here $K \otimes F$ is a direct sum of copies of K, whence $hd.T = hd.d.(K \otimes \tilde{H}) + 1$ follows provided that $hd.d.T \neq 0$, (which is true because of p.d.T > 1). By induction, $hd.d.(K \otimes H) = p.d.H = p.d.A - 1 = k - 1$, and therefore hd.d.T = k follows. \square

4. The global hd-dimension of R

Following the definition of global dimension of R we define the global hd-dimension of R by

$$gl.hd.d.R = \sup\{hd.d.T \mid T \text{ an } h\text{-divisible torsion } R\text{-module}\}$$
.

As our final result we prove that under the hypothesis p.d.Q = 1, the relationship between hd-dimension and projective dimension established in Section 3 is maintained by the corresponding global dimensions.

THEOREM 7. Let R be a domain such that p.d.Q=1. Then gl.hd.d.R=gl.d.R-1.

Proof. This theorem is an immediate consequence of our Theorem 6 and Propositon 3.5 in [3]. A direct proof within our framework runs as follows: Let $J \neq 0$ be an ideal of R. From the exact sequence $0 \rightarrow J \rightarrow Q \rightarrow Q/J \rightarrow 0$ we obtain that either p.d.J = 1 = p.d.Q/J or p.d.Q/J = p.d.J + 1. The first alternative would imply p.d.R/J = 2 and a contradiction after examining the projective dimensions in the exact sequence $0 \rightarrow R/J \rightarrow Q/J \rightarrow K \rightarrow 0$. From Theorem 6 we infer that hd.d.Q/J = p.d.Q/J - 1 = p.d.J. Since R is not semisimple (as $R \neq Q$), we have by Auslander's result (cf. e.g. [1]) that $gl.d.R = 1 + \sup\{p.d.J \mid J \text{ an ideal of } R\}$. The claim is now immediate. \square

References

- [1] FAITH, C.; Algebra: Rings, Modules and Categories I, Springer-Verlag, Berlin, 1973.
- [2] KAPLANSKY, I.; Fields and Rings, The University of Chicago Press, 1969.
- [3] MATLIS, E.; Cotorsion modules, Memoirs of the Amer. Math. Soc., No. 49 (1964).
- [4] MATLIS, E.; Divisible modules, Proc. Amer. Math. Soc., 11 (1960), 385-391.

Department of Mathematics University of the Orange Free State Bloemfontein, 9301 Republic of South Africa Department of Mathematics Tulane University New Orleans Louisiana 70118