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Abstract

In this paper we determine zero-free regions for solutions of broad classes of n'
order linear differential equations whose coefficients are analytic and possess
asymptotic expansions in sectors of the plane. In the special case where the
coefficients are rational functions, we obtain a generalization to higher order
equations of the classical result of Hille-Nevanlinna-Wittich for second order
equations.

1. Introduction

For a second-order equation of the form,
(1.1) w' +A(z)w=0.

where A(z)=a,z"+ - - -, is a nonconstant polynomial of degree m, there is a classical
result due jointly to E. Hille, R. Nevanlinna, and H. Wittich (see [14; p. 282]) which
determines the possible location of the zeros of solutions of (1.1). The theorem states
that for any solution f #0 of (1.1) and any ¢>0, all but finitely many zeros of f'lie in
the union for j=0, 1,- - -, m+ 1, of the sectors,

(1.2) Wie): |argz—0;|<e,
where,
(1.3) 0,=Q2nj—arga,)/(m+2), j=0,1,---, m+1.

The Hille-Nevanlinna-Wittich result was proved by using a method of asymp-
totic integration (see [8; Chapter 7, §4], [9; p. 345] or [7; pp. 6-10]) to construct in
each of the closed sectors J which lies between two adjacent sectors in (1.2) a
fundamental set { f;,f>} of solutions of (1.1) each having only finitely many zeros in J,
and having the property that f]/f,—>o0 as z—oo in J. Then clearly any nontrivial
linear combination of f; and f, can have only finitely many zeros in J. (In fact, the
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solutions f;, f, which are constructed satisfy the asymptotic relation
logf~ + (2i(a,)"?/(m+2))z™" 22 as z— 0 in J.)

In the present paper, we obtain extensions of the Hille-Nevanlinna-Wittich
result to broad classes of higher-order linear differential equations. In order to best
illustrate our main result, we will first show how it applies in a special case, namely to
the class of equations treated in [5; Theorem 2]. We will prove:

THEOREM 1. Given the differential equation,
(1.4) w?a, (W V4 a2 +ay(2)w=0,
where the coefficients a(z) are polynomials, say a(z) is of degree o; so that,
(1.5) a(2)=Az"+0(%"")  as zooo if a;#0,
and where the following conditions are satisfied.
(1.6) w=1 and o;<((n—j)/n)a, for 1<j<n—1,

and the polynomial,
n—1
.7 h)=t"+ ) A¥t,
j=0
where A} =A; if a;=((n—j)/n)oy, and A% =0 otherwise, has only simple roots
by, - -+, b,. Define a real constant B by the relation,

(1.83) B=mn+(n/(a+n)(arg(b, —b,) —(n/2))

for any choice of arg(b, — b,). For each pair (k, j) of positive integers with 1 <k <j<n,
let Dy; denote the set of zeros on (—m, ) of the function of ¢ given by,

(1.9) Sin(((a +n)/n)(¢ — m) +arg((b;— by)/(b, — by))) ,

and let D={0y, 0,, - -, 0.}, where —n <0, <"+ <0,<m, be the union of the sets D,;
Jor all (k,j). Set o, =n. Then, for any solution { #0 of (1.4) and any £>0, all but
finitely many zeros of f lie in the union for j=1,2, - - -, g+ 1 of the sectors,

(1.10) largz—(0;—p)|<e.

(We remark that the constant f defined in (1.8) is introduced to avoid the
possibility of introducing an extraneous sector (1.10) which may enter because of a
limitation in our method of proof. This will be discussed further in this section.) In
the special case of second-order equations of the form (1.1), it is easy to check that
Theorem 1 gives the Hill-Nevanlinna-Wittich result discussed earlier. For the class of
equations treated in Theorem 1, it follows from the Valiron-Wiman theory [13;
Chapter 4], that any solution f'#0 has order of growth equal to («,+7)/n, and it was
proved in [5; Theorem 2] that every fundamental set of solutions contains at least one
solution whose zero-sequence has exponent of convergence equal to (oo +n)/n. (In the
special case where ;=0 for 1 <j<n—11n (1.4), it was shown in [6] that at least n—1
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of the solutions in a fundamental set have this property. However, this strong
conclusion does not hold for the general class considered in Theorem 1, as shown by
the example,

(1.11) W — 2w’ + (1 — 422w’ + (423 — 122)w=0,

which possesses the solutions exp( +z%).)

