COMMENTARII MATHEMATICI UNIVERSITATIS SANCTI PAULI Vol. 36, No. 1, 1987 ed. RIKKYO UNIV/MATH IKEBUKURO TOKYO 171 JAPAN

On the Additive Groups of Chain Rings

by

Jutta Hausen* and Johnny A. Johnson

(Received July 25, 1986)

1. Introduction

By a chain ring we mean a (not necessarily associative or unital) ring R whose two-sided ideals are totally ordered by inclusion. Shalom Feigelstock considered the problem of describing those abelian groups A supporting a chain ring, i.e. $A \simeq R^+$ for some chain ring R. For the case that A is periodic a complete characterization was given in [6]; for the non-periodic case Feigelstock obtained the following result. (A group H is called q-local, q a prime, if pH = H for all primes $p \neq q$.)

THEOREM 1.1 (Feigelstock). If the non-periodic group A supports a chain ring then

$$A = \bigoplus_{\alpha} Z(p^{\infty}) \oplus \bigoplus_{\beta} Q \oplus H$$

where p is a prime, α and β are cardinals, and H is a reduced torsion-free q-local abelian group for some prime q.

The purpose of this note is to complete Feigelstock's theorem for the case that the reduced part of A has finite torsion-free rank. Throughout, d(A) denotes the maximal divisible subgroup and t(A) the torsion subgroup of A. All groups considered are abelian. The word "rank" is used to mean torsion-free rank. An abelian group H is said to be E-uniserial if the lattice of fully invariant subgroups of H forms a chain. Our main result is

THEOREM 1.2. Let A be a non-periodic abelian group such that A/d(A) has finite rank. Then A supports a chain ring if and only if

$$A = \bigoplus_{\alpha} Z(p^{\infty}) \oplus \bigoplus_{\beta} Q \oplus H$$

where: (1) p is a prime; (2) α and β are cardinals with α at most countable; (3) H is a torsion-free reduced E-uniserial group; and (4) if $\alpha \neq 0$ and pA = A, then $\alpha = 1$ and A/t(A) has rank at least two.

Thus, if $Z_{(q)}$ denotes the group of rationals with denominator relatively prime to

^{*} The first author was supported in part by a University of Houston, University Park Faculty Development Leave Grant.

q and $p \neq q$, then the group $A = Z(p^{\infty}) \oplus Z_{(q)}$ does not support a chain ring while the group $B = Z(p^{\infty}) \oplus Z_{(p)}$ does. This shows that, in order to characterize the additive groups of chain rings, the usual restriction to the reduced torsion-free case (cf. [7; 3.2.1, 3.2.8, 3.2.10]) is not possible. We do, however, have

THEOREM 1.3. A torsion-free abelian group G supports a chain ring if and only if G/d(G) does.

It is easy to see that every group supporting a chain ring is *E*-uniserial. Torsion-free *E*-uniserial groups have been investigated in [9]. In particular, these groups are local. Combining results from [8] and [9] we have

THEOREM 1.4. Let H be a reduced torsion-free group of finite rank. Then the following conditions are equivalent.

- (i) H is E-uniserial.
- (ii) H supports a chain ring.
- (iii) $H = \bigoplus_{\gamma} G$ where γ is an integer and G is a (strongly) indecomposable E-uniserial group.

Since finite rank indecomposable E-uniserial groups are strongly indecomposable [9], Theorem 1.4 holds with and without the parenthesis in (iii).

We use the term "discrete valuation ring" in the sense of Kaplansky [10]. In particular, such a ring is a principal ideal domain in the usual sense. The ring R is said to be an E-ring if every endomorphism of R^+ can be achieved by left multiplication with a suitable ring element in R [11]. Being isomorphic to an endomorphism ring, E-rings are associative and have an identity; they are also commutative [11]. By a discrete valuation E-ring we mean a discrete valuation ring which simultaneously is an E-ring. Results of Bowshell and Schultz [2] together with [9] imply

THEOREM 1.5. A finite rank reduced torsion-free abelian group G is (strongly) indecomposable and E-uniserial if and only if $G \cong \mathbb{R}^+$ for some discrete valuation E-ring R.

Thus, for groups of finite rank, we have come full circle: the description of the additive groups of (not necessarily associative or unital or commutative) chain rings reduces to the description of the additive groups of discrete valuation *E*-rings. These are precisely the strongly indecomposable integrally closed local subrings of algebraic number fields [1].

