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1. Introduction

By a chain ring we mean a (not necessarily associative or unital) ring R whose
two-sided ideals are totally ordered by inclusion. Shalom Feigelstock considered the
problem of describing those abelian groups 4 supporting a chain ring, i.e. 4~ R* for
some chain ring R. For the case that 4 is periodic a complete characterization was
given in [6]; for the non-periodic case Feigelstock obtained the following result. (A
group H is called g-local, ¢ a prime, if pH= H for all primes p#q.)

THEOREM 1.1 (Feigelstock). If the non-periodic group A supports a chain ring
then

A=@ Z(P”)@(—ﬂB Q®H

where p is a prime, o and B are cardinals, and H is a reduced torsion-free g-local abelian
group for some prime q.

The purpose of this note is to complete Feigelstock’s theorem for the case that
the reduced part of 4 has finite torsion-free rank. Throughout, d(4) denotes the
maximal divisible subgroup and #4) the torsion subgroup of 4. All groups
considered are abelian. The word “rank” is used to mean torsion-free rank. An
abelian group H is said to be E-uniserial if the lattice of fully invariant subgroups of
H forms a chain. Our main result is

THEOREM 1.2.  Let A be a non-periodic abelian group such that A |d(A) has finite
rank. Then A supports a chain ring if and only if

A=D Z(p")® D Q®H
[ B
where: (1) p is a prime; (2) o and B are cardinals with o at most countable; (3) H is a

torsion-free reduced E-uniserial group; and (4) if 0 #0 and pA=A, then a=1 and
A[t(A) has rank at least two.

Thus, if Z,) denotes the group of rationals with denominator relatively prime to
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g and p+#g, then the group 4=Z(p*)® Z(q', does not support a chain ring while the
group B=Z(p®)®Z,, does. This shows that, in order to characterize the additive
groups of chain rings, the usual restriction to the reduced torsion-free case (cf. [7;
3.2.1, 3.2.8, 3.2.10)) is not possible. We do, however, have

THEOREM 1.3. A torsion-free abelian group G supports a chain ring if and only
if G/d(G) does.

It is easy to see that every group supporting a chain ring is E-uniserial. Torsion-
free E-uniserial groups have been investigated in [9]. In particular, these groups are
local. Combining results from [8] and [9] we have

THEOREM 1.4. Let H be a reduced torsion-free group of finite rank. Then the
following conditions are equivalent.
(1) H is E-uniserial.
(ii) H supports a chain ring.
(i) H=@® G where vy is an integer and G is a (strongly) indecomposable E-
v

uniserial group.

Since finite rank indecomposable E-uniserial groups are strongly indecompos-
able [9], Theorem 1.4 holds with and without the parenthesis in (iii).

We use the term “discrete valuation ring” in the sense of Kaplansky [10]. In
particular, such a ring is a principal ideal domain in the usual sense. The ring R is said
to be an E-ring if every endomorphism of R* can be achieved by left multiplication
with a suitable ring element in R [11]. Being isomorphic to an endomorphism ring, £-
rings are associative and have an identity; they are also commutative [11]. By a
discrete valuation E-ring we mean a discrete valuation ring which simultaneously is
an E-ring. Results of Bowshell and Schultz [2] together with [9] imply

THEOREM 1.5. A finite rank reduced torsion-free abelian group G is (strongly)
indecomposable and E-uniserial if and only if G=R™ for some discrete valuation E-ring
R.

Thus, for groups of finite rank, we have come full circle: the description of the
additive groups of (not necessarily associative or unital or commutative) chain rings
reduces to the description of the additive groups of discrete valuation E-rings. These
are precisely the strongly indecomposable integrally closed local subrings of algebraic
number fields [1].

2. Preliminaries

For a (not necessarily associative) ring R and xe R, we denote by (x)g the
principal ideal of R generated by x (i.e. (x) is the intersection of all ideals of R
containing x). The map '

¢:R"QR* ——R*
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defined by ¢(r; ®r,)=r,r,, r;€ R, is a homomorphism which we call “the homomor-
phism associated with the ring structure on R”. (The unadorned symbol ® denotes
the tensor product over the ring of integers Z.) Conversely, for any abelian group G,
every homomorphism

$:GRG——G

gives rise to a ring structure on G [3; XIIJ; occasionally, we may abbreviate ¢(g, ®49,)
by 9,9, or g,g,. We write S<G if S is a subgroup of G.