The key tool in proving our main result (see § 3) concerning zero-free regions for
solutions, is a general existence theorem which was proved in [3] for ntt order linear
differential equations.

n

(1.12) Y. Rizw?=0,
j=0

where the R;(z) are complex functions which are defined and analytic in an
unbounded sectorlal region S, and which have asymptotic expansions as z— oo in S in
terms of real powers of z. (A rigorous definition of the class of equations treated in
[3], and the results obtained in [3] for this class, are given in the statement of Theorem
2 below.) It was shown in [3] that associated with the equation (1.12) are a
nonnegative integer p<n (called the critical degree), and an algebraic polynomial
G(v) of degree n—p (which we call here, the factorization polynomial) whose
coefficients are of the same type as the Rj(z), such that the following are true: In
sectorial subregions of S, the equation possesses p linearly independent solutions
gi» * > g, €ach g; being asymptotically equivalent as z— oo to a function of the form
z%(Log z)¥, where a; is complex, b; is an integer, and the pairs (a;, b)) are distinct for
j=1---,p.In addition, if the roots of G(v) are asymptotically distinct, the equation
possesses in sectorial subregions of S, solutions &, - - -, h,_,, where each 4; is of the
form exp | W; for some function W which is asymptotically equivalent as z— 0, to a
function of the formc¢;z™ 1+d; Where ¢;#0 is complex, and d;>0. The pairs (¢;, d;) are
all distinct, and the solutlons /77PN Iy PR form a fundamental set in any
region where they all exist. In attempting to use this existence theorem to determine
zero-free regions for solutions of (1.12), some problems arise immediately. First, in
the case where p >0, the method used in [3] to construct the solutions g;, - - -, g, does
not produce explicitely the actual regions in which these solutions exist. However,
even if this drawback could be overcome by using another method to produce these
solutions, a further problem can arise, namely there can be distinct pairs (a;, b;) and
(ax, b) where b;=b, and a; and a, have the same real part. In this case, the ratio g;/g;
of the correspondmg solutlons will have no definite behavior as z— oo, thus obscuring
the location of zeros of a linear combination of the g; (see §8). Fortunately, these
problems do not arise for the solutions 4, - - -, h,_,. We remark that for a more
restricted class of equations (1.12), the condition that the roots of G(v) be
asymptotically distinct was removed by C. Powder [10]. However, the problems of
explicit domains and relative growth mentioned earlier occur again in this case. Thus,
our main result (Theorem 2 in § 3) considers the class of equations where p =0 and the
roots of G(v) are asymptotically distinct. We emphasize that this is a very broad class
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of equations. Even in the case of equations (1.4) having polynomial coefficients, the
class of equations which can be treated is much more extensive than the class treated
in Theorem 1, and an example illustrating this fact is worked out in § 7. We remark
that the general existence theorem in [3], was proved by using powerful asymptotic
existence theorems for linear and nonlinear differential equations developed by W.
Strodt [11, 12].

As a corollary of our main result (see § 3), we show that for the equations in our
class having rational functions for coefficients, all but finitely many zeros of a
meromorphic solution f #0 on the plane, must lie in the union of a finite number of
sectors of the form |argz—4;|<¢ where ¢>0 is arbitrary. The constants 1; can be
calculated in advance from the equation, and, except possibly for one 4;, they are the
zeros on (—m, 7] of certain “indicial” functions (see §2). The exceptional 4; occurs
when 7 is not a zero of any of the indicial functions. In this case, 7 must then be
adjoined as a 4; for the following reason: The situation concerning zeros around the
ray argz=m is obscured by the fact that the Strodt theory does not produce any
solution whose domain includes this ray. (This is natural even in the case of rational
coefficients, since such equations can possess solutions which only exist in the slit
plane (e.g. Bessel’s equation)). However, this problem of a possible extraneous sector
is easily circumvented by determining an angle B so that under the rotation { =e*z,
the equation (1.12) is transformed into an equation where at least one of the
corresponding indicial functions vanishes at #, and thus = appears in a legitimate way
as some A;. This is the role of § in Theorem 1. We also illustrate this device in the
example in § 7.

2. Concepts from the Strodt theory

(a) [11; §94]: The neighborhood system F(a, b). Let —n<a<b<m. For each
nonnegative real-valued function g on (0, (b—a)/2), let V(g) be the union (over all
0€(0, (b—a)/2)) of all sectors, a+d<arg(z—h(6)) <b—6, where h(5)=g()e"*?2,
The set of all V(g) (for all choices of g) is denoted F(a, b), and is a filter base which
converges to co. Each F{(g) is a simply-connected region (see [11;§93]), and we
require the following simple fact:

LEMMA A. Let V be an element of F(a, b), and let ¢ >0 be arbitrary. Then there
is a constant Ry(e)>0 such that V contains the set, a+e<argz<b—s¢, |z|> Ry(¢).

