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Introduction

All groups considered in this paper will be separable abelian p-groups. The
notation and terminology will be, for the most part, the same as that in [4]. The

symbol @, will denote a direct sum of cyclic p-groups, and @ will denote a direct sum
as valuated groups.

Recall that a p-group G is p® *"-projective if there exists a p"-bounded subgroup
P of G such that G/P=@,. G is said to be proper p®*"-projective if it is not p®*’-
projective for any ¢ <n.

In [2], Benabdallah, Irwin, and Rafiq were able to show that for a separable p-
group G, if G is not a direct sum of cyclics (G not p®-projective) then there exists a
subgroup H of G such that H is proper p®*!-projective. In [6], Nunke has shown
that subgroups of p®*"-projective groups are again p®*"-projective. One is led to
consider the following question.

Question 1. Does there exist a separable p-group G, not p©*!-projective, (thus
G contains a proper p®*!-projective subgroup) which contains no proper p®*"-
projective subgroup for n>1?

To restate the question in slightly more general terms we define, for each n>1,
the class of n-groups, %,, as follows.

DEFINITION. Ge %, if G has no proper p®*’-projective subgroups for 7> n.
From Nunke’s result we note that if G is p®**-projective, t<n, then Ge %,. We
can now pose the more general question.

Question 2. Does there exist, for any n, a separable p-group G belonging to b,
such that G is not p®*"-projective?

If there does exist such a group G we shall call it a proper n-group.

We shall now consider some results related to the question of the existence of
proper n-groups. In [3] we were able to show that if G is not fully starred then for each
n there exists a proper p® " "-projective H, such that H, <G. This result implies that if
G is an n-group, it must be fully starred. In the same paper we also showed for G fully
starred and not p®*"-projective, if G is C-decomposable (has a summand that is a
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direct sum of cyclic groups and has the same final rank as G) then it has a proper
p@*"*Lprojective subgroup. Thus to be a proper n-group G cannot be p®*"-
projective but must be fully starred and non C-decomposable.

This leads one to ask, if G is fully starred but not proper p®*"-projective does
there exist 4 <G such that 4=H@®C, H not p®*"-projective and the final rank of C
equal to the final rank of H? If this holds then 4 and thus G would not be a proper
n-group. We would then have that the answer to question 2 is no.

A straightforward generalization of Lemma 2.8 in [2] shows that if the following
chain condition holds, then such an above A exists.

Chain condition

If G is a p-group and {S,} is a countable sequence of pure dense subgroups of G
such that S, <S, ., Sk is p®*"-projective for every K, and G=u S, then is Gp®*"-
projective ?

That the chain condition fails to hold for an uncountable chain is shown by the
following example: Let G=B@P, S,=B,®P, B, basic in B such that U B, = B, P the
prufer group. G is the union of an ascending chain of p®*L-projectives but is itself not
p-projective for any o.

In pursuing this chain condition we have obtained some partial results. We first
need two lemmas.

LEMMA 1. Let G be a p-group such that p°G=0. Let S and P be subsocles of G
such that S+ P= S(-VBP where the sum is direct as a valuated vector space. Let P be the

closure of P in G with respect to the p-adic toplogy. Then S +F=S€V-)P as a valued
vector space.

Proof. Suppose that te P and se S with h(t+s)>h(t) =h(s). Let x;€ P, icw,
such that h(x)=h(f) for all iew and {x};,—t Then {x;+s};,—~1+s. Now

h(x;+5)=h(x;))=h(s) for all iew since x;+s€S éP. Therefore h((x;+s)—(t+5)) =
h(x;+s) for all iew. This contradicts {x;+s},—¢+s and thus h(z+ 5)=

min{A(¢), h(s)} which implies Sé—)P is direct as a valuated vector space.

LEMMA 2. Let H be a pure subgroup of G, P a subgroup of HIp] such that
H|P=@®,, and P the closure of P in G with respect to the p-adic topology in G. Then
(H+ P)/P is a pure subgroup of G/P.

Proof. Note that by [5] H[p]= SéP as a valuated vector space. Let g€ G and
he H such that p"g+P=h+P. Thus p"g=h+t for some te P. Hence p"*'g=ph.
Since H is pure in G, there exists h, €H such that p"*th,=ph. Therefore
p"hy—he H[p] and we may write p"h —h=s+u with seS and ueP. Thus

p"h, —p"g=s+(u—1) with se S and u—te P. By Lemma 1 S@ P is direct as a valued
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~ vector space hence there exists 4, € H such that p"h,=s. Thus p"(hy—hy)—p'g=
u—te P from which we obtain p"(hy —h)) + P=h+ P. Therefore H+ P/P is pure in
G/P.

We will also need the following result from [1].

THEOREM. Let B be a basic subgroup of a p-group G, p®G=0. Then all B-high
subgroups of G are @, if and only if G=

COROLLARY. Let G be a p-group such that p°G =0. Suppose there exists a basic
subgroup H of G such that G/H is countable. Then G=@,.

With the two lemmas and the above corollary we are now able to prove
THEOREM. Let G be a separable p-group and H a subgroup of G such that

1) H is pure and dense in G

i) [|G/H|<X,
ili) H is p®*l-projective
then G is p®™*'-projective.

Proof.  Let P<H][p] such that H/P=@®,. Let P be the closure of P in G[p] with
respect to the relative p-adic topology Note that P~ H=P since p®(H/P)=0.
Thus (H+ P)/P~H/H~ P=H/P= . and is pure in G/P by Lemma 2. Note also
that p®(G/P)=0 since P is closed in G. Since (G/P)/[(H+ P)/P1=G/(H+P) is a
homomorphic image of G/H we have (G/P)/[H + P] divisible and countable. By the
above corollary G/P is a direct sum of cyclic groups. Thus G is p®*!-projective.

The authors hope that the discussion in this paper will shed some light on the
question as to whether there are proper n-groups. If there are proper n-groups then
we have a new class of groups to look at. If there are not then we have a new
characterization of p®*"-projectives. This is one of those rare instances in which
either alternative is not unfavorable.
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