Generating Sets for Ideals

by

D. D. Anderson and L. A. Mahaney*

(Received March 1, 1988)

Throughout, R will be a commutative ring with identity. For a finitely generated R-module A, $\mu(A)$ will denote the minimal number of generators for A. We say that A is n-generated if $\mu(A) \le n$. If $\mu(A/Ra) \le n-1$ for each $0 \ne a \in A$, we say that A is strongly n-generated. Recently, Lantz and Martin [7] have studied strongly two-generated regular fractional ideals. Among other things, they showed that a strongly two-generated regular fractional ideal is invertible and that the set of such fractional ideals forms a group.

In this paper we study several related ideas. We say that a submodule C of A is almost n-generated (with respect to A) if for each $a \in A$, $\mu(C+Ra) \le n+1$. (An ideal C of R is almost n-generated if C is almost n-generated with respect to R.) Suppose further that C is an ideal of R. Let $\{M_{\lambda}\}$ be the set of maximal ideals of R containing C and let S(C) (or just S if no confusion can arise) be the multiplicatively closed subset $R-\bigcup M_{\lambda}$. It is easily seen that if I is an ideal of R with $I\subseteq \bigcup M_{\lambda}$, then I is contained in some M_{λ} ([5, Lemma 3, page 143]). Hence $\{M_{\lambda S}\}$ is the set of maximal ideals of R_S . Also, observe that for two ideals I and I of I of I is an only if I if I is each I of I is weakly generates I if I is weakly generated if I is weakly generated by a subset of I elements. Finally, if I is weakly one-generated, we will say that I is I is weakly principal.

It is well-known that for a finitely generated ideal I of R, $\mu(I/I^2) \le \mu(I) \le \mu(I/I^2) + 1$. For example, see Nashier [8]. One interesting, but elementary, consequence of our investigation is that $\mu(I+(r)) \le \mu(I/I^2) + 1$ for any finitely generated ideal I of R and any element $r \in R$. This follows from Theorem 2 which states that a weakly n-generated ideal is almost n-generated.

PROPOSITION 1. Let $B \subseteq A$ be ideals of the commutative ring R. Let $S = R - \bigcup M_{\lambda}$ where $\{M_{\lambda}\}$ is the set of maximal ideals containing A. Then $B_S = A_S$ implies that $A = A^2 + B$. If A_S is finitely generated, then $A = A^2 + B$ implies that $B_S = A_S$.

Proof. Since $B_S = A_S$, we have $B_{M_{\lambda}} = A_{M_{\lambda}}$ for each M_{λ} . Hence $A_{M_{\lambda}} = (A^2 + B)_{M_{\lambda}}$. If M is a maximal ideal of R with $M \not\equiv A$, then $A_M = R_M$. So again $A_M = (A^2 + B)_M$.

^{*} This research was supported by the John B. O'Hara Summer Research Institute at the University of Dallas.

Hence $A = A^2 + B$ locally and hence globally. Conversely, suppose that $A = A^2 + B$ and that A_S is finitely generated. Then $A_S = A_S^2 + B_S$. Observe that A_S is contained in the Jacobson radical of R_S . Since A_S is finitely generated, $A_S = B_S$ by Nakayama's Lemma.

THEOREM 2. Suppose that $B \subseteq A$ are ideals of a commutative ring R with A finitely generated. Suppose that $B_M = A_M$ for each maximal ideal $M \supseteq A$. Then for every $r \in R$, $\mu(A+(r)) \le \mu(B)+1$. In particular, if A is finitely generated and weakly n-generated, then A is almost n-generated.

Proof. By Proposition 1, $A = A^2 + B$. Hence \bar{A} is a finitely generated idempotent ideal of the ring $\bar{R} = R/B$. Thus $\bar{A} = \overline{Re}$ for some $e \in R$ where $\bar{e} \in \bar{R}$ is idempotent ([4, Corollary 6.3]). Then $\bar{A} + (\bar{r}) = (\bar{e}, \bar{r}) = (\bar{e} + (\bar{1} - \bar{e})\bar{r})$ with the last equality following since \bar{e} is idempotent. So A + (r) = B + (e + (1 - e)r) and hence $\mu(A + (r)) \le \mu(B) + 1$.

The following corollary improves the well-known result mentioned in the introduction.