Proof. Let g be a nonnegative real-valued function on (0, (b—a)/2) for which
V="V(g). Then V(g) contains a sector of the form, a+8 < arg(z—{,) <b—0o, where
0<d<eand arg{,=(a+b)/2, and it is obvious by geometric reasoning that the sides
of this sector must intersect the corresponding sides of the sector a+e<argz<b—e.
The lemma now follows immediately.

- (b) [11:8§13):  The relation of asymptotic equivalence. If f(z) is an analytic
function on some element of F(a, b), then f(z) is called admissible in F(a, b). If cis a
complex number, then the statement f—c in F(a, b) means (as is customary) that for
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any £>0, there exists an element ¥ of F(a, b) such that | f(z) —c|<efor allze V. The

statement f <1 in F(a, b), means that in addition to f —0, all the functions 6%f—0in
F(a, b), where 6; denotes the operator 0;f =z(Log z)- - - (Log ;—2) f(2), and where
(for k>0), 0% is the k® iterate of ;. The statements f; <f and f; ~f, in F(a, b) mean
respectively fl [f<land fi—f, < f2 (This strong relation of asymptotic equivalence is
designed to ensure that if M is a non-constant logarithmic monomial of rank <p(i.e.a
function of the form,

2.1 M(z)=Kz"(Log z)**- - - (Log ,2)*,

for real a;, and complex K#0), then f~ M implies f"~ M’ in F(a, b) (see [11; § 28]). As
usual, z* and Logz will denote the principal branches of these functions on
|argz|<n.) We will write f; f, to mean f, ~¢f, for some nonzero constant c. An
admissible function f(z) in F(a, b) is called trivial in F(a, b) if f <z~ * in F(a, b) for
every a>0. If f~cz ™' *¢in F(a, b), where ¢ #0 and d>0, then the indicial function of
fis the function,

(2.2) IF(f, )=Cos(dp +arg c) for a<e<b.

If g is any admissible function in F(a, b), we will denote by { g, any primitive of g in
an element of F(a, b). We will require the following fact which is proved in [1; § 10]:

LEMMA B. Let f~cz '*% in F(a, b), where c#0 and d>0. If (a;, b,) is any
subinterval of (a, b) on which IF(f, ¢) <0 (respectively, IF(f, (p)>0) then for all real
a, exp [ f<z* (respectively, exp [f>z%) in F(ay, by).

(c) The operator 0, defined by 0, f =zf", will be denoted simply 0. It is easy to
prove by induction that for each n=1,2, - - -,

2.3) f‘”’=z‘"( Z b 07f )

where the b;, are integers, and b,,= 1. (In fact, it is easy to see that as polynomials in
X,

24 Zn: bx'=x(x—1)--"(x—(n—1)).)

(d) [11;849]. A logarithmic domain of rank zero (briefly, an LD,) over
F(a, b) is a complex vector space L of admissible functions in F(a, b), which contains
the constants, and such that any finite linear combination of elements of L, with
coefficients which are logarithmic monomials of rank <p for some p>0, is either
trivial in F(a, b) or is ~ to a logarithmic monomial of rank <p in F(a, b). (The
simplest examples of such sets L (where we can take (a, b) to be any open subinterval
of (—m, m)) are the set of all polynomials, the set of all rational functions, and the set
of all rational combinations of logarithmic monomials of rank <0. More extensive
examples can be found in [11; §§ 128, 53].)

(e) [2;§3]. If G(v) is a polynomial in v, whose coefficients belong to an LD,
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over F(a, b), then a logarithmic monomial M is called a critical monomial of G if there
exists an admissible function A~ M in F(a, b) such that G(h)isnot ~G(M)in F(a, b).
The set of critical monomials of G can be produced by using the algorithm in [2; § 26]
which is based on a Newton polygon construction. This algorithm shows that the
critical monomials are of rank <0. (In the special case where the coefficients of G (v)
are rational functions, the critical monomials are precisely the functions cz* which
form the first term of one of the expansions around z = oo of the algebraic function
defined by G(v)=0.) The algorithm also associates with each critical monomial, a
positive integer called the multiplicity. For our purposes here, it suffices to know (see
[2; §29(b)]) that if D and d represent the maximum and minimum degrees respectively
of the nontrivial terms in G(v) (as a polynomial in v), and if G(v) possesses D—d
distinct critical monomials, then each has multiplicity equal to 1 (i.e. each is simple).

