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Throughout, R will be a commutative ring with identity. For a finitely generated
R-module 4, u(A4) will denote the minimal number of generators for 4. We say that 4
is n-generated if p(A)<n. If y(A/Ra)<n—1 for each 0#ae 4, we say that 4 is
strongly n-generated. Recently, Lantz and Martin [7] have studied strongly two-
generated regular fractional ideals. Among other things, they showed that a strongly
two-generated regular fractional ideal is invertible and that the set of such fractional
ideals forms a group.

In this paper we study several related ideas. We say that a submodule C of A4 is
almost n-generated (with respect to A) if for each ae 4, u(C+ Ra)<n+1. (An ideal C
of R is almost n-generated if C is almost n-generated with respect to R.) Suppose
further that Cis an ideal of R. Let {M,} be the set of maximal ideals of R containing
C and let S(C) (or just S if no confusion can arise) be the multiplicatively closed
subset R—|( ) M;. It is easily seen that if / is an ideal of R with I<|( ) M, then I is
contained in some M, ([5, Lemma 3, page 143]). Hence {M s} is the set of maximal
ideals of Rs. Also, observe that for two ideals J and K of R, Jg=Kj if and only if
Ju, =Ky, for each M,. We say that a subset B< C weakly generates C if Cg=BR;
and that C is weakly n-generated if C is weakly generated by a subset of # elements.
Finally, if C is weakly one-generated, we will say that C is weakly principal.

It is well-known that for a finitely generated ideal I of R, u(J/I*)<u(l)<
p(I/I*)+1. For example, see Nashier [8]. One interesting, but elementary, conse-
quence of our investigation is that u(/+(r)) <u(I/I*)+1 for any finitely generated
ideal 7 of R and any element re R. This follows from Theorem 2 which states that
a weakly n-generated ideal is almost n-generated.

PROPOSITION 1. Let BS A be ideals of the commutative ring R. Let S—=
R—\ ) M, where {M,} is the set of maximal ideals containing A. Then Bg= Ag implies
that A=A+ B. If Ag is finitely generated, then A=A+ B implies that By=As.

Proof.  Since Bs=Ag, we have By, = 4,,, for each M. Hence A4,,, =(4%+ B)y,.
If M is a maximal ideal of R with M 4, then A, =R,,. So again 4, =(4>+ B),,.
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Hence A4 =A%+ B locally and hence globally. Conversely, suppose that 4 =A4>+ B
and that Ay is finitely generated. Then Ag=A3+ Bs. Observe that Ag is contained in
the Jacobson radical of Ry. Since Ay is finitely generated, 4g= B by Nakayama’s
Lemma.

THEOREM 2. Suppose that BS A are ideals of a commutative ring R with A
finitely generated. Suppose that By, = A, for each maximal ideal M = A. Then for every
reR, W(A+ () <u(B)+1. In particular, if A is finitely generated and weakly n-
generated, then A is almost n-generated.

Proof. By Proposition 1, 4=A4?+ B. Hence A is a finitely generated idem-
potent ideal of the ring R = R/B. Thus 4 = Re for some e € R where ée R is idempotent
([4, Corollary 6.3]). Then A + (7F) = (&, 7/) =(é+ (1 — &)F) with the last equality following
since € is idempotent. So 4+ (r)=B+(e+(1—e)r) and hence (A +(r)<u(B)+1.

The following corollary improves the well-known result mentioned in the
introduction.

COROLLARY 3. Let I be a finitely generated ideal and let ry, - - -, r;e R. Then
p(I+(ry, - -, 1)) < /1) +s.

Proof. 1t suffices to do the case s=1. Let w(I/I*)=n and take B=(i;, - - -, i,)
where i;, - - -, i,eIand i, - - -, i, generate I/I>. Then I=1I*+ B. Hence by the proof of
Theorem 2, u(I+ () <u(B)+1<n+1=pI/I*)+1.

PROPOSITION 4. Let A be a finitely generated ideal of R that is weakly
generated by B. Then AR[{X,}] is also weakly generated by B. In particular, if A is
finitely generated and weakly n-generated, then so is AR[{X,}].

Proof. By Proposition 1 we have 4=A4?+ BR. Hence AR[{X,}]=(AR[{X,}])*
+ BR[{X,}]. Since 4 is finitely generated, so is AR[{X,}]. By Proposition 1, AR[{X,}]
is weakly generated by B. ’

A well-known result of Davis and Geramita [3] states that if R is a regular
Noetherian Hilbert ring, then every maximal ideal of R[Xj, - - -, X,] can be generated
by an R-sequence. Hence if dim R=s, every maximal ideal of R[X;, - - -, X,] can be
generated by n+ s elements. We give an alternative proof of this result using Theorem
2.