2. Preliminaries

For a (not necessarily associative) ring R and $x \in R$, we denote by $(x)_R$ the principal ideal of R generated by x (i.e. $(x)_R$ is the intersection of all ideals of R containing x). The map

$$\phi: R^+ \otimes R^+ \longrightarrow R^+$$

defined by $\phi(r_1 \otimes r_2) = r_1 r_2$, $r_i \in R$, is a homomorphism which we call "the homomorphism associated with the ring structure on R". (The unadorned symbol \otimes denotes the tensor product over the ring of integers Z.) Conversely, for any abelian group G, every homomorphism

$$\phi: G \otimes G \longrightarrow G$$

gives rise to a ring structure on G [3; XII]; occasionally, we may abbreviate $\phi(g_1 \otimes g_2)$ by $g_1 \cdot g_2$ or $g_1 g_2$. We write $S \leq G$ if S is a subgroup of G.

LEMMA 2.1. Let G be an abelian group supporting a chain ring R and let $\phi: G \otimes G \rightarrow G$ be the associated homomorphism. Then

$$G/\phi(G\otimes G)\leq Z(r^{\infty})$$

for some prime r.

Proof. Observe that every subgroup of G containing $\phi(G \otimes G)$ is an ideal of R. Hence, the subgroup lattice of $G/\phi(G \otimes G)$ is a chain. This is the case only for quasicyclic groups.

Of special interest will be certain chain algebras constructed in [8]: Let S be a commutative, associative chain ring with identity element, and let Γ be a non-empty set. Let

$$H = \bigoplus_{\gamma \in \Gamma} Sw_{\gamma}$$

be the free S-module on Γ with basis $\{w_\gamma\}$. In [8], an S-linear map $\psi: H \otimes_s H \to H$ was defined such that the associated multiplication $\mu = \psi \circ \otimes_s$ made H into an S-algebra \hat{H} with totally ordered ideal lattice. (We use the " $\hat{}$ " to distinguish between the algebra and the underlying group, i.e. $(\hat{H})^+ = H$.) We shall refer to \hat{H} as "the standard chain S-algebra on Γ "; the homomorphism

$$\phi: H \otimes H \longrightarrow H$$

associated with this algebra structure is $\phi = \psi \circ \eta$ where $\eta: H \otimes H \to H \otimes_s H$ is the natural map defined by $h \otimes h' \longmapsto h \otimes_s h'$.

We collect some results from [8].

LEMMA 2.2. With definitions and notation as above, the following hold.

- (i) \hat{H} is a chain ring.
- (ii) For all $h \in H$.

$$(h)_{\hat{H}} = \{h \cdot y \mid y \in \hat{H}\},\,$$

and $(h)_{\hat{H}} = J \cdot \hat{H}$ for some ideal J of S.

(iii) If S is a q-local discrete valuation ring and $I \neq 0$ an ideal of \hat{H} then $q^m H \subseteq I$ for some non-negative integer m.

Proof. (i) and (ii) follow from [8, pp. 326, 327]. For (iii) note that $I = J \cdot \hat{H}$ where $J \neq 0$ is an ideal of the q-local discrete valuation domain S. Hence

$$J \not\equiv 0 = \bigcap_{n} q^{n} S$$

and S being a chain ring implies $q^m S \subseteq J$ for some $m \ge 0$. Thus

$$I = J \cdot \hat{H} \supseteq q^m S \cdot \hat{H} = q^m H$$
.

The following easy result on tensor products will be needed.

LEMMA 2.3. Let S be a commutative associative ring with $1 \neq 0$. Then

$$S \otimes_z S = U \oplus V$$

where $U = \{a \otimes 1 \mid a \in S\}$, and $V = \langle a \otimes b - [(ab) \otimes 1] \mid a, b \in S \rangle$. Moreover, $V = \ker \tau$ where

$$\tau: S \otimes_{\tau} S \longrightarrow S \otimes_{\varsigma} S$$

is the homomorphism satisfying $\tau(a \otimes b) = a \otimes_s b$ for all $a, b \in S$.

Proof. Since, for all $a, b \in S$

$$a \otimes b = (ab \otimes 1) + [(a \otimes b) - (ab \otimes 1)]$$

and

$$\tau[(a\otimes b)-(ab\otimes 1)]=0,$$

 $S \otimes_{\tau} S = U + V$ and $V \subseteq \ker \tau$. Also,

$$\tau(U) = \{a \otimes_s 1 \mid a \in S\}$$
$$= S \otimes_s S$$

which implies

$$S \otimes_{\tau} S = U + \ker \tau$$
.