3. Statements of Main Results

(The proofs will be given in §§4, 5)

THEOREM 2. Let n be a positive integer, and let {Ro(2), - -+, R(2)} be contained
inan LD, over F(a, b) for some (a, b) with —n<a<b <, and assume that R,(2) is non-
trivial (see §2(b)) in F(a, b). Using (2.3), rewrite the equation,

3.1 R,2W"+R,_ (2w V4 + R () w=0,

in the form,

(3.2

i

Bj(z)0'w=0,  where 0°w=w.

Assume that,

(3.3) B;< B, in F(a,b) forall j>1.

Define a sequence of integers 0=1(0)<t(1)< - - - <t(¢)=n as follows: 1(0)=0, and if
1(j) has been defined and is less than n, let 1(j+1) be the largest integer k, such that
1(j) <k <n, and such that for each i satisfying t(j)<i<n, either B,< B, or B,~B, in
F(a, b). Let,

(34 Gv)= ). z'OB,;(zp'?.
j=o

Assume that G(v) has n distinct critical monomials Ny, -+, N,, and let them be
arranged so that, for each j, either N;<N;yyor Nyx N . Then:

(a) For each j, N; is of the form cz='*%, where d;>0.

(b) For each pair (k,j) of integers with 1 <k <j<n, we have N;—NyxN; in
F(a, b).

(c) For each pair (k, j) of integers with 1 <k <j<n, let E,; denote the set of zeros
on (a, b) of the function IF(N;— N,, ¢) (see (1.14)), and let E={J,, - - -, Ap}, where
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Ay <Ay <+ <A, denote the union (over all (k, j)) of the sets E,;. Set Aig=aand ,,, =
b, and let j be any element of {0, 1, - - -, p}. Then:

(i) There exist admissible functions Vy, - - -, V, in F(4;, ;) such that Vi~ Ny in
F(Aj, Ajiq) for k=1, <+, n, and such that if f, is a function of the form exp [V, for k=
1, - -+, n, then the set {fi, - - -, f,} is a fundamental set of solutions of (3.1).

(i) Iff(z)#0 is any solution of (3.1) which is admissible in F(4;, ;. ,), then there
is an element T of F(4;, A;,) on which f has no zeros.

DEFINITION. Let the equation (3.1) have the form (3.2) and assume (3.3)
holds. We will call the polynomial G (v) which is constructed in (3.4), the factorization
polynomial for (3.1).

COROLLARY. Let n be a positive integer, and let Ry(z), - - -, R,(z) be rational
functions with R,#0, and consider the equation,

(3.5) R(W™+R, (W™ Dt - + Ry(2)w=0.
Using (2.3), rewrite (3.5) in the form,

(3.6) Y. Bf2)0'w=0, where PCw=w,
j=o0

and assume that B;<B, in F(—mn,n) for each j=1. Let G(v) be the factorization
polynomial for (3.5), and assume that G(v) possesses n distinct critical monomials
Ny, -+, N,, arranged so that for each j, either N;<N;,, or N;~N;,,. For each pair
(k,j) of integers with 1<k<j<n, let E,, denote the set of zeros on (—m,n) of
IF(N;—N,, @), and let E={A,, - --, 1.}, where 1, <), <---<A,, denote the union
(over all (k, j)) of the sets E,;. Set A,,, =mn. Then, for any solution f #0 of (3.5) which is
meromorphic on the plane, and any ¢> 0, all but finitely many zeros of f lie in the union
forj=1,2, -+, p+1, of the sectors,

3.7 Wie):|argz—4;|<e.

4. Proof of Theorem 2

We will require the following fact:

LEMMA C. Le n be a positive integer. Let {f,, - - -, f,} be a set of admissible
Sfunctions in some F(a, b), with the following property: For any two distinct elements k
and j in {1, - - -, n}, either fy <f; or f;<f, in F(a,b). Then, there is an element m in
{1, - - -, n} such that f;<f,, for each element j in {1, - - -, n}, distinct from m.

Proof. The proof is by induction on n, being trivial for n=1. Assuming the
statement for n, assume {f}, -, f,+,} satisfies the hypothesis of the lemma. Then
there exists min {1, - - -, n} such that f;<f,, for 1<j<n, j#m.If f, <f, ., thenf, ,  is
the desired element. If f, ., <f,, then f, is the desired element, and the proof is
complete.
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Proof of Theorem 2. Parts (a), (b) and the first part of (c) are contained in
[3; 883, 7,9]. We remark that Part (i) of (c) is proved by showing that in each
F(4;, 4;+,), the operator on the left side of (3.1) factors exactly into a product (i.e.
composition) of first-order differential operators (see [3; § 7(b), p. 97]). The proof is
then completed by successive integrations of the factored operator (see [3; p. 99]).
Thus it remains to prove (ii) of Part (c). If f#0 is an admissible solution of (3.1) in
some F(4), 2;,), then on some element of F(4;, 4;,,) we can write f = Z ¢ fv, Where