LEMMA 2.1. Let G be an abelian group supporting a chain ring R and let
¢: GRG—G be the associated homomorphism. Then

G/H(GRG)<Z(r™)
Jfor some prime r.

Proof.  Observe that every subgroup of G containing ¢(G ®G) is an ideal of R.
Hence, the subgroup lattice of G/¢(G®G) is a chain. This is the case only for quasi-
cyclic groups.

Of special interest will be certain chain algebras constructed in [8]: Let S be a
commutative, associative chain ring with identity element, and let I' be a non-empty
set. Let

H=@® Sw,
vel
be the free S-module on I" with basis {w ,+- In[8], an S-linear map  : HR, H— H was
defined such that the associated multlphcatlon H=yo ° ®; made H into an S-algebra
H with totally ordered ideal lattice. (We use the “ ™ to distinguish between the
algebra and the underlying group, i.e. (H)*=H. ) We shall refer to H as “the
standard chain S-algebra on I"”’; the homomorphism

¢: HQH——H

associated with this algebra structure is ¢ =y oy where n: HQ H—HQ®, H is the
natural map defined by hQh" —h®, .
We collect some results from [8].

LEMMA 2.2.  With definitions and notation as above, the following hold.

() H is a chain ring.
(ii) For all he H,

(Wg={h-y|yeH},

and (h)g=J- H for some ideal J of S.
(i) If S is a g-local discrete valuation ring and 1#0 an ideal of H then q"H<I
for some non-negative integer m.

Proof. (i) and (ii) follow from [8, pp. 326, 327]. For (iii) note that /=J- H where
J#0 is an ideal of the g-local discrete valuation domain S. Hence
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JE0=\g"s
n

and S being a chain ring implies ¢"S<J for some m>0. Thus
I=J-H2¢"S-H=q"H .
The following easy result on tensor products will be needed.
LEMMA 2.3. Let S be a commutative associative ring with 1#0. Then
S®,S=U@V

where U={a®1|aeS}, and V={<{a®b—[(ab)®1]|a,beS)>. Moreover, V=kert
where

1:5®,5S—S®,S
is the homomorphism satisfying ©((a®b)=a®b for all a,be S.
Proof. Since, for all a,beS
a®b=(ab®1)+[(a®b)—(ab@1)]

and
(@a®b)—(ab®1)]=0,

S®,S=U+V and Vckert. Also,
(U)={a®,1|aeS}
=S®,S
which implies
S®,S=U+kert.

One verifies U n ker t=0 so that the sum is direct and V'=ker.

3. The proofs
It will be convenient to write <t R if I is an ideal of R. The endomorphism ring
of an abelian group 4 is denoted by End(4).

Proof of Theorem 1.3. Let G=D@®H be torsion-free with D divisible and H
reduced. By [8, 2.1] it suffices to show that G supports a chain ring if H does. Thus,
assume H supports a chain ring and let

V:HQH—H

be the associated homomorphism. Clearly we may assume D #0 so that there exists
an epimorphism

n:DQH——D.
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Let
0: H D —G
be the zero map and let
¢:D®D——D
be the homomorphism associated with the standard chain Q-algebra D on D. Since
GRG=(DRH)®(HRD)D(DRD)O(HRH)
[4, p. 255], defining
0:GRG——G

by 0=1+0+ ¢+ (making the usual identifications) is a homomorphism providing
G with a ring structure. We claim that G is a chain ring. By a well known theorem
(which holds for non-associate rings as well) it suffices to verify that the principal
ideals of G are totally ordered. Since H is torsion-free and supports a chain rlng, His
g-local for some prime ¢ and

(\q"H=0.

Thus, if 0#he H, then
(We=2(My=29q"H
for some integer m>0. Consequently,
(Wg20(D®q"H)=n(DQ H)=D
which implies
(hg=D®(h)y

since the right hand side is an ideal of G containing . Let 0#deD. By 2.2 (ii),
(d)p=D so that (d)g=D. Finally, let

x=d+h.
Since 4-y=0 for all ye D,
(Ne2{d'y|yeD}=D
by 2.2 (ii). Hence /4 (x)s; and
X)e=DD(h)y .
The fact that H is a chain ring completes the proof.