COROLLARY 3. Let I be a finitely generated ideal and let $r_1, \dots, r_s \in R$. Then $\mu(I+(r_1,\dots,r_s)) \leq \mu(I/I^2) + s$.

Proof. It suffices to do the case s=1. Let $\mu(I/I^2)=n$ and take $B=(i_1, \dots, i_n)$ where $i_1, \dots, i_n \in I$ and $\bar{i_1}, \dots, \bar{i_n}$ generate I/I^2 . Then $I=I^2+B$. Hence by the proof of Theorem 2, $\mu(I+(r_1)) \leq \mu(B)+1 \leq n+1=\mu(I/I^2)+1$.

PROPOSITION 4. Let A be a finitely generated ideal of R that is weakly generated by B. Then $AR[\{X_{\alpha}\}]$ is also weakly generated by B. In particular, if A is finitely generated and weakly n-generated, then so is $AR[\{X_{\alpha}\}]$.

Proof. By Proposition 1 we have $A = A^2 + BR$. Hence $AR[\{X_{\alpha}\}] = (AR[\{X_{\alpha}\}])^2 + BR[\{X_{\alpha}\}]$. Since A is finitely generated, so is $AR[\{X_{\alpha}\}]$. By Proposition 1, $AR[\{X_{\alpha}\}]$ is weakly generated by B.

A well-known result of Davis and Geramita [3] states that if R is a regular Noetherian Hilbert ring, then every maximal ideal of $R[X_1, \dots, X_n]$ can be generated by an R-sequence. Hence if dim R = s, every maximal ideal of $R[X_1, \dots, X_n]$ can be generated by n + s elements. We give an alternative proof of this result using Theorem 2.

THEOREM 5. Let R be a regular Noetherian Hilbert ring. Then every maximal ideal of $R[X_1, \dots, X_n]$ can be generated by an R-sequence. In particular, if dim R = s, every maximal ideal of $R[X_1, \dots, X_n]$ can be generated by n + s elements.

Proof. We first consider the case n=1. Let M be a maximal ideal of $R[X_1]$. Let $N=M\cap R$ and m=htN. Since R is a Hilbert ring, N is a maximal ideal of R. (For this fact about Hilbert rings and for other unreferenced results used in this proof, see [6].) Since N is a maximal ideal, $M=NR[X_1]+(f)$ for some $f\in R[X_1]$. Now since R is a regular ring, R_N is a regular local ring with dim $R_N=m$. So N_N can be generated by m

elements. Hence N is weakly m-generated. By Proposition 4, $NR[X_1]$ is also weakly m-generated. By Theorem 2, $M = NR[X_1] + (f)$ can be generated by m+1 elements. Since htM = m+1, M can be generated by an R-sequence.

Suppose that n>1. Let M be a maximal ideal of $R[X_1, \dots, X_n]$ and let $N=M\cap R[X_1, \dots, X_{n-1}]$. Then N is a maximal ideal of $R[X_1, \dots, X_{n-1}]$. Hence by induction N can be generated by an R-sequence, say f_1, \dots, f_t . Now $M=NR[X_1, \dots, X_n]+(f)$ for some $f \in R[X_1, \dots, X_n]$ and it is easily seen that f_1, \dots, f_t , f is an R-sequence.

Actually, the last part of Theorem 5 can be extended to intersections of maximal ideals. Let R be an s-dimensional regular Noetherian Hilbert ring. If M_1, \dots, M_r are maximal ideals of $R[X_1, \dots, X_n]$, then $M_1 \cap \dots \cap M_r$ can also be generated by n+s elements. The proof of this result is similar to the proof of Theorem 5. We sketch the proof for the heart of the argument which is the case n=1. Let $I=M_1 \cap \dots \cap M_r$ and $J=I \cap R$. Then $J=N_1 \cap \dots \cap N_r$, where $1 \le r' \le r$ and the N_i are distinct maximal ideals of R. It suffices to show that J is weakly s-generated. R/J is a finite direct product of fields and hence $(R/J)[X_1]$ is a finite direct product of polynomial rings over fields and hence is a principal ideal ring. Hence $I=JR[X_1]+(f)$ for some $f \in R[X_1]$. Now J and hence $JR[X_1]$ is weakly s-generated. Hence by Theorem 2, I can be generated by s+1 elements. To show that J is weakly s-generated, it suffices to show that J/J^2 can be generated by s elements. Now $R/J^2 \cong R/N_1^2 \times \dots \times R/N_r^2$. Since R is an s-dimensional regular ring, N_i/N_i^2 can be generated by s elements, say N_i/N_i^2 is generated by s elements s in s-dimensional regular ring, s in s generated by s elements, say s is generated by the s elements s is generated by s elements s is generated by the s elements s in s elements s