k=1

the f, are the solutions in Part (i), and where the ¢, are constants, not all zero. If k and
q are two distinct elements of {1, - - -, n}, say k <g, then the ratio f,/f, is of the form
exp [ (V,— V), and clearly by Part (b), ¥,—V,~N,—N,. Since IF(N,—N,, ¢) is
nowhere zero on (4, 4;,,) by construction, it follows from Lemma B that either
Jo<fe or [y <fy in F(4;, A;,,). Thus the set of all f, for which ¢,#0 satisfies the
hypothesis of Lemma C, and so there is an index m for which ¢,, #0 and such that
Je<fwm in F(A, A;14) for all k#m. Hence f=c,f,(1+h) where h—0 in F(4;, 4;,).
Since f,,=exp | V,,, we can choose an element of F(4;, 4;,,) on which f, has no zeros,
and |h|<1/2. Then clearly f has no zeros on this element of F(4;, 4;.,) proving
Theorem 2 completely. :

5. Proof of the Corollary

If f#£0 is a meromorphic solution of (3.5) on the plane, then f can have only
finitely many poles since any pole of f must either be a zero of R, or a pole of one of
the functions R, - - -, R,_;. Setting A, = —=, it then fellows that f is admissible in
each F(4; 4;4,), for j=0, ---, p. Thus by Theorem 2, there is an element 7; of
F(4;, 2j+,) on which f has no zeros, for each j=0, - - -, p. Thus, if >0 is given, then
by Lemma A, there is a constant K;(¢)>0 such that f has no zeros on the set,

(5.1 Aite<argz<i;.,—e, |z|=>K(e) .
for each j=0, 1, - - -, p. Since f can have only finitely many zeros in any bounded set,
it follows that for each j=0, 1, - - -, p, the solution f has only finitely many zeros in

the closed sector (including the origin),
(5.2) ‘ Aite<argz<i;.,—e.

The Corollary now follows by noting that the complement of the union (over j=
1,2, -+, p+1) of the sectors W(e) in (3.7) is precisely the union (over j=0, 1, - - -, p)
of the closed sectors in (5.2) since Ay=—m and 4,,, =7.

6. Proof of Theorem 1

To prove Theorem 1, we will require the following lemma:

LEMMA D. Assume the hypothesis and notation of Theorem 1, and let (1.4) have
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the form (3.2) when rewritten in terms of the operator 0 (using (2.3)). Then (3.3) holds,
and the factorization polynomial G(v) for (1.4) has the n distinct critical monomials
ijaO/nforjzl, ceen.

The proof of Lemma D will require a close examination of the algorithm in
[2; § 26], and will thus require some additional notation from [2] and [11].

Notation. (a) If f~M in F(a, b), where M is given by (2.1), we denote aq, =
do(f). If fis trivial in F(a, b), we write d,(f) = — 0.

(b) Let Fdenote F(a, b) for some (a, b). Let F; denote the subset of F consisting
of those elements.V such that | z|> 1 for all z in V. Then, we will denote by Log F, the
set whose elements are the sets {Log z: ze V} for each V in F. It is easy to verify that
Log F is also a filter base which converges to oo. For a function g(x) which is
admissible in Log F (i.e. analytic in some element of Log F), the statement g—c in
Log F, means that given ¢ >0, there is an element V; in Log F on which | g(u) —c| <e.
Analogously, the concepts g <1, g, <g, g, ~¢, in Log F are defined as in § 2(b) and
we have the following fact:

LEMMA E [11;§46]. Let ¢>0 and assume f <z ¢ in F. Then, g(u)=f(e") is
trivial in Log F (i.e. g<u™* in Log F for every a>0).

(©) [2;887, 8]. Let G(v) be a polynomial in v whose coefficients belong to an
LD, over F(a, b), say,

(6.1) Gv)= Y, Bj(z)v’ .
ji=0
If « is any real number, we will denote,
(6.2) Gy)= ) Bje“e y/,
j=0

so that G,(y) is obtained from G(v) by the change of variables z =e* v=ye*. If not all
B/(z) are trivial in F, we denote

(6.3) o0*=max{oj+dy(B,(2)):j=0, - - -, n},
and
(6.4) [o; Gl(y)=e""G(») .

The following fact from [2] will be needed:

LEMMA F [2; §8]. If not all Bfz) are trivial in F, then some coefficient of
[o; GY(p) is not trivial in Log F.

