(m, n)-Two-sided Pure Semigroups

by

Stojan Bogdanović and Todor Malinović

(Received December 16, 1985)

In this paper we shall describe a semigroup S in which S^{m+n+1} is a semilattice of groups (Theorem 1). This result is a generalization of the main result of N. Kuroki, [5]. By Theorem 2 we characterize a nilpotent semigroup.

A subsemigroup A of a semigroup S is a bi-ideal of S if $ASA \subseteq A$, [1]. A bi-ideal A of a semigroup S is called two-sided pure if $A \cap xSy = xAy$ holds for every $x, y \in S$. A semigroup S is called T^* -pure if every bi-ideal of it is two-sided pure, [5].

Throughout this paper, Z^+ will denote the set of all positive integers.

For undefined notions and notations we refer to [1] and [8].

DEFINITION 1. A subset B of a semigroup S is a (m, n)-two-sided pure if

$$B \cap x_1 \cdot \cdot \cdot x_m S y_1 \cdot \cdot \cdot y_n = x_1 \cdot \cdot \cdot x_m B y_1 \cdot \cdot \cdot y_n$$

holds for every $x_1, \dots, x_m, y_1, \dots, y_n \in S$, where $m, n \in \mathbb{Z}^+$. A semigroup S is (m, n)-two-sided pure if every bi-ideal of it is an (m, n)-two-sided pure subset of S.

Remark. (1, 1)-two-sided pure bi-ideal is two-sided pure, [5].

LEMMA 1. Let S be an (m, n)-two-sided pure semigroup. Then

$$x_1 \cdot \cdot \cdot x_m S y_1 \cdot \cdot \cdot y_n = (x_1 \cdot \cdot \cdot x_m)^2 S (y_1 \cdot \cdot \cdot y_n)^2$$

for every $x_1, \dots, x_m, y_1, \dots, y_n \in S$.

Proof. Since $x_1 \cdots x_m S y_1 \cdots y_n$ is a bi-ideal of S we have

$$x_1 \cdots x_m S y_1 \cdots y_n = x_1 \cdots x_m S y_1 \cdots y_n \cap x_1 \cdots x_m S y_1 \cdots y_n$$

$$= x_1 \cdots x_m (x_1 \cdots x_m S y_1 \cdots y_n) y_1 \cdots y_n$$

$$= (x_1 \cdots x_m)^2 S (y_1 \cdots y_n)^2. \quad \blacksquare$$

COROLLARY 1. An (m, n)-two-sided pure semigroup S is completely π -regular.

Proof. By Lemma 1 we obtain that

$$a^{m+n+1} \in a^m S a^n = a^{2m} S a^{2n} = \dots = a^{m2^{m+n+1}} S a^{n2^{m+n+1}} \subset a^{2(m+n+1)} S a^{2(m+n+1)}$$

holds for every $a \in S$, so by Theorem IV 2 [1] we have that S is completely π -regular. A semigroup S is weakly commutative if for every $a, b \in S$ there exists $k \in Z^+$ such that $(ab)^k \in bSa$, [8].

LEMMA 2. An (m, n)-two-sided pure semigroup S is weakly commutative.

Proof. By Definition 1 we have that

$$y_1 \cdots y_n (x_1 \cdots x_m S y_1 \cdots y_n) x_1 \cdots x_m$$

$$= x_1 \cdots x_m S y_1 \cdots y_n \cap y_1 \cdots y_n S x_1 \cdots x_m$$

holds for every $x_1, \dots, x_m, y_1, \dots, y_n \in S$ (since $x_1 \dots x_m S y_1 \dots y_n$ is a bi-ideal of S). From this it follows

$$\underbrace{ab \cdots ab \cdot a \cdot b \cdot ab \cdots ab}_{m-1} \underbrace{ab \cdots ab \cdot a \cdot b \cdot ab \cdots ab}_{m-1} \underbrace{m-1} \underbrace{m-1}$$

$$= b \cdot ab \cdots ab Sab \cdots ab \cdot a \subseteq bSa$$

for every $a, b \in S$. Thus

$$(ab)^{2m+2n-1} \in bSa$$

i.e. S is weakly commutative.

LEMMA 3 ([6], S. Lajos). A semigroup S is a semi-lattice of groups if and only if the set of all bi-ideals of S is a semilattice under the multiplication of subsets.