One verifies $U \cap \ker \tau = 0$ so that the sum is direct and $V = \ker \tau$.

3. The proofs

It will be convenient to write $I \triangleleft R$ if I is an ideal of R. The endomorphism ring of an abelian group A is denoted by $\operatorname{End}(A)$.

Proof of Theorem 1.3. Let $G = D \oplus H$ be torsion-free with D divisible and H reduced. By [8, 2.1] it suffices to show that G supports a chain ring if H does. Thus, assume H supports a chain ring and let

$$\psi: H \otimes H \longrightarrow H$$

be the associated homomorphism. Clearly we may assume $D \neq 0$ so that there exists an epimorphism

$$n: D \otimes H \longrightarrow D$$
.

Let

$$\theta: H \otimes D \longrightarrow G$$

be the zero map and let

$$\phi: D \otimes D \longrightarrow D$$

be the homomorphism associated with the standard chain Q-algebra \hat{D} on D. Since

$$G \otimes G = (D \otimes H) \oplus (H \otimes D) \oplus (D \otimes D) \oplus (H \otimes H)$$

[4, p. 255], defining

$$\sigma: G \otimes G \longrightarrow G$$

by $\sigma = \eta + \theta + \phi + \psi$ (making the usual identifications) is a homomorphism providing G with a ring structure. We claim that G is a chain ring. By a well known theorem (which holds for non-associate rings as well) it suffices to verify that the principal ideals of G are totally ordered. Since H is torsion-free and supports a chain ring, H is q-local for some prime q and

$$\bigcap_{n} q^{n} H = 0.$$

Thus, if $0 \neq h \in H$, then

$$(h)_G \supseteq (h)_H \supseteq q^m H$$

for some integer $m \ge 0$. Consequently,

$$(h)_G \supseteq \sigma(D \otimes q^m H) = \eta(D \otimes H) = D$$

which implies

$$(h)_G = D \oplus (h)_H$$

since the right hand side is an ideal of G containing h. Let $0 \neq d \in D$. By 2.2 (ii), $(d)_D = D$ so that $(d)_G = D$. Finally, let

$$x = d + h$$
.

Since $h \cdot y = 0$ for all $y \in D$,

$$(x)_G \supseteq \{d \cdot v \mid v \in D\} = D$$

by 2.2 (ii). Hence $h \in (x)_G$ and

$$(x)_G = D \oplus (h)_H$$
.

The fact that H is a chain ring completes the proof.

Proof of Theorem 1.5. Let G be reduced torsion-free of finite rank. Assume, firstly, that G is indecomposable and E-uniserial. By [9, Corollary 2] G is strongly indecomposable and $G \simeq [\operatorname{End}(G)]^+$ with $\operatorname{End}(G)$ a discrete valuation E-ring.

Conversely, suppose $G \simeq S^+$, S a discrete valuation E-ring. Being a torsion-free, finite rank integral domain, S is a full subring of an algebraic number field. By [2, 3.14], $S^+ \simeq G$ is strongly indecomposable.

Proof of Theorem 1.4. Let H be reduced torsion-free of finite rank. The equivalence of (i) and (iii) is contained in [9, Theorem 1]; trivially, (ii) implies (i). Assume the validity of (iii). Then, by 1.5, $H = \bigoplus_{\gamma} S^+$ where S is a discrete valuation ring. Apply [8, 2.3].

Proof of Theorem 1.2. Let A be a non-periodic abelian group with A/d(A) of finite torsion-free rank.

NECESSITY: Suppose A supports a chain ring. By Feigelstock's (1.1)

$$A = \bigoplus_{\alpha} Z(p^{\infty}) \oplus \bigoplus_{\beta} Q \oplus H$$

with H reduced and q-local. By [8, 2.1], H supports a chain ring, hence H is E-uniserial. Suppose $\alpha \neq 0$. Let $Z(p^{\infty}) \simeq P \leq A$. Then, for all integers n, the ideal $(P)_A$ generated by P is not contained in $t(A)[p^n]$. Hence, $t(A)[p^n] \subseteq (P)_A \subseteq t(A)$ for all n proving $(P)_A = t(A)$. But, since $t(A) \otimes d(A) = 0$, $(P)_A$ is the sum of all subgroups of A which can be obtained from P by a finite number of multiplications (from either side) with elements in H. Since H is countable, only countably many such subgroups exist so that $(P)_A = t(A)$ is countable. Suppose $\alpha \neq 0$ and pA = A. Then, $t(A) \otimes A = 0$, and every subgroup of t(A) is an ideal of A which implies $\alpha = 1$. Assume, by way of contradiction, that $\alpha = 1$ and A/t(A) has rank at most 1. Since $A \neq t(A)$ this implies $A = Z(p^{\infty}) \oplus B$ where $B \leq Q$ is q-local. Hence

$$A \otimes A = B \otimes B \simeq B$$
.