Proof of Lemma D. Using (2.3), we easily see that when (1.4) is rewritten in the
form (3.2), we have (setting a,=1),



208 S. B. Bank

n

(6.5) By=a, and B,= .Zk az ’b,;  for k>1.
From (1.6), it is clear that (3.3) holds.JWe now set (taking o, =0),
(6.6) J={j:0<j<n, a;=((n—))n)} ,

and

(6.7) H(v)=kZJ Z*By(z)v* .

We now assert that,
(6.8) B,=az"*(141) where dy(I",) <0 if keJ.

To prove (6.8), define I « by (6.8), 50 by (6.5), I'; is a sum of terms b, ;e; where e; =
(a;/@)z* "7 for j>k. If keJ, then from (1.6),

6.9) do(e)) < (k—p(1+(0/n)) <0 if k<j,
proving (6.8). It now easily follows from (6.8), (1.5), and Lemma E, that
(6.10) Hop(9)=¢" T AF(1+ V),

keJ

where we are using the notation (6.2), and where A is defined in (1.7), and where
(6.11) Vi (u) is trivial in Log F(—m=, m) for all k.

We now assert that in F(—m=, n),
(6.12) B,<B, if keJ and s>k

The proof of (6.12) follows immediately from (6.5), (6.8) and (6.9).

Now let G(v) be the factorization polynomial of (1.4) as defined in (3.4). It is
clear from (6.12) and the construction of the sequence #(j) in Theorem 2 that each
keJ is some #(j), and thus we may write,

(6.13) G()—H@w)=L(v) .
where
(6.14) L(v)= Z z"B, (2™,

where I is the set of integers m in [0, n] for which,
(6.15) m¢J but m=t(j) for some .

Now for each m in {0, i, - - -, n}, we have from (6.5), (1.5) and Lemma E that,

(6.16) B,(e")= Z A%+ Wu)b,,; ,

j=m
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where we take 4;=0 if a;=0, and where,
(6.17) Wu) is trival in Log F(—m, 7) for each ;.
Thus, in the notation of (6.2), we have from (6.14) and (6.16) that,

(6.18) Lygu(y)=e*"3 | 3 Am,(u)>y'",
mel \j=m
where
(6.19) A,,/() = A, "™ (1 + W (u))
and where,
(6.20) d(m, j)=m—a,+ (ag/m)m+o;— j for j>m.

Now if mel, then m¢ J by (6.15) so a,, <((n—m)/n)a,. Hence, d(m, m)<0. For j>m,
we have a; <((n—j)/n)a, from which it follows that,
(6.21) d(m, j) <(m—j)(1+oy/n)) <0 if j>m.

Thus, each d(m, j)<0 for j>m if mel, and thus from Lemma E (and (6.17)), it
follows from (6.19) that each 4,,(u) is trivial in Log F(— =, x). Hence from (6.18), we
can write,

(6.22) Lign(p)=eT(y),

where,

(6.23) all coefficients of T(y) are trivial in Log F(—m, 7).
We now set,

(6.24) 0* =max{(ao/m)t(j)+0o(z'"B,;): 0<j<a},

so that by (6.4) we have,

(6.25) [to/7; GI() =€ "G () -

Thus, in view of (6.13), (6.10), and (6.22), we have,

(6.26) Lowo/n; G](y)=e‘“°"’*’“(k§ AL+ Viw)y*+ T( y)) :

Now since each ke J is some #(j), clearly from (6.24) we have,
(6.27) 8* > max{(ao/n)k + 5o(z*B,): ke J} ,

from which it follows using (6.8) and (6.6) that 6* >«,. If 6* >, it would follow
from (6.26), (6.11), and Lemma E that all coefficients of [«y/n; G](p) are trivial in
Log F(—m, m) which contradicts Lemma F. Thus, we must have ay =46* in (6.26), so
that

(6.28) lao/n; GY(¥)=h(y)+ T (3)
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where £ is given by (1.7), and T,(y) is a polynomial all of whose coefficients are trivial
in Log F(—m, n). Thus by [2; Lemma 12, Part (b)], the roots b;, - - - b, of h(y) give
rise to the critical monomials b,z%™, - - -, b,z*" of G(v), proving Lemma D.