LEMMA 4. Let S^{m+n+1} be a semilattice of groups. Then

- (i) $x_1 \cdots x_m S y_1 \cdots y_n = y_1 \cdots y_n S x_1 \cdots x_m$
- (ii) $x_1 \cdots x_m S y_1 \cdots y_n = (y_1 \cdots y_n)^2 S x_1 \cdots x_m$
- (iii) $x_1 \cdots x_m S y_1 \cdots y_n = x_1 \cdots x_m y_1 \cdots y_n S$
- (iv) $x_1 \cdots x_m S y_1 \cdots y_n = S x_1 \cdots x_m y_1 \cdots y_n$ (v) $x_1 \cdots x_m S y_1 \cdots y_n = (x_1 \cdots x_m y_1 \cdots y_n)^{m+n+1} S$.

Proof. (i) By Lemma 3, we have

$$x_{1} \cdots x_{m}Sy_{1} \cdots y_{n}$$

$$= (x_{1} \cdots x_{m}Sy_{1} \cdots y_{n})^{2}$$

$$= (x_{1} \cdots x_{m}Sy_{1} \cdots y_{n}x_{1} \cdots x_{m}S)(y_{1} \cdots y_{n}x_{1} \cdots x_{m}Sy_{1} \cdots y_{n})$$

$$= (y_{1} \cdots y_{n}x_{1} \cdots x_{m}Sy_{1} \cdots y_{n})(x_{1} \cdots x_{m}Sy_{1} \cdots y_{n}x_{1} \cdots x_{m}S)$$

$$= y_{1} \cdots y_{n}(x_{1} \cdots x_{m}Sy_{1} \cdots y_{n}x_{1} \cdots y_{m})(Sy_{1} \cdots y_{n}x_{1} \cdots x_{m}S)$$

$$= y_{1} \cdots y_{n}(Sy_{1} \cdots y_{n}x_{1} \cdots x_{m}S)(x_{1} \cdots x_{m}Sy_{1} \cdots y_{n}x_{1} \cdots x_{m})$$

$$\subseteq y_{1} \cdots y_{n}Sx_{1} \cdots x_{m}$$

and since the opposite inclusion also holds we have (i).

(ii) By Lemma 3 and by (i) we obtain that

$$x_{1} \cdots x_{m}Sy_{1} \cdots y_{n}$$

$$= (x_{1} \cdots x_{m}Sy_{1} \cdots y_{n})^{3}$$

$$= (x_{1} \cdots x_{m}Sy_{1} \cdots y_{n})(y_{1} \cdots y_{n}Sx_{1} \cdots x_{m})(x_{1} \cdots x_{m}Sy_{1} \cdots y_{n})$$

$$= (x_{1} \cdots x_{m}S(y_{1} \cdots y_{n})^{2})S((x_{1} \cdots x_{m})^{2}Sy_{1} \cdots y_{n})$$

$$= ((y_{1} \cdots y_{n})^{2}Sx_{1} \cdots x_{m})S(y_{1} \cdots y_{n}S(x_{1} \cdots x_{m})^{2})$$

$$\subseteq (y_{1} \cdots y_{n})^{2}Sx_{1} \cdots x_{m}$$

$$\subseteq y_{1} \cdots y_{2}Sx_{1} \cdots x_{m}$$

$$= x_{1} \cdots x_{m}Sy_{1} \cdots y_{n}.$$

Hence, (ii) holds.

(iii) By Lemma 3, we have

$$y_{1} \cdots y_{n}Sx_{1} \cdots x_{m} = (y_{1} \cdots y_{n}Sx_{1} \cdots x_{m})^{3}$$

$$\subseteq S^{m+n+1}x_{1} \cdots x_{m}y_{1} \cdots y_{n}Sx_{1} \cdots x_{m}$$

$$\subseteq x_{1} \cdots x_{m}y_{1} \cdots y_{n}Sx_{1} \cdots x_{m}S^{m+n+1}$$

$$\subseteq x_{1} \cdots x_{m}y_{1} \cdots y_{n}S.$$

From this and from (i) it follows that

$$x_1 \cdots x_m S y_1 \cdots y_n \subseteq x_1 \cdots x_m y_1 \cdots y_n S$$
.

Further,

$$x_{1} \cdots x_{m} y_{1} \cdots y_{n} S = (x_{1} \cdots x_{m} y_{1} \cdots y_{n} S)^{3}$$

$$\subseteq x_{1} \cdots x_{m} y_{1} \cdots y_{n} S x_{1} \cdots x_{m} y_{1} \cdots y_{n} S^{m+n+1}$$

$$= x_{1} \cdots x_{m} y_{1} \cdots y_{n} S^{m+n+1} S x_{1} \cdots x_{m} y_{1} \cdots y_{n}$$

$$\subseteq x_{1} \cdots x_{m} S y_{1} \cdots y_{n}.$$

Thus, the conditions (iii) holds. In a similar way it can be proved that (iv) holds.