By 2.1, $A/\phi(A \otimes A)$ is torsion, thus $\phi(A \otimes A)$ must be torsion-free. It follows that t(A) and $\phi(A \otimes A)$ are two incomparable ideals contradicting the fact that A is a chain ring.

SUFFICIENCY: Suppose that A has the stated form. In view of [8, 3.2] we may assume $H \neq 0$ and, in view of (1.3) and (1.4), that $\alpha \neq 0$. By (1.4) and (1.5), H is a free S-module for some discrete valuation E-ring S. Thus,

$$A = T \oplus D \oplus H$$

with

$$\begin{split} T &= \bigoplus_{i \in I} P_i \,, \qquad P_i \simeq Z(p^{\infty}) \,, \qquad i \in I \,, \quad |I| = \alpha \geq 1 \,, \\ D &= \bigoplus_{\lambda \in \Lambda} Q u_{\lambda} \,, \qquad Q u_{\lambda} \simeq Q \,, \qquad \lambda \in \Lambda \,, \quad |\Lambda| = \beta \,, \\ H &= \bigoplus_{\mu \in M} S v_{\mu} \,, \qquad S v_{\mu} \simeq S \,, \qquad \mu \in M \neq \phi \,. \end{split}$$

For convenience, assume $0 \in I$ and $0 \in M$, with $v_0 = 1 \in S$ in case $M = \{0\}$. Let

$$\phi: D \otimes D \longrightarrow D$$
, $\psi: H \otimes H \longrightarrow H$

be the homomorphisms associated with the standard chain algebra structures on D and H, respectively.

Note that H = S if $M = \{0\}$. Pick homomorphisms

$$\eta: D \otimes H \longrightarrow P_0,$$

$$\theta: H \otimes D \longrightarrow D$$

such that η and θ are epic if $D \neq 0$. We need to distinguish cases.

Case 1. $pA \neq A$. Then we may assume that either I = Z, the integers, or $I = \{0, 1, \dots, m\}$ for some integer $m \geq 0$. For $i \in I$, let

$$P_i = \langle a_i^0, a_i^1, \dots \rangle, \quad o(a_i^0) = p, \quad pa_i^k = a_i^{k-1}, \quad k \ge 1.$$

For all i, there exists a homomorphism

$$\psi_i: P_i \longrightarrow P_{i+1}$$

such that

$$\psi_i(a_i^k) = a_{i+1}^k$$
 for all $k \ge 0$

(If |I| = m + 1, we do arithmetic modulo m, i.e. $\psi_m: P_m \to P_1$). Since

$$\operatorname{Hom}(P_i, P_{i+1}) \simeq J_n$$

and the group J_p of p-adic integers is pure injective [4, 38.1, 39.4] and p-local, there exist homomorphisms

$$\psi_i': H \longrightarrow \operatorname{Hom}(P_i, P_{i+1})$$

such that $\psi_i(v_0) = \psi_i$. By [4, p. 256(J)], there exist homomorphisms

$$\delta_i: H \otimes P_i \longrightarrow P_{i+1}$$

such that, for all $k \ge 0$,

$$\delta_i(v_0 \otimes a_i^k) = a_{i+1}^k$$
.

Similarly, for each $i \in I$, there exists a homomorphism

$$\delta_i^*: P_i \otimes H \longrightarrow T$$

such that, for all $k \ge 0$,

$$\delta_i^*(a_i^k \otimes v_0) = \begin{cases} a_0^k & \text{if } i = 0 \\ 0 & \text{if either } i < 0 \text{ or if } i > 0 \text{ and } |I| < \infty \\ a_{-1}^k & \text{if } i > 0 \text{ and } |I| = \infty \end{cases}.$$

Since

$$A \otimes A \simeq \bigoplus_{i} (P_{i} \otimes H) \oplus \bigoplus_{i} (H \otimes P_{i}) \oplus (D \otimes H) \oplus (H \otimes D) \oplus (D \otimes D) \oplus (H \otimes H),$$

the map

$$\sigma = \sum_{i} \delta_{i}^{*} + \sum_{i} \delta_{i} + \eta + \theta + \phi + \psi$$

is a homomorphism from $A \otimes A$ to A defining a multiplication " \cdot " on A. In order to verify A is a chain ring let

$$0 \neq x = t + d + h \in A$$

with $t \in T$, $d \in D$ and $h \in H$. Note that

$$x \in T \oplus D \oplus (h)_{\hat{H}} \lhd A$$
.