Remark. We remark that (6.28) was derived without using the hypothesis that
the roots of k(y) be distinct, and thus in the terminology of [2; § 28], we can say that if

(b, --+,b,) is the sequence (counting multiplicity) of roots of A(y), then
(byz%/", - -, b,z*") is the sequence (counting multiplicity) of the critical monomials
of G(v). :

Proof of Theorem 1. Assume the hypothesis and notation of Theorem 1, and let
f#0 be any solution of (1.4), and let ¢>0. Let f be defined by (1.8) and set g({)=
f(e™#{) for all complex (. Then, it is easy to check that g({) solves the equation,

n—1
(6.29) 9"+ Y, d(g?=0,
j=o0
where,
(6.30) dj(C):aj(e_i”{)e‘j_"’iﬂ .
Thus from (1.5), we have for j=0,1, ---, n—1,
(6.31) d)=K{+ oY as (-0, if a;#0,
where,
(6.32) Kj=Aje‘j"“"f""3 .

Thus, the equation (6.29) satisfies (1.6), and if a;=((n—j)/n)x,, we have,
(6.33) Kj= A;ke"("“'ao)iﬂ[eiﬁ(l +(ao/n))]j .

It now easily follows that for the equation (6.29), the polynomial /,(¢) defined in (1.7),
namely

(6.34) (D) =1"+Y {K;t?: aj=((n—j)/n)otg, 0<j<n—1},

is simply e~ ¥ ao)p(pifl *(@o/m)p) “where h is the polynomial in (1.7) for the original
equation (1.4). Since 4 has the simple roots by, - - -, b,, clearly 4, has the simple roots
b¥, ---, b¥, where b¥ =be” #1 T/ Thys, the equation (6.29) satisfies the complete
hypothesis of Theorem 1, and hence by Lemma D, the factorization polynomial
G*(v) for (6.29) has the n distinct critical monomials N}‘:b;“C“"/" for j=1,---,n.
Thus by the Corollary, if we let 4, <--- <4, denote the union (over all (k,j) with
1 <k <j<n) of the sets of zeros on (—m, n) of the functions IF(N*¥ — N, ¢), and let
Ap+1 =T, then all but finitely many zeros of g(0) lie in the union of the sectors,

(6.35) Wie): |arg {—4;|<e, .for j=1,2,---,p+1.

But clearly,
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(6.36) N*— Nf=(b,—by)e ™ #1 +omacin

and so from the definition of indicial function in (2.2), and the definition of § in (1.8),
it is easy to see that the function IF(N*— N}, @) is simply the negative of the
function in (1.9). Hence, for the set D defined in Theorem 1, we have D=
{41, ", 4}, and so p=q, and the sector W(e) in (6.35) is |arg {—o;|<e, for j=
1, -+, g+ 1. Since f(z) =g({), where { =€z (and so arg { =B+ arg z), clearly all but
finitely many zeros of f'lie in the union of the sectors (1.10) for j=1, - - -, g+ 1, which
proves Theorem 1.

7. Examples

(1) The example (1.11) affords an opportunity to check the sharpness of
Theorem 1. In the notation of Theorem 1, we have for (1.11) that «, =3, and A(¢) =
13—t —41+4, so that & has the simple roots b, =1, b, =2, and b, = —2. For j=2 and
k=1, the function in (1.9) is Sin(2(¢ —)), while for (j, k) =(3, 1) and (j, k) =(3, 2),
the functions in (1.9) are just —Sin(2(¢ —n)). Thus in Theorem 1, we have ¢ =3 and
0, =—m/2, 6,=0, 0;=m/2, and g, ==. The constant f in (1.8) is 3n/4, and so the &-
sectors (1.10) are sectors centered on the rays arg z= —5n/4, —3n/4, —n/4, and /4.
In fact, all of these e-sectors contain infinitely many zeros of any solution of (1.11) of
the form c¢,e” + c,e ™ * where ¢, and ¢, are nonzero constants. (In the special case ¢, =
1, ¢, =—1, all of the zeros are on the center rays.)

(2) To illustrate the results in § 3, we consider the equation,

7.1 w’tzw —zw=0,

which is not covered by Theorem 1 since a; =a,. We will first apply the Corollary
directly to this equation. We rewrite the equation in € which yields (by (2.3) and

(2.4)),
(7.2) 273w =3z 3Pw+ (14227 3)0w—2zw=0.

Clearly (3.3) is satisfied, and we construct the sequence #(j) defined in Theorem 2.
Clearly #(0)=0, #(1)=1, and #2)=3 so that in (3.4), we have

(7.3) Gw)=v*+(z+2z")v—z.