(v) By (iii) we have that

$$x_{1} \cdots x_{m}Sy_{1} \cdots y_{n}$$

$$= x_{1} \cdots x_{m}y_{1} \cdots y_{n}S$$

$$= (x_{1} \cdots x_{m}y_{1} \cdots y_{n}S)^{m+n+1} \quad \text{(by Lemma 3)}$$

$$= x_{1} \cdots x_{m}y_{1} \cdots y_{n}Sx_{1} \cdots x_{m}y_{1} \cdots y_{n}S(x_{1} \cdots x_{m}y_{1} \cdots y_{n}S)^{m+n-1}$$

$$= (x_{1} \cdots x_{m}y_{1} \cdots y_{n})^{2}S^{2}(x_{1} \cdots x_{m}y_{1} \cdots y_{n}S)^{m+n-1}$$

$$\vdots$$

$$= (x_{1} \cdots x_{m}y_{1} \cdots y_{n})^{m+n+1}S^{m+n+1}$$

$$\subseteq x_{1} \cdots x_{m}y_{1} \cdots y_{n}S.$$

Thus (v) holds.

THEOREM 1. For a semigroup S the following conditions are equivalent:

- (i) S is (m, n)-two-sided pure;
- (ii) S^{m+n+1} is a semilattice of groups;
- (iii) $x_1 \cdots x_m S y_1 \cdots y_n = (y_1 \cdots y_n)^2 S x_1 \cdots x_m$ for every $x_1, \cdots, x_m, y_1, \cdots, y_n \in S$;
- (iv) S is a semilattice Y of semigroups S_{α} , $\alpha \in Y$, where $S_{\alpha}^{m+n+1} = G_{\alpha}(\alpha \in Y)$ is a group and

$$x_1 \cdot \cdot \cdot x_{m+n+1} \in G_{\alpha_1 \cdot \cdot \cdot \cdot \alpha_{m+n+1}}$$
 for $x_i \in S_{\alpha_i}$
 $i = 1, \cdot \cdot \cdot, m+n+1, \alpha_i \in Y$.

Proof. (i) \Rightarrow (ii). Let S be an (m, n)-two-sided pure semigroup and $a \in S^{m+n+1}$. Then by Lemma 1, we have

$$a \in x_1 \cdots x_m S y_1 \cdots y_n = (x_1 \cdots x_m)^2 S (y_1 \cdots y_n)^2$$

$$\vdots$$

$$= (x_1 \cdots x_m)^{m+n+1} S (y_1 \cdots y_n)^{m+n+1}.$$

The elements $(x_1 \cdots x_m)^{m+n+1}$, $(y_1 \cdots y_n)^{m+n+1}$ are completely regular (see Corollary 1), i.e.

$$(x_1 \cdots x_m)^{m+n+1} \in G_e$$
, $(y_1 \cdots y_n)^{m+n+1} \in G_f$, for some $e, f \in E(S)$.

Now

$$a \in e(x_1 \cdots x_m)^{m+n+1} S(y_1 \cdots y_n)^{m+n+1}$$

so

$$a = eu = vf$$

for some $u, v \in S$. Furthermore,

$$a = eu = e \cdots eu \in e \cdots eSe \cdots eu = eS(e \cdots eu)^2 = eS(eu)^2 = eSa^2 \subseteq Sa^2$$
.

Analogously, $a \in a^2S$. So by Lemma I.5.1, [1], $a \in G_r(S)$. Thus

$$S^{m+n+1} = G_r(S).$$

Since the ideal S^{m+n+1} of S is weakly commutative (since S is weakly commutative, Lemma 2) and a union of groups we have that S^{m+n+1} is a semilattice of groups (see [2], [3], [9]).

- (ii) ⇒ (iii). This implication follows by Lemma 4 (ii).
- (iii) \Rightarrow (ii). Let $s \in S^{m+n+1}$. Then

$$s = a_1 \cdot \cdot \cdot \cdot a_m b c_1 \cdot \cdot \cdot \cdot c_n \in a_1 \cdot \cdot \cdot \cdot a_m S c_1 \cdot \cdot \cdot \cdot c_n = (a_1 \cdot \cdot \cdot \cdot a_m)^k S c_1 \cdot \cdot \cdot \cdot c_n$$

for every $k \ge 2$. Since $(a_1 \cdots a_m)^k \in G_e$ for some $k \in \mathbb{Z}^+$ and $e \in E(S)$ we have that

$$s = e(a_1 \cdots a_m)^k u(c_1 \cdots c_n)$$

i.e. s = ey for some $y \in S$. From this it follows that

$$s = e \cdot \cdot \cdot ev \in eSs = s^2Se \subseteq s^2S$$
.