Proof of Theorem 1.5. Let G be reduced torsion-free of finite rank. Assume,
firstly, that G is indecomposable and E-uniserial. By [9, Corollary 2] G is strongly
indecomposable and G~[End(G)]* with End(G) a discrete valuation E-ring.
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Conversely, suppose G~ S™, S a discrete valuation E-ring. Being a torsion-free, finite
rank integral domain, S is a full subring of an algebraic number field. By [2, 3.14],
S* ~@ is strongly indecomposable.

Proof of Theorem 1.4. Let H be reduced torsion-free of finite rank. The
equivalence of (i) and (iii) is contained in [9, Theorem 1]; trivially, (i) implies (i).
Assume the validity of (iii). Then, by 1.5, H= G—) S* where S is a discrete valuation
ring. Apply [8, 2.3].

Proof of Theorem 1.2. Let A be a non-periodic abelian group with A/d(A) of
finite torsion-free rank.

NECESSITY: Suppose A supports a chain ring. By Feigelstock’s (1.1)
A=D Z(p*)o D QDH
a B

with H reduced and g-local. By [8, 2.1], H supports a chain ring, hence H is E-
uniserial. Suppose a#0. Let Z(p®)~P<A. Then, for all integers n, the ideal (P),
generated by P is not contained in #(4)[p"]. Hence, {(A)[p"l=(P)s<= ct(A) for all n
proving (P) = t(A). But, since {(A4)®d(A4)=0, (P), is the sum of all subgroups of 4
which can be obtained from P by a finite number of multiplications (from either side)
with elements in H. Since H is countable, only countably many such subgroups exist
so that (P),=1(4) is countable. Suppose a#0 and p4=A. Then, (4)®A4=0, and
every subgroup of #4) is an ideal of 4 which implies a=1. Assume, by way of
contradiction, that «=1 and A4/#(4) has rank at most 1. Smce A#1(A) this implies
A=Z(p®)@®B where B<Q is g-local. Hence

A®A=B®B~B.

By 2.1, A/¢(A® A) is torsion, thus ¢(4®A4) must be torsion-free. It follows that #(A)
and ¢(A®A) are two incomparable ideals contradicting the fact that A4 is a chain
ring.

SUFFICIENCY: Suppose that 4 has the stated form. In view of [8, 3.2] we may
assume H#0 and, in view of (1.3) and (1.4), that o #0. By (1.4) and (1.5), H is a free
S-module for some discrete valuation E-ring S. Thus,

A=T®DoH
with
T=@P, P=~2Zp~), icl, |I[|=a>1,

iel

D=® Qu,, Qu,~Q, ied, |A|=5,
red

H= @ Sv,, Sv,~S, UEM#¢.

"
neM

For convenience, assume Oc/ and 0€ M, with y,=1€ S in case M ={0}. Let
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¢:DQD——D, y:HQH ——H

be the homomorphisms associated with the standard chain algebra structures on D
and H, respectively.
Note that H=S§ if M={0}. Pick homomorphisms

n:DQH—P,,
6: H®D —D
such that # and 6 are epic if D+0. We need to distinguish cases.

Case 1. pA#A. Then we may assume that either /=Z, the integers, or /=
{0, 1, - - -, m} for some integer m>0. For iel, let

P,=<al,al, - >, o@®=p, pak=a*"', k>1.
For all i, there exists a homomorphism
Vi Pi—— Py
such that
YiaH=at,, forall k>0
(If [I]=m+1, we do arithmetic modulo m, i.e. ,,: P,,— P,). Since
Hom(P;, P;,,)~J,

and the group J, of p-adic integers is pure injective [4, 38.1, 39.4] and p-local, there
exist homomorphisms

Vi: H——Hom(P,, P;,,)
such that ¥{(v)) =y,. By [4, p. 256(J)], there exist homomorphisms
6 HQP,——P,,,
such that, for all k>0,
8(vo®ai)=at,, .
Similarly, for each i€, there exists a homomorphism
0¥ PQH—T
such that, for all k>0,
ay if i=0
d¥at®uy)=14 0 if either i<0 orif i>0 and |I|<oo
a*, if i>0 and |I|=c0.