THEOREM 5. Let R be a regular Noetherian Hilbert ring. Then every maximal
ideal of R[X,, - -, X,)] can be generated by an R-sequence. In particular, if dim R=s,
every maximal ideal of R[X,, - - -, X,] can be generated by n+s elements.

Proof. We first consider the case n=1. Let M be a maximal ideal of R[X;]. Let
N=M ~ Rand m=htN. Since R is a Hilbert ring, N is a maximal ideal of R. (For this
fact about Hilbert rings and for other unreferenced results used in this proof, see [6].)
Since N is a maximal ideal, M =NR[X,]+ (f) for some fe R[X,]. Now since R is a
regular ring, Ry is a regular local ring with dim Ry=m. So Ny can be generated by m
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elements. Hence N is weakly m-generated. By Proposition 4, NR[X,] is also weakly m-
generated. By Theorem 2, M =NR[X,]+ (f) can be generated by m+1 elements.
Since htM =m+1, M can be generated by an R-sequence.

Suppose that n>1. Let M be a maximal ideal of R[X}, -, X,] and let N=
M R[X,, -, X,_;]. Then N is a maximal ideal of R[X}, --, X,_,]. Hence by
induction N can be generated by an R-sequence, say f;, - - -, f,, Now M =NR[X,, - - -, X,]
+(f) for some fe R[X}, - - -, X,] and it is easily seen that f}, - - -, f;, fis an R-sequence.

Actually, the last part of Theorem 5 can be extended to intersections of maximal
ideals. Let R be an s-dimensional regular Noetherian Hilbert ring. If M, - - -, M, are
maximal ideals of R[X,, - - -, X], then M, n - -+ n M, can also be generated by n+s
elements. The proof of this result is similar to the proof of Theorem 5. We sketch the
proof for the heart of the argument which is the case n=1. Let [=M, n - - - " M, and
J=InR. Then J=N;n--- AN, where 1<r' <r and the N; are distinct maximal
ideals of R. It suffices to show that J is weakly s-generated. R/J is a finite direct
product of fields and hence (R/J)[X,] is a finite direct product of polynomial rings
over fields and hence is a principal ideal ring. Hence I=JR[X,]+(f) for some
feR[X;]. Now J and hence JR[X,] is weakly s-generated. Hence by Theorem 2, I can
be generated by s+ 1 elements. To show that J is weakly s-generated, it suffices to
show that J/J? can be generated by s elements. Now R/J>~R/N? x - - - x R/N2. Since
R is an s-dimensional regular ring, N;/N? can be generated by s elements, say N;/N? is
generated by x,;, -, x;. Then J/J?=N,/N?x --- x N,./N? is generated by the s
elements (Xy1, * =, Xgp)s 7y (Kggs * 5 Xgo)-

In the case where A4 is weakly 1-generated, more can be said. The following
theorem extends and gives the converse to [5, Theorem 1]. Recall that an ideal 4 is
called a multiplication ideal if for each ideal B< 4, B=AC for some ideal C. Principal
ideals and invertible ideals are multiplication ideals. A finitely generated ideal is a
multiplication ideal if and only if it is locally principal. For results on multiplication
ideals, the reader is referred to [1] and [2].

THEOREM 6. For an ideal A of R consider the following conditions.

(1) A=A*+(x) for some xe A.

(2) A is a multiplication ideal and A2 AM, where {M,} is the set of maximal
ideals containing A.

(3) Ag is principal where S=R—| | M, and {M,} is as in (2).

Then (2) = (3) = (1). If A is finitely generated and (0: A) is contained in each M,
then (1) =(2).

Proof. (2)=(3). Let xeA—|()AM,. Since 4 is a multiplication ideal, (x)=

AB for some ideal B. Also B¢ M, for each M,. Thus Bs= R, so that (x)g=(A4B)s=

AS. .
(3)=(1). Let Ag=(x)s where xe A. By Proposition 1, 4 =42+ (x).

Suppose that 4 is finitely generated and that (0: A) is contained in each M,.