Similarly, $s \in Ss^2$ and therefore $s \in G_r(S)$. Thus $S^{m+n+1} = G_r(S)$. Since from (iii) we have that S is weakly commutative it follows that S^{m+n+1} is a semilattice of groups (see [9]).

(ii) \Rightarrow (i). Let S^{m+n+1} be a semilattice of groups and let A be a bi-ideal of S and $x_1, \dots, x_m, y_1, \dots, y_n \in S$. Assume $a \in A \cap x_1 \dots x_m S y_1 \dots y_n$. Then by Lemma 4 (v) we have that

$$a \in A \cap (x_1 \cdots x_m y_1 \cdots y_n)^{m+n+1} S, \text{ i.e.}$$

$$a = (x_1 \cdots x_m y_1 \cdots y_n)^{m+n+1} S \qquad (a \in A, s \in S).$$

The element $(x_1 \cdots x_m y_1 \cdots y_n)^{m+n+1}$ is completely regular, i.e.

$$(x_1 \cdots x_m y_1 \cdots y_n)^{m+n+1} = (x_1 \cdots x_m y_1 \cdots y_n)^{m+n+1} u(x_1 \cdots x_m y_1 \cdots y_n)^{m+n+1}$$

and

$$(x_1 \cdots x_m y_1 \cdots y_n)^{m+n+1} u = u(x_1 \cdots x_m y_1 \cdots y_n)^{m+n+1}$$

for some $u \in S$. Since $a \in S^{m+n+1}$ we have a = aba, ab = ba for some $b \in S$. So

$$ua = uaba = uba^2$$
.

Furthermore,

$$a = (x_1 \cdots x_m y_1 \cdots y_n)^{m+n+1} s$$

$$= (x_1 \cdots x_m y_1 \cdots y_n)^{m+n+1} u (x_1 \cdots x_m y_1 \cdots y_n)^{m+n+1} s$$

$$= (x_1 \cdots x_m y_1 \cdots y_n)^{m+n+1} u a = (x_1 \cdots x_m y_1 \cdots y_n)^{m+n+1} u b a^2$$

$$\subseteq x_1 \cdots x_m y_1 \cdots y_n S a^2 = (x_1 \cdots x_m y_1 \cdots y_n S a^2)^2 \quad \text{(Lemma 3)}$$

$$= (x_1 \cdots x_m a^2 S y_1 \cdots y_n) (x_1 \cdots x_m S a^2 y_1 \cdots y_n) \quad \text{(Lemma 4 (iii))}$$

$$\subseteq x_1 \cdots x_m a^2 S a^2 y_1 \cdots y_n \subseteq x_1 \cdots x_m A S A y_1 \cdots y_n$$

$$\subseteq x_1 \cdots x_n A y_1 \cdots y_n.$$

Therefore

$$(1) A \cap x_1 \cdots x_m S y_1 \cdots y_n \subseteq x_1 \cdots x_m A y_1 \cdots y_n.$$

By Lemma 4 (iii) and (iv) for every $a \in A$ we have that

$$x_1 \cdots x_m a y_1 \cdots y_n \in S^m a S^n = (S^m a S^n)^2 = S^m a^2 S^n S^m S^n = S^m S^n S^m S^n a^2$$

= $(S^{2m+2n}a^2)^2 = a^2 S^{4m+4n}a^2 \subseteq ASA \subseteq A$.

Thus

$$(2) x_1 \cdots x_m A y_1 \cdots y_n \subseteq A.$$

From (1) and (2) it follows that

$$A \cap x_1 \cdots x_m S y_1 \cdots y_n = x_1 \cdots x_m A y_1 \cdots y_n$$

for every $x_1, \dots, x_m, y_1, \dots, y_n \in S$, i.e. A is an (m, n)-two-sided pure subset of S. Therefore, S is an (m, n)-two-sided pure semigroup.

(ii) \Rightarrow (iv). Let S^{m+n+1} be a semilattice Y of groups G_{α} , $\alpha \in Y$. Then S is weakly commutative and π -regular and by Theorem 3.2 [4] we have that S is a semilattice of nil-extensions of groups S_{α} , $\alpha \in Y$. Let $s \in S^{m+n+1}$. Then $s = x_1 \cdots x_{m+n+1} \in G_{\alpha}$ for some $\alpha \in Y$. Thus $S_{\alpha}^{m+n+1} \subseteq G_{\alpha}$ ($\alpha \in Y$). It is clear that

$$x_1 \cdots x_{m+n+1} \in G_{\alpha_1 \cdots \alpha_{m+n+1}}$$
 for $x_i \in S_{\alpha_i}$ $(i=1, \cdots, m+n+1)$.

