Essentially Purely Indecomposable Groups

by

John Irwin and Frank Okoh

(Received May 28, 1987)

Abstract. All groups in this paper are abelian. A group G is said to be essentially indecomposable if whenever G = A + B, then either A or B is free of finite rank. A group G is said to be essentially purely indecomposable if every pure subgroup of G is essentially indecomposable; G is said to be purely indecomposable if every pure subgroup of G is indecomposable. In this note results analogous to Griffith's results on purely indecomposable groups are obtained. It is shown, for instance, that an essentially purely indecomposable group that is torsion-free and reduced is isomorphic to a subgroup of $\prod_{p \in P} J_p \oplus F$, where J_p is the group of p-adic numbers, P the set of positive prime numbers, and F is a free group of finite rank.

§ 1. Torsion-free essentially purely indecomposable groups

It is trivial to describe the torsion, mixed, and nonreduced essentially indecomposable abelian groups. So we shall assume in what follows that all groups G are torsion-free and reduced. If S is a subset of G, $\langle S \rangle$ and $\langle S \rangle_*$ will respectively denote the smallest subgroup and the smallest pure subgroup G containing S. We conveniently regard $\langle 0 \rangle$ as free of rank 0.

PROPOSITION 1. If G is essentially purely indecomposable then $G = G_1 + F$, where F is free and G_1 is indecomposable.

Proof. Suppose $G = A_0 = A_1 \dotplus F_1$, where F_1 is free of finite rank. Suppose at the k^{th} step we get $A_k = A_{k+1} \dotplus F_{k+1}$, where F_{k+1} is free of finite rank. If A_{k+1} is indecomposable then let $F = F_{k+1} \dotplus F_k \dotplus \cdots \dotplus F_1$ and let $G_1 = A_{k+1}$. If for each $k = 0, 1, 2, 3, \cdots, A_k$ is not indecomposable then $F = \bigcup_{k=1}^{\infty} F_k$ is a pure subgroup G of infinite rank. By Pontryagin's criterion, [1, Theorem 19.1] F is free. This contradicts the hypothesis that G is essentially purely indecomposable. \square

PROPOSITION 2. If G is purely indecomposable then $G \oplus F$ is essentially purely indecomposable for any free group F of finite rank.

Proof. Let H be a pure subgroup of $G \oplus F$. We shall first show that $H = H_1 \dotplus F_1$, where F_1 is free of finite rank and H_1 has no free direct summand. If H has no free direct summand then set $H_1 = H$ and $F_1 = \langle 0 \rangle$. Suppose $H = H_1 \oplus F_1$, where F_1 is free

of rank ≥ 1 . We shall see below that F_1 must be of finite rank. Suppose that at the k^{th} step we get that $H_k = H_{k+1} \oplus F_{k+1}$ where F_{k+1} is free of finite rank ≥ 1 . If for each $k = 0, 1, 2, \cdots, H_k$ has a free direct summand, then we proceed as in the proof of Proposition 1 to get that H, hence $G \oplus F$, has a free pure subgroup, $A = \sum_{i=1}^{\infty} \langle a_i \rangle$, where $\langle a_i \rangle \cong Z$. Let $a_i = g_i + f_i$, $g_i \in G$, $f_i \in F_i$, $i = 1, 2, 3, \cdots$. Let rank $F = n < \infty$. Therefore for appropriate integers $k_1, k_2, \cdots, k_{n+1}$, we get that $b_1 = \sum_{i=1}^{n+1} k_i a_i = \sum_{i=1}^{n+1} k_i g_i$. Since $S = \{a_i\}_{i=1}^{\infty}$ is a basis for $A, b_1 \neq 0$. By partitioning S into a denumerable set $\{S_i\}_{i=1}^{\infty}$ with card $S_i = n+1$ for all i, we get, in the same manner as we got b_1 , a new set of Z-linearly independent elements $\{b_i\}_{i=1}^{\infty}$, $b_i \in G$. One readily sees that $\sum_{i=1}^{\infty} \langle b_i \rangle_*$ is a pure subgroup of G. This contradicts the hypothesis that G is purely decomposable. Therefore every pure subgroup H of $G \oplus F$ is of the form $H = H_1 \dotplus F_1$ where F_1 is free of finite rank and H_1 has no free direct summand.

We now show that H is essentially indecomposable. Suppose $H = A \dotplus B$. Then $A = A_1 \dotplus F_1$, $B = B_1 \dotplus F_2$ where F_1 and F_2 are free of finite rank and neither A_1 nor B_1 has a free direct summand. Hence $A_1 \dotplus B_1$ has no free direct summand. Hence $A_1 \oplus B_1$ has no nonzero component in F, i.e., $A_1 \dotplus B_1 \subset G$. Since G is purely indecomposable, either A_1 or B_1 is 0. Therefore either A or B is free of finite rank. This proves that $G \oplus F$ is essentially purely indecomposable. \square

Remark. There are essentially purely indecomposable groups that are not of the form $G \oplus F$, where G is purely indecomposable and F is free, e.g., any indecomposable group of finite rank ≥ 3 with the property that every pure proper subgroup is free. See [1, Section 88] for examples of such groups.

