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As a generalization of von Neumann regular rings, D. D. Anderson [1]
introduced the concept of n-von Neumann regular rings, in case rings are com-
mutative. In this paper, we first treat a noncommutative generalization of n-von
Neumann regular rings. Next we consider the structure of rings R satisfying the
identity (X; — X7) - - - (X,,— X7») =0, where m and n are natural numbers with n> 1.
We show that the set of nilpotent elements of R forms a nilpotent ideal of index m. As
a corollary we give a characterization of an n-like ring introduced by Yaqub [7]. As
another corollary, we describe the structure of a generalized Boolean-like ring defined
by Yakabe [6]. .

Throughout this paper, R denotes an associative ring with identity element 1, an
P(R) denotes the prime radical of R, that is the intersection of all prime ideals of R.

Let n be a natural number. A commutative ring R is called n-von Neumann
regular if given xy, x,, - - -, x, € R, there exist a,, a,, - - -, a,€ R such that .

(y —xya,x) (X, —X,a,,) + - - (xy—x,a,%,)=0.

Anderson [1] proved that a commutative ring R is n-von Neumann regular if and only
if R/P(R) is von Neumann regular and P(R)"=(0). We attempt to generalize this
result for noncommutative rings. The following example shows that it is impossible
to generalize this result for noncommutative rings just as it is.

Example 1. Let F be a field, and set S;=M,(F) for each ic N. Then the ring

S=]]S; consists of all sequences of 2 by 2 matrices. Let R denote the subring of S
ieN

consisting of all sequences of matrices which are eventually upper triangular. We can

easily see that R is semiprime and that given x, y € R, there exist a, be R such that

(x—xax)(y—yby)=0. However, R (=R/P(R)) is not von Neumann regular. For

. 0 1 .
example, consider the constant sequence ¢ = ([0 OD. It is easy to check that c¢ cRc.

As a generalization of [1, Theorem 1], we obtain the following theorem.

THEOREM 1. Let R be a ring with 1, and n a natural number. Then the following
Statements are equivalent:
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(1) Given x,, - -, x,€R, there exist a, - - -, a,€ R such that
R(xl _xlalxl)R e R(xn_xnan'xn)R=(0) .
(2) R/P(R) is a von Neumann regular ring and P(R)"=(0).

Proof. (1)=(2). Let x be an element of R. Then there exist a;, - -, a,e R
such that R(x—xa;x)R - -+ R(x—xa,x)R=(0). Let Spec(R) denote the set of prime
ideals of R. Then, for any Pe Spec(R), we have x—xa;x c P for some i. Hence, if we
set S;={PeSpec(R); x—xa;x e P}, we obtain that Spec(R)=S; U S, U - -- U S,. Let
I, denote the intersection of all P in S;. Then we have x — xa;x € I; for each i. Therefore
we see that

x—x(a, +a, —a;xa,)x =(x—xa,;x)(1 —a,x)
=(1—xa))(x—xa,x)el; n1,.
Continuing this process, we obtain an element beR such that x—xbxe
InLn--- nI,=P(R). This proves that R/P(R) is von Neuman regular.

To prove P(R)"=(0), take x,, - - -, x,€ P(R). Then there exist b;, - - -, b, € R such
that R(x;b,x; —x,)R - - - R(x,b,x,—x,)R=(0). Since b;x;e P(R), b;x;—1 is invertible
for each i. Hence we have

Xy Xy + o Xy = (%151 —x1)(byx; —1)” Y(x30,%; — X,)(byx, — 1) 7!
e (xnbnxn - xn)(bnxn - 1) !
=0.
This proves P(R)"=(0).
(2)=(1). Let x;, -, x, be elements of R. Since R/P(R) is von Neumann

regular, there exist a, - - -, a,€ R such that x,a,x, —x;, - - *, X,8,%,— X, € P(R). Then
we have R(x,a,x,—x,)R - - - R(x,a,x,—x,)R=(0), because P(R)"=(0).

A ring R is called a duo ring if every one-sided ideal of R is a two-sided ideal.
Clearly commutative rings are duo rings. A von Neumann regular ring R is called
strongly regular if R has no non-zero nilpotent elements. It is easily checked that a von
Neumann regular ring R is strongly regular if and only if R is a duo ring.

COROLLARY 1 (cf. [1, Theorem 1]). Let R be a duo ring. Then the following
statements are equivalent:

(1) Given x,, -~ -, x,€ R, there exist a, - - -, a,€ R such that
(xlalxl_xl) e (xnanxn—xn)=0 .
(2) R/P(R) is a strongly regular ring and P(R)"=(0).

Proof. For a duo ring R, the statement (1) is equivalent to the statement (1) of
Theorem 1. Thus the equivalence of (1) and (2) follows from Theorem 1.

Example 2. Let D be a strongly regular ring, and D[X] denote the polynomial
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ring. Then R=D[X]/X"D[X] is a duo ring satisfying the equivalent statements in
Corollary 1.

Let m be a natural number. In [1, Theorem 4], Anderson studied the structure of
a commutative ring R satisfying the identity (X; — X?) - - - (X,,— X2)=0. He proved
that R/P(R) is a Boolean ring and P(R)™=(0). We shall generalize this result as
follows:

THEOREM 2. Let R be a ring with 1, and m and n be natural numbers with n> 1.
Then the following statements are equivalent:

(1) R satisfies the identity (X, —X7) -+ (X,,—X%)=0.