In the case where A is weakly 1-generated, more can be said. The following theorem extends and gives the converse to [5, Theorem 1]. Recall that an ideal A is called a multiplication ideal if for each ideal $B \subseteq A$, B = AC for some ideal C. Principal ideals and invertible ideals are multiplication ideals. A finitely generated ideal is a multiplication ideal if and only if it is locally principal. For results on multiplication ideals, the reader is referred to [1] and [2].

THEOREM 6. For an ideal A of R consider the following conditions.

- (1) $A = A^2 + (x)$ for some $x \in A$.
- (2) A is a multiplication ideal and $A \supseteq AM_{\lambda}$ where $\{M_{\lambda}\}$ is the set of maximal ideals containing A.
 - (3) A_S is principal where $S = R \bigcup M_{\lambda}$ and $\{M_{\lambda}\}$ is as in (2).
- Then $(2) \Rightarrow (3) \Rightarrow (1)$. If A is finitely generated and (0:A) is contained in each M_{λ} , then $(1) \Rightarrow (2)$.
- *Proof.* (2) \Rightarrow (3). Let $x \in A \bigcup AM_{\lambda}$. Since A is a multiplication ideal, (x) = AB for some ideal B. Also $B \nsubseteq M_{\lambda}$ for each M_{λ} . Thus $B_S = R_S$, so that $(x)_S = (AB)_S = A_S$.
 - (3) \Rightarrow (1). Let $A_S = (x)_S$ where $x \in A$. By Proposition 1, $A = A^2 + (x)$.

Suppose that A is finitely generated and that (0:A) is contained in each M_{λ} . Under these conditions we prove that $(1) \Rightarrow (2)$. By Proposition 1, $A = A^2 + (x)$ implies that $A_S = (x)_S$ and hence that $A_{M_\lambda} = (x)_{M_\lambda}$ for each maximal ideal $M_\lambda \supseteq A$. If M is a maximal ideal of R with $M \not\supseteq A$, then $A_M = R_M$ is again principal. So A is finitely generated and locally principal. Hence A is a multiplication ideal ([1, Theorem 3]). Suppose that $A = \bigcup AM_\lambda$. Then $x \in AM_\lambda$ for some M_λ . Now (x) = AB for some ideal B of R. Hence $A = A^2 + (x) = A^2 + AB = A(A + B)$. Since A is a finitely generated multiplication ideal, we have R = A + B + (0:A) ([1, Theorem 3]). Now $AB = (x) \subseteq AM_\lambda$ gives that $B \subseteq M_\lambda + (0:A)$. Hence $R = A + B + (0:A) \subseteq A + M_\lambda + (0:A) \subseteq M_\lambda$, a contradiction.

COROLLARY 7. For a finitely generated regular ideal A, the following conditions are equivalent.

- (1) $A = A^2 + (x)$ for some $x \in A$.
- (2) A is invertible and $A \supseteq \bigcup AM_{\lambda}$ where $\{M_{\lambda}\}$ is the collection of maximal ideals containing A.
 - (3) A_S is principal where $S = R \bigcup M_{\lambda}$ with $\{M_{\lambda}\}$ as in (2).

The following theorem sums up the relationships among the types of generation that we have defined.

THEOREM 8. Let A be a finitely generated ideal of a commutative ring R. Then (1) A is n-generated \Rightarrow (2) A is strongly n+1-generated \Rightarrow (3) A is weakly n-generated (provided $A^2 \neq 0$) \Rightarrow (4) A is almost n-generated \Rightarrow (5) A is n+1-generated. However, in general none of these implications can be reversed.

Proof. The implications (1) \Rightarrow (2) and (4) \Rightarrow (5) are obvious. (2) \Rightarrow (3). Suppose that A is strongly n+1-generated and $A^2 \neq 0$. Let $0 \neq a \in A^2$. Then A/(a) and hence A/A^2 can be generated by n elements. Hence $A=A^2+B$ where $\mu(B) \leq n$. So A is weakly n-generated. The implication (3) \Rightarrow (4) is Theorem 2.