Since
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ARA=~ P (P.@H)® D (HRP)S(D®H)®(H®D)®(DR®D)S(HYH),

the map
o= 0}+) 0;+n+0+o+y

[T

is a homomorphism from 4® A4 to 4 defining a multiplication on A. In order to

verify A is a chain ring let
» O#x=t+d+hed
with te T, de D and he H. Note that
xeT®DD(h)zg<A.
If £#0 then, by 2.2 (ii),
0#(g={h-y|yeH}=2p"H
for some integer n. Hence, for all ye H and all ae T,
(x-y)-a=(t-y)-a+(d-y)a+( ya
=(h-y)-ae(x),
so that

U(P"H®T)=U(H®T)=°'<@(H®Pi))= @ Pi+1=Tg(x)A .

Hence x'=d+he(x), and o(DR®H)< T<=(x), implies
PPH=(h)gs(X)4 -

Thus, o(p"HR®D)=c(HRD)=D<=(x), proving (x),=T®DP(h);. If x=t+d,
d#0, then

{d-z|zeD}=(d)p=D<=(x),

which implies P,=a(D® H)=(x),. Using the homomorphisms d; and &%, it follows
that T<=(x), so that (x),=T@®D. Finally, assume

!
0#x=t= ) n;als, pAnjeZ,
=k

J
and let k<s</ be such that

o(x)=p"=o(na") .

Then xe T[p'l< A. In order to show that (x) ,= T[p'] it suffices to verify na,™ € (x) 4.
Since
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1
Vo x= Y. mjaTi,

ji=k
and
nodg® if |I|<o
X'U0= .
Y nam; if |I|=00,
jz0

we may restrict ourselves to the case /=Z. Multiplying x suitably many times by v,
from the left and then from the right will result in an element y e (x) , whose P,-co-
ordinate is nya,™. Hence

(¥ 0o)vo =nsa," €(X) 4
as desired.
Case 2. pA=A. Then
A®A=(DRH)D(H®D)®(PR®D)D(HR®H),
and, since a=1,
T=Py=P~Z(p~).
In addition to 7, 0, ¢ and  above, we define a homomorphism
V:HQH—T

as follows: if D#0, let ' =0; if D=0 and | M | > 2, there exist two distinct subscripts
(for simplicity denoted by) 0 and 1 in M such that

Y(Sv,®Sv,)=0

[8, p. 327]. Since Sy,®Sv, ~S®S is g-local and torsion-free, T=2Z(p*) is an
epimorphic image. Let ' be any homomorphism such that

, _ 0 if (ﬂ, v)#(O, 1)
w(Svu®SUv)—{T it (1, v)=(0,1).

Finally, if D=0 and | M |=1, then H=S. Note that in this case y: HQ H— H is just
the plain ring multiplication:

Y(s, ®s,)=s5,5,, S€ES.
By 2.3,
S®,S=UpV

where V'=kerz. Since S®,S~S, and H~S* has rank at least 2, we have V#0. As
above, T=Z(p™*) is an epimorphic image of V. Select a homomorphism

W HQH——T
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such that
Y(U)=0, Y (V)=T.
Note that, if D=0, then
W+yY)HOH)=T®H .

Now define

0. ARA— A4
by

o=n+0+d+y+y’ .

Then ¢ is a homomorphism inducing a ring structure on 4. Again, let

x=t+d+heAd
with teT, deD, he H. If h#0,

()a2{x-y|yeH}={d y+h-y|yeH}
={nd@y)+y(h®y)+y'(h®y)|ye H} .
If ne Z such that ¢"H = (h); then, by 2.2 (ii), for each w e H there exists a e T such that
3.1 , a+q"we(x), .
If D+#0, for each ze D and we H,
(a+q"w) z=q"w-ze(x),
which implies
o(¢"H®D)=6(H®D)=D<(x),
and
T=6(D®H)=(x), .
Hence, '
(xX)4=T®D®(h) -
Suppose D=0. Then, by (3.1),
W+YNg"HROH)=q"(y + Y )NH®H)
=q"[TOH]|=T®q"H<=(x),

and it follows that '

X)a=TD(M)z -
Clearly, if x=teT, (x),=<t)<aG; if x=1t+d with 0#de D, then
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D=(d)s={x"z|zeD}<=(x),

and (x),=T®D since 6s(D® H)=T. The proof is completed.
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Remark. Note that, for the proof of sufficiency, the finiteness of y was not used.
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