(2) R/P(R) is a commutative ring satisfying the identity X = X" and P(R)" =(0).

Proof. Tt suffices to prove that (1) implies (2). So assume that (1) holds. Let N
denote the set of nilpotent elements in R. Let x be an element of the Jacobson radical
J of R. Then we see that x™=(x—x")y"(1—x""1)"™=0. This shows that J=N. We
claim that N coincides with J. To see this, we need to show that R/J has no non-zero
nilpotent elements. By [2, Theorem 1.8.1, p. 14], R/J is a subdirect sum of primitive
rings. Hence it suffices to show that a primitive ring S satisfying the identity in (1) is a
division ring. Suppose, to the contrary, that S is not a division ring. Then, by [2,
Theorem I1.4.3, p. 33], either S is isomorphic to a matrix ring M,(D) (k>1) over a
division ring D, or for each natural number ¢, there exists a homomorphism of a
subring of S on M,(D), D a division ring. In either case, we obtain an integer k> 1 and
a division ring D such that M,(D) satisfies the identity in (1). Let {e; ;1 denote the
matrix units of M, (D). Set x;=e, if i is odd and x; =e,, if i is even. Then we see that
(X —x7) - (Xp—xE)=X; - - - X, #0, which is a contradiction. Thus we proved N=J.
Hence R/N satisfies the identity X=X". By [2, Theorem X.1.1, p. 217], R/N is a
commutative ring.

Next we claim that N™=(0). To see this, let x,,---, x,,e N. We construct
elements y,, - - -, y,, of N inductively as follows:

yi=x; and y =(1-y7")""x, for i=1,---,m—1.
Then we have
0=(y1—=yD2=22)  Vm—Im)
=x1%  X(1—yn7h).

Thus we obtain x,x, - -+ x,,=0. This implies N™=(0). Therefore we conclude N =
P(R).

An ideal I of a ring R is said to be right T-nilpotent if given any sequence of
elements {x;} =7, there exists a natural number k such that x;x, - - - x,=0. It is well
known that any right T-nilpotent ideal of a ring R is contained in P(R). Taking in
consideration this fact, we can prove the following theorem similarly as in the proof
of Theorem 2.
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THEOREM 3. Let R be a ring with 1, and n>1 be an integer. Then the following
statements are equivalent:

(1) Given any sequence of elements {x;} = R, there exists a natural number k such
that (x; —x7) -+ (x,—xp)=0.

(2) R/P(R) is a commutative ring satisfying the identity X =X" and P(R) is right
T-nilpotent.

A ring R is called a generalized n-like ring if R satisfies the identity
(XY)"—XY"—X"Y+ XY=0. This ring was first investigated by H. G. Moore [4]. A
generalized n-like ring R with char(R)=n is called an n-like ring ([7]).

COROLLARY 2. 1) If R is a generalized n-like ring, then R/P(R) is a com-
mutative ring satisfying the identity X=X", and P(R)*=(0).

2) Let R be a ring with 1, and n a natural number. Then R is an n-like ring if and
only if R is commutative of characteristic n, R/P(R) satisfies X=X" and P(R)*=(0).

3) Let R be a p-like ring, where p is a prime. Then B={ae R; a’=a} forms a
subring of R and R is the trivial extension of B by P(R).

Proof. 1) By [5, Lemma 3(1)], R satisfies the identity (X—X")(Y—Y")=0.
Hence the assertion follows from Theorem 2.

2) This follows from [5, Lemma 3(1)] and [7, Theorem 2].

3) Since R is commutative of characteristic p, we can easily check that B forms
a subring of R. For any x e R, we see that 0 =(x—x?)? =x"— xP*, that is x”e B. Thus,
x=x?+(x—xP)e B+ P(R). Therefore we have that R=B+ P(R) as a B-bimodule.
Since P(R)*=(0), R is the trivial extension of B by P(R).

Following 1. Yakabe [6], a ring R is called a generalized Boolean-like ring if
char(R)=2 and (x—x?)(y—y*)=0 for all x, ye R. '

COROLLARY 3. Let R be a ring of characteristic 2. Then the following
statements are equivalent: '

(1) R is a generalized Boolean-like ring.

(2) R/P(R) is a Boolean ring and P(R)*=(0).

(3) There exists a Boolean ring B and a B-bimodule M such that R is embedded
in (B M> as a subring.

0 B

Proof. The equivalence of (1) and (2) follows from Theorem 2, and (3) =(2) is
clear. The implication (2) = (3) follows from [3, Theorem 2].

A ring R is called a generalized n-Boolean ring if char(R)=2 and
(x,—x%) -+ (x,—x2)=0 for all x;, - - -, x,€ R (cf. [1, p. 72]). Thus a generalized 2-
Boolean ring is nothing but a generalized Boolean-like ring. We conclude this paper
with the following corollary.

COROLLARY 4. Let R be a generalized n-Boolean ring, and B denote the set of
idempotents of R. Then B forms a subring of R if and only if B is contained in the center
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of R. In this case, R=B@ P(R) as a B-bimodule.

Proof. The first assertion is easily checked. Suppose now that B forms a

subring of R. Let r be an element of R. Take an integer k such that n<2* Since
char(R)=2, we see that 0=(r—r?)®=r®*—r?*"", that is r**eB. Since R/P(R) is
Boolean by Theorem 2, we see that r—r*“e P(R). Hence we see re B+ P(R). Thus
we conclude that R=B+ P(R)=B® P(R).
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