If $h \neq 0$ then, by 2.2 (ii),

$$0 \neq (h)_{\hat{H}} = \{h \cdot y \mid y \in H\} \supseteq p^n H$$

for some integer n. Hence, for all $y \in H$ and all $a \in T$,

$$(x \cdot y) \cdot a = (t \cdot y) \cdot a + (d \cdot y)a + (h \cdot y)a$$
$$= (h \cdot y) \cdot a \in (x)_A$$

so that

$$\sigma(p^n H \otimes T) = \sigma(H \otimes T) = \sigma\left(\bigoplus_i (H \otimes P_i)\right) = \bigoplus_i P_{i+1} = T \subseteq (x)_A.$$

Hence $x' = d + h \in (x)_A$ and $\sigma(D \otimes H) \subseteq T \subseteq (x)_A$ implies

$$p^n H \subseteq (h)_{\mathcal{H}} \subseteq (x)_A$$
.

Thus, $\sigma(p^m H \otimes D) = \sigma(H \otimes D) = D \subseteq (x)_A$ proving $(x)_A = T \oplus D \oplus (h)_{\text{fi}}$. If x = t + d, $d \neq 0$, then

$$\{d \cdot z \mid z \in D\} = (d)_{\widehat{D}} = D \subseteq (x)_A$$

which implies $P_0 = \sigma(D \otimes H) \subseteq (x)_A$. Using the homomorphisms δ_i and δ_i^* , it follows that $T \subseteq (x)_A$ so that $(x)_A = T \oplus D$. Finally, assume

$$0 \neq x = t = \sum_{j=k}^{l} n_j a_j^{m_j}, \qquad p \nmid n_j \in \mathbb{Z},$$

and let $k \le s \le l$ be such that

$$o(x) = p^r = o(n_s a_s^{m_s})$$
.

Then $x \in T[p^r] \lhd A$. In order to show that $(x)_A = T[p^r]$ it suffices to verify $n_s a_0^{m_s} \in (x)_A$. Since

$$v_0 \cdot x = \sum_{j=k}^{l} n_j a_{j+1}^{m_j}$$

and

$$x \cdot v_0 = \begin{cases} n_0 a_0^{m_0} & \text{if } |I| < \infty \\ \sum_{i > 0} n_i a_{-i}^{m_i} & \text{if } |I| = \infty \end{cases},$$

we may restrict ourselves to the case I=Z. Multiplying x suitably many times by v_0 from the left and then from the right will result in an element $y \in (x)_A$ whose P_0 -coordinate is $n_s a_0^{m_s}$. Hence

$$(y \cdot v_0)v_0 = n_s a_0^{m_s} \in (x)_A$$

as desired.

Case 2. pA = A. Then

$$A \otimes A = (D \otimes H) \oplus (H \otimes D) \oplus (D \otimes D) \oplus (H \otimes H)$$
,

and, since $\alpha = 1$,

$$T = P_0 = P \simeq Z(p^{\infty}) .$$

In addition to η , θ , ϕ and ψ above, we define a homomorphism

$$\psi': H \otimes H \longrightarrow T$$

as follows: if $D \neq 0$, let $\psi' = 0$; if D = 0 and $|M| \geq 2$, there exist two distinct subscripts (for simplicity denoted by) 0 and 1 in M such that

$$\psi(Sv_0\otimes Sv_1)=0$$

[8, p. 327]. Since $Sv_0 \otimes Sv_1 \simeq S \otimes S$ is q-local and torsion-free, $T = Z(p^{\infty})$ is an epimorphic image. Let ψ' be any homomorphism such that

$$\psi'(Sv_{\mu} \otimes Sv_{\nu}) = \begin{cases} 0 & \text{if } (\mu, \nu) \neq (0, 1) \\ T & \text{if } (\mu, \nu) = (0, 1) \end{cases}.$$

Finally, if D=0 and |M|=1, then H=S. Note that in this case $\psi: H \otimes H \to H$ is just the plain ring multiplication:

$$\psi(s_1 \otimes s_2) = s_1 s_2$$
, $s_i \in S$.