Applying the algorithm in [2; § 26], we find the critical monomials N, =1 (from degree
1 and degree 0), and N, = —iz'/?, N, =iz'/? (from degree 3 and degree 1). The three
functions IF(N;—N,, ¢) for 1<k<j<3, all reduce to =+Sin((3/2)¢), which on
(—m, ) has zeros A, = —2n/3, 4, =0, 4; =2n/3. According to the Corollary, we must
also add 4, ==, and the union of the sectors (3.7) for j=1, 2, 3, 4, contains all but
finitely many zeros of any solution f#0 of (7.1). However, by using a rotation, as
mentioned in § 1, we will now show that the sector around arg z =4, is extraneous.

For any solution w(z) of (7.1), and any real constant «, let u({) =w(e ™ *{). We
compute the differential equation for #({) and write it in terms of Ou ={u’. This yields,
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(7.9 A T3Pu— 33 302U+ (14263 " 3)u—e " *u=0.

Forming the factorization polynomial in (3.4), we find the critical monomials N, =
e ™ and '

(7.5 N,=¢ " 7302012 © and  Ny= —N, .
The indicial functions IF(N;—N,, ¢) for k <j all reduce to,
(7.6) +Cos((3/2)p +(n—30)/2) .

We now choose a value of o for which ¢ == is automatically a zero of (7.6). Clearly
o =7 will suffice, and for this value of a, the zeros on (— =, ©) of the functions in (7.6)
are 4, = —mn/3 and 4, =7/3. To apply the Corollary, we must also adjoin A; =7, and
thus all but finitely many zeros of u({) must lie in the union of the sectors
|arg (—A;|<e for j=1, 2, 3. Since w(z)=u({) where {=e"z, we find that all but
finitely many zeros of a solution w(z) of (7.1) must lie in the union (over j=1, 2, 3,) of
the sectors |arg z— ;| <e, where B, = —4n/3, B, =—2n/3, and B;=0. (Of course B,
gives the same sector as |arg z—2n/3|<e, and we have thus shown that the sector
around arg z =7 is extraneous.)

8. Remark

In this section, we show that for any n>2, there exist linear differential equations
of the form (1.4), having polynomial coefficients, for which no analogue of Theorem
1 exists. Consider the equation,

(8.1) w4 22w 4+ zw +w=0,  where n>3.

We will show that this equation has the following property: For any ¢>0 and any
value of 6 in (— =, 7], there exists a solution f #0 of (8.1), which has infinitely many
zeros in |arg z— 0| <e.

To prove this fact, we note first that by [3; §4], there exist finitely many points
0,<0,<--- <0, in (—m, n) such that in each of F(—mn, 6,), F(0,,0,), ---, F(0,, ™)
separately, the equation (8.1) possesses solutions g, and g, with g, ~z' and g,~z ™"
Let 0 be any number in (—=, 7) which is distinct from 6,, - -, 6,, and let ¢>0 be
arbitrary. We can assume ¢ is so small that g, and g, exist and are admissible in
F(0—¢, 0+¢), and satisfy g, ~z* and g, ~z~*. (Of course, g, and g, can be extended to
be entire functions in view of the form of (8.1).) Set u,({) =g;({e") for j=1, 2, so that
u; and u, are admissible in F(—e, ¢), and satisfy u;({)~e~ " and u,({)~€’ " in
F(—¢,¢). Set v, =eu; and v, =e %u,, so that we can write v,({) ={"4,({) and v,({) =
{7'hy(0), where h()—1 in F(—e¢, ¢) for j=1, 2. Now set h=h,/h,, F({)=({*—1, and
rp=e"form=1,2, ---, so that F(r,)=0 for all m. By [4; Lemma D, p. 127], there
exists d in (0, 1) such that if D,, denotes the closed disk |{ —r,, | < or,,, then each D,, lies
in |arg {|<¢/2, and,
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8.2) |[F(O)|=0o on |{—r,|=06r,.
Since h—1 in F(—¢, ¢), there is an element V in F(—z¢, ¢) on which 4 is analytic and,
(8.3) [1—h()|<6 for all ¢ in V.

By Lemma A in § 2(a), clearly V contains the disks D,, for all sufficiently large m, say
for m>m,, and in view of (8.2) and (8.3), it follows from Rouche’s theorem that the
function F({)+(1—h({)) possesses a zero {,, in D, for each m>m,. (Since 6<1,
clearly |, | + o0 as m—00.) From the definitions of F, 4, u, and u,, it follows that
u; ({,) =e ™ *u,({,,) for each m>my. Thus, if we set z,, ={,,e" for m>my, then clearly
|arg z,,— 0| <e, and each z,, is a zero of the solution g, —e 2%, of (8.1). Since | z,, | =
| & |— + 00 as m— o0, we have established the desired property of (8.1) if 6 is distinct
from 0,, - - -, 6,, and clearly it then also holds for 0,, - - -, 6,, and 7.
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