Under these conditions we prove that (1) = (2). By Proposition 1, 4 = A% 4 (x) implies
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that Ag=(x)s and hence that 4, =(x),, for each maximal ideal M,24. If M is a
maximal ideal of R with M A, then A, =Ry, is again principal. So 4 is finitely
generated and locally principal. Hence 4 is a multiplication ideal ([1, Theorem 3)).
Suppose that 4 = ) AM,. Then xe AM, for some M,. Now (x)=4B for some ideal
B of R. Hence A=A%>+(x)=A?>+ AB=A(A+ B). Since A4 is a finitely generated
multiplication ideal, we have R=4+B+(0:4) ([1, Theorem 3]). Now AB=
(x)=AM, gives that B<M,+(0:4). Hence R=A4+B+(0:4)cA+M,+
(0: A)= M, a contradiction.

COROLLARY 7. For afinitely generated regular ideal A, the following conditions
are equivalent.
- (1) A=A*+(x) for some xe A.
(2) A isinvertible and A2\ | AM, where {M} is the collection of maximal ideals
containing A.
(3) Ay is principal where S=R—| ) M, with {M,} as in (2).

The following theorem sums up the relationships among the types of generation
that we have defined.

THEOREM 8. Let A be a finitely generated ideal of a commutative ring R. Then
(1) A4 is n-generated = (2) A is strongly n+ 1-generated =>(3) A is weakly n-generated
(provided A*+#0) = (4) A is almost n-generated =>(5) A is n+ 1-generated. However,
~ in general none of these implications can be reversed.

Proof. The implications (1) =>(2) and (4) = (5) are obvious. (2) = (3). Suppose
that A is strongly n+ 1-generated and 42#0. Let 0#ae A% Then A/(a) and hence
A/ A? can be generated by n elements. Hence 4 = A% + B where pu(B) <n. So A4 is weakly
n-generated. The implication (3) = (4) is Theorem 2.

The following examples show that none of these implications can be reversed.
(2) # (1). Let A4 be a nonprincipal ideal in a Dedekind domain. Then 4 is strongly 2-
generated, but not 1-generated. (3) # (2). Let 4 be a nonprincipal ideal in a Dedekind
domain R. Then 4 is weakly 1-generated. Hence AR[X] is also weakly 1-generated by
Proposition 4. By [7, Corollary 7] the only strongly 2-generated ideals of R[X] that
are extended are the principal ones. Hence AR[X] is weakly 1-generated but not
strongly 2-generated. (4) # (3). Let A =(X, Y) in the power series ring K[[X, Y]], K a
field. Since both 4 and K[[X, Y]] can be generated by 2 elements, 4 is almost 1-
generated. But since 4 is not invertible, 4 is not weakly 1-generated. (5) #(4). The
ideal 4 =(X, Y) is a 2-generated ideal of the ring K[X, Y, Z], K a field. Now (X, Y) +
(Z) can not generated by two elements, so (X, Y) is not almost 1-generated.

The product of two 1-generated ideals is 1-generated and the product of two
strongly two-generated ideals is strongly two-generated ([7, Lemma 4]). This raises
the natural question of whether the product of two weakly principal ideals is weakly
principal. This is not the case. For let 4 be a weakly principal ideal that is not
principal. Now AR[X] is again weakly principal. Suppose that AR[X](X) is weakly
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principal. Then XAR[X]=X?A*R[X]+ hR[X] for some he R[X]. One easily sees that
h=Xg for some ge R[X] and that then 4 =g(0)R is principal. This contradiction
shows that AR[X](X) is not weakly principal.

~ We end with a remark on minimal bases. A minimal basis for a module 4 is
defined as an irredundant generating set for 4. Hence p(A) is the length of the
shortest minimal basis for 4. If R is quasi-local with maximal ideal M, then any two
minimal bases for 4 have the same length, namely u(4) =dimg \ 4/MA. However, if
R is not quasi-local, then 4 can have minimal bases of different lengths. An
interesting result of Ratliff and Robson [9, (2) Theorem] states that if 4 has a minimal
basis of length s then for all integers ¢ with s <¢< A(4), there is a minimal basis for 4
of length . (A(4) is the length of a composition series for A/J(4) or o« if no
composition series exists; here J(A4) is the intersection of the maximal submodules of
A). Actually, part of this result is a special case of a beautiful result due to Tarski [10].
It follows from Tarski’s Irredundant Basis Theorem that if A is an algebra all of
whose fundamental operations have arity not exceeding two, then the set of lengths of
irredundant bases for 4 forms a convex subset of the natural members.
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