By 2.3,

$$S \otimes_{\tau} S = U \oplus V$$

where $V = \ker \tau$. Since $S \otimes_s S \simeq S$, and $H \simeq S^+$ has rank at least 2, we have $V \neq 0$. As above, $T = Z(p^{\infty})$ is an epimorphic image of V. Select a homomorphism

$$\psi': H \otimes H \longrightarrow T$$

such that

$$\psi'(U) = 0$$
, $\psi'(V) = T$.

Note that, if D=0, then

$$(\psi + \psi')(H \otimes H) = T \oplus H$$
.

Now define

$$\sigma: A \otimes A \longrightarrow A$$

by

$$\sigma = \eta + \theta + \phi + \psi + \psi'$$
.

Then σ is a homomorphism inducing a ring structure on A. Again, let

$$x = t + d + h \in A$$

with $t \in T$, $d \in D$, $h \in H$. If $h \neq 0$,

$$(x)_A \supseteq \{x \cdot y \mid y \in H\} = \{d \cdot y + h \cdot y \mid y \in H\}$$
$$= \{\eta(d \otimes y) + \psi(h \otimes y) + \psi'(h \otimes y) \mid y \in H\}.$$

If $n \in \mathbb{Z}$ such that $q^n H \subseteq (h)_{\hat{H}}$ then, by 2.2 (ii), for each $w \in H$ there exists $a \in T$ such that (3.1) $a + q^m w \in (x)_A$.

If $D \neq 0$, for each $z \in D$ and $w \in H$,

$$(a+q^m w) \cdot z = q^m w \cdot z \in (x)_A$$

which implies

$$\sigma(q^m H \otimes D) = \sigma(H \otimes D) = D \subseteq (x)_A$$

and

$$T = \sigma(D \otimes H) \subseteq (x)_A$$
.

Hence,

$$(x)_A = T \oplus D \oplus (h)_{\widehat{H}}$$
.

Suppose D=0. Then, by (3.1),

$$(\psi + \psi')(q^m H \otimes H) = q^m (\psi + \psi')(H \otimes H)$$
$$= q^m [T \oplus H] = T \oplus q^m H \subseteq (x)_A$$

and it follows that

$$(x)_A = T \oplus (h)_{\widehat{H}}$$
.

Clearly, if $x = t \in T$, $(x)_A = \langle t \rangle \triangleleft G$; if x = t + d with $0 \neq d \in D$, then

$$D = (d)_{\hat{H}} = \{x \cdot z \mid z \in D\} \subseteq (x)_A$$

and $(x)_A = T \oplus D$ since $\sigma(D \otimes H) = T$. The proof is completed.

Remark. Note that, for the proof of sufficiency, the finiteness of γ was not used.

References

- [1] BEAUMONT, R. A. and PIERCE, R. S.; Subrings of algebraic number fields, *Acta Sci. Math.*, 22 (1961), 202–216.
- [2] BOWSHELL, R. A. and SCHULTZ, P.; Unital rings whose additive endomorphisms commute, Math. Ann., 228 (1977), 197-214.
- [3] Fuchs, L.; Abelian Groups, Pergamon Press, Oxford, 1967.
- [4] FUCHS, L.; Infinite Abelian Groups, Vol. I, Academic Press, New York, 1970.
- [5] FUCHS, L.; Infinite Abelian Groups, Vol. II, Academic Press, New York, 1973.
- [6] FEIGELSTOCK, S.; The additive groups of rings with totally ordered lattice of ideals, Quaestiones Math., 4 (1981), 331–335.
- [7] FEIGELSTOCK, S.; Additive Groups of Rings, Research Notes in Mathematics, Pitman Advanced Publishing Program, Boston, 1983.
- [8] HAUSEN, J.; The additive group of rings with totally ordered ideal lattices, Quaestiones Math., 6 (1983), 323-332.
- [9] HAUSEN, J.; Finite rank torsion-free abelian groups uniserial over their endomorphism rings, Proc. Amer. Math. Soc., 93 (1985), 227-231.
- [10] KAPLANSKY, I.; Infinite Abelian Groups, rev. ed., Univ. of Michigan Press, Ann Arbor, 1969.
- [11] SCHULTZ, P.; The endomorphism ring of the additive group of a ring, J. Austral. Math. Soc., 15 (1973), 60-69.

Department of Mathematics University of Houston University Park Houston, Texas 77004 U.S.A.