(iv) \Rightarrow (ii). Assume $s \in S^{m+n+1}$. Then $s = x_1 \cdots x_{m+n+1} \in G_{\delta}$ for some $\delta \in Y$. Hence $S^{m+n+1} = G_r(S)$. For $e, f \in E(S)$ we have that $ef = e \cdots ef \in G_{\alpha\beta}$ and $fe = fe \cdots e \in G_{\alpha\beta}$, so $ef, fe \in G_{\alpha\beta}$, whence by Lemma 2.3 [7] we obtain ef = fe. Therefore S^{m+n+1} is a semilattice of groups (Lemma V 1 [7]).

Remark. The conditions (m-n+1, n) are equivalent for all $1 \le n \le m$.

THEOREM 2. Every subsemigroup of a semigroup S is an (m, n)-two-sided pure subset of S if and only if

$$S^{m+n+1} = \{0\} .$$

Proof. If every subsemigroup of S is an (m, n)-two-sided pure subset of S, then every bi-ideal of S is (m, n)-two-sided pure. From this and Theorem 1 we have that S^{m+n+1} is a semilattice of groups. Assume $e \in E(S)$. Then

$$\{e\} \cap x_1 \cdots x_m Sy_1 \cdots y_n = x_1 \cdots x_m \{e\} y_1 \cdots y_n$$

for every $x_1, \dots, x_m, y_1, \dots, y_n \in S$, so

$$\{e\} \cap x_1 \cdot \cdot \cdot x_m S y_1 \cdot \cdot \cdot y_n = \{x_1 \cdot \cdot \cdot x_m e y_1 \cdot \cdot \cdot y_n\}$$

and $x_1 \cdots x_m e y_1 \cdots y_n = e$. Thus

$$x_1e\cdots e\cdot e\cdot e\cdot e\cdots e=e$$

i.e. $x_1e=e$. Similarly $ex_1=e$. Thus

$$ex_1 = x_1 e = e$$

for all $x_1 \in S$ and all $e \in E(S)$. Therefore, S has only one idempotent, the zero 0 of S. Since S^{m+n+1} is a semilattice of groups with only one idempotent which is the zero of S we have that (3) holds.

Conversely, let A be a subsemigroup of S. Then $x_1 \cdots x_m A y_1 \cdots y_n = \{0\}$ and since 0 is in every subsemigroup of S we have that $A \cap x_1 \cdots x_m S y_1 \cdots y_n = \{0\}$. So A

is an (m, n)-two-sided pure subset of S.

Remark. If S is T^* -pure anchimedean semigroup, then S is weakly commutative (Lemma 2) with idempotent (Corollary 1). So S is t-archimedean with idempotent e and by Theorem 1, we have that $S^3 = G_e$. Conversely, if S has an idempotent e and $S^3 = G_e$, then by Theorem 1, S is a T^* -pure archimedean semigroup. Therefore, Theorem 1 is a generalization of the main result of N. Kuroki, [5].

References

- [1] BOGDANOVIĆ, S.; Semigroups with a system of subsemigroups, Novi Sad 1985.
- [2] BOGDANOVIĆ, S.; Q_r-semigroups, Publ. Inst. Math., 29(43) (1981), 15-21.
- [3] BOGDANOVIĆ, S.; O slabo komutativnoj polugrupi, Mat. vesnik, 5(18) (33) (1981), 145-148.
- [4] BOGDANOVIĆ, S.; Semigroups of Galbiati-Veronesi, Proceedings of the Conference "Algebra and Logic," Zagreb, 1984, 9-20.
- [5] KUROKI, N.; T*-Pure Arhimedean Semigroups, Comment. Math. Univ. St. Pauli, 31 (1982), 115-128.
- [6] LAJOS, S.; A note on semilattices of groups, Acta Sci. Math. Szeged, 33 (1972), 315-317.
- [7] MADISON, B. L., MUKHERJEE, T. K. and SEN, M. K.; Periodic properties of groupbound semigroups, Semigroup Forum, 22 (1981), 225-234.
- [8] Petrich, M.; Introduction to Semigroups, Merill Publ. Company, Ohio 1973.
- [9] PONDĚLIČEK, B.; On weakly commutative semigroups, Czech. Math. J., 25(100) (1975), 20-23.

Institute of Mathematics PMF Novi Sad P.O.B. 224 21000 Novi Sad Yugoslavia