PROPOSITION 3. Every essentially purely indecomposable group G is isomorphic to a subgroup of $\prod_{p \in P} J_p \oplus F$, where F is free of finite rank.

Proof. By Proposition 1 we may assume that G is indecomposable. The proof that G embeds in $\prod_{p \in P} J_p$ is essentially the same as the proof in [1, Theorem 88.5] for purely indecomposable groups.

Since G is reduced, it follows from [1, Theorem 39.5] that G is pure in its Z-adic completion, \widehat{G} . Moreover, $\widehat{G} = \prod_{p \in P} \widehat{G}_p$ where \widehat{G}_p is a module over Q_p^* —the ring of p-adic integers, by [1, Theorem 40.1]. By Corollary 1 of Theorem 22 in [3] every reduced Q_p^* -module of rank one is isomorphic to J_p . Also by Lemma 17 of [3], \widehat{G} is a reduced Q_p^* -module.

Now let $0 \neq g \in G$. Then $g = \{g_p\}_{p \in P}$, $g_p \in \hat{G}_p$. If $g_p \neq 0$, then $g_p \in \langle g_p \rangle_* \cong J_p$. Since J_p is algebraically compact, $\langle g_p \rangle_*$ is a direct summand of \hat{G}_p . Hence $g \in C = \prod_{p \in P} \langle g_p \rangle_*$, where $\langle g_p \rangle_* = 0$ if $g_p = 0$. Since C is a direct summand of \hat{G} , $C \cap G$ and $D \cap G$ are pure in \hat{G} , hence in G, where G is a direct complement of G in G. Hence $G \cap G \cap G$ is pure in G. Therefore either $G \cap G \cap G$ is free of finite rank. Suppose $G \cap G$ is free. Since $G \cap G \cap G$, the projection map

$$\rho_C : \widehat{G} \to C$$

maps G onto a nonzero free subgroup of $C \cap G$, thereby implying that G has a free

direct summand. Therefore $C \cap G$ is not free. So $D \cap G$ must be free. A similar argument with ρ_D replacing ρ_C implies that $D \cap G = 0$. Hence ρ_D maps G isomorphically into C. \square

From Theorem in Section 4 of [2] and Proposition 3 above we deduce.

PROPOSITION 4. The collection of all nonisomorphic essentially purely indecomposable groups has cardinality 2^c , c the cardinality of the continuum.

The next result is analogous to the theorem in Section 3 of [2] and at a key point we borrow from [2].

PROPOSITION 5. A pure subgroup H of $\prod_{p \in P} J_p$ is essentially purely indecomposable if and only if every nonzero endomorphism of pure subgroups of H has a kernel that is free of finite rank.

Proof. Suppose H is not essentially purely indecomposable. Then there is a pure subgroup $A = A_1 + A_2$ of H, where neither A_1 nor A_2 is free. Then $pr_{A_1} : A \to A$ has a kernel that is not free.

Suppose H is essentially purely indecomposable. Let A be a pure subgroup of H. By Proposition 1, $A = A_1 \dotplus F$, where F is free of finite rank and A_1 is indecomposable. This implies that A_1 is fully invariant in A. Let $0 \neq \varphi \in End A$. Consider φ as being in $End A_1$. Let $K_1 = Ker \varphi$ and let $K_2 = \langle Im \varphi \rangle_*$ where $Ker \varphi$ and $Im \varphi$ are the kernel of φ and the image of φ respectively. The argument in the proof of Theorem in Section 3 of [2] gives that $K_1 \cap K_2 = 0$ and $K_1 \dotplus K_2$ is a pure subgroup of H. Since A_1 has no free direct summand, $Im \varphi$, hence K_2 , is not free. Therefore K_1 is free of finite rank. Now reconsider φ in End A. Since A_1 is fully invariant, $\varphi = \varphi_1 + \varphi_2$ where $\varphi_1 \in End A_1$ and $\varphi_2 \in Hom(F, A)$. Moreover, $Ker \varphi = Ker \varphi_1 \dotplus Ker \varphi_2$. Since $K_1 = Ker \varphi_1$ is free and F is free and both K_1 and F are of finite rank, $Ker \varphi$ is free of finite rank. \square

References

- [1] Fuchs, L.; Infinite abelian groups, Vol. I, II, Academic Press, New York and London, 1970, 1973.
- [2] Griffith, P.; Purely indecomposable torsion-free groups, Proc. Amer. Math. Soc., 18 (1967), 738–742.
- [3] KAPLANSKY, I.; Infinite abelian groups, University of Michigan Press, Ann Arbor, 1954.

Wayne State University Detroit, Michigan 48202 U.S.A.