The following examples show that none of these implications can be reversed. (2) \Rightarrow (1). Let A be a nonprincipal ideal in a Dedekind domain. Then A is strongly 2-generated, but not 1-generated. (3) \Rightarrow (2). Let A be a nonprincipal ideal in a Dedekind domain R. Then A is weakly 1-generated. Hence AR[X] is also weakly 1-generated by Proposition 4. By [7, Corollary 7] the only strongly 2-generated ideals of R[X] that are extended are the principal ones. Hence AR[X] is weakly 1-generated but not strongly 2-generated. (4) \Rightarrow (3). Let A = (X, Y) in the power series ring K[[X, Y]], K A field. Since both A and A is not invertible, A is not weakly 1-generated. (5) \Rightarrow (4). The ideal A = (X, Y) is a 2-generated ideal of the ring K[X, Y, Z], K A field. Now (X, Y) + (Z) can not generated by two elements, so (X, Y) is not almost 1-generated.

The product of two 1-generated ideals is 1-generated and the product of two strongly two-generated ideals is strongly two-generated ([7, Lemma 4]). This raises the natural question of whether the product of two weakly principal ideals is weakly principal. This is *not* the case. For let A be a weakly principal ideal that is not principal. Now AR[X] is again weakly principal. Suppose that ARX is weakly

principal. Then $XAR[X] = X^2A^2R[X] + hR[X]$ for some $h \in R[X]$. One easily sees that h = Xg for some $g \in R[X]$ and that then A = g(0)R is principal. This contradiction shows that ARX is not weakly principal.

We end with a remark on minimal bases. A minimal basis for a module A is defined as an irredundant generating set for A. Hence $\mu(A)$ is the length of the shortest minimal basis for A. If R is quasi-local with maximal ideal M, then any two minimal bases for A have the same length, namely $\mu(A) = \dim_{R/M} A/MA$. However, if R is not quasi-local, then A can have minimal bases of different lengths. An interesting result of Ratliff and Robson [9, (2) Theorem] states that if A has a minimal basis of length s then for all integers t with $s \le t \le \lambda(A)$, there is a minimal basis for A of length t. ($\lambda(A)$ is the length of a composition series for A/J(A) or ∞ if no composition series exists; here J(A) is the intersection of the maximal submodules of A). Actually, part of this result is a special case of a beautiful result due to Tarski [10]. It follows from Tarski's Irredundant Basis Theorem that if A is an algebra all of whose fundamental operations have arity not exceeding two, then the set of lengths of irredundant bases for A forms a convex subset of the natural members.

References

- [1] Anderson, D. D.; Multiplication ideals, multiplication rings, and the ring R(X), Canad. J. Math., 28 (1976), 760–768.
- [2] Anderson, D. D.; Some remarks on multiplication ideals, Math. Japonica, 25 (1980), 463-469.
- [3] DAVIS, E. D. and GERAMITA, A. V.; Maximal ideals in polynomial rings, 57-60, Conference in Commutative Algebra, Lecture Notes in Mathematics 311, Springer, Heidelberg, 1973.
- [4] GILMER, R.; Multiplicative Ideal Theory, Marcel Dekker, New York, 1972.
- [5] GILMER, R. and HEINZER, W.; On the number of generators of an invertible ideal, J. Algebra, 14 (1970), 139-151.
- [6] KAPLANSKY, I.; Commutative Rings, revised edition, University of Chicago Press, Chicago, 1974.
- [7] LANTZ, D. and MARTIN, M.; Strongly two-generated ideals, Comm. Algebra, 16(9) (1988), 1759–1777.
- [8] NASHIER, B.; On choosing generating sets for ideals, Proc. Amer. Math. Soc., 100 (1987), 233-234.
- [9] RATLIFF, L. J., Jr. and ROBSON, J. C.; Minimal bases for modules, Houston J. Math., 4 (1978), 593–596
- [10] TARSKI, A.; An interpolation theorem for irredundant bases of closure structures, *Discrete Math.*, 12 (1975), 185-192.

Department of Mathematics University of Iowa Iowa City, Iowa 52242 U.S.A. Department of Mathematics University of Dallas Irving, Texas 75062-4799 U.S.A.