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Abstract.  All groups in this paper are abelian. A group G is said to be
essentially indecomposable if whenever G =A + B, then either 4 or B is free of finite
rank. A group G is said to be essentially purely indecomposable if every pure subgroup
of G is essentially indecomposable; G is said to be purely indecomposable if every
pure subgroup of G is indecomposable. In this note results analogous to Griffith’s
results on purely indecomposable groups are obtained. It is shown, for instance, that
an essentially purely indecomposable group that is torsion-free and reduced is
isomorphic to a subgroup of ]—[pe pJ,@F, where J, is the group of p-adic numbers, P
the set of positive prime numbers, and F is a free group of finite rank.

§1. Torsion-free essentially purely indecomposable groups

It is trivial to describe the torsion, mixed, and nonreduced essentially inde-
composable abelian groups. So we shall assume in what follows that all groups G are
torsion-free and reduced. If S is a subset of G, <S> and {85, will respectively denote
the smallest subgroup and the smallest pure subgroup G containing S. We con-
veniently regard {0) as free of rank 0.

PROPOSITION 1. If G is essentially purely indecomposable then G=G14—F,
where F is free and G, is indecomposable.

Proof. Suppose G= A0 =4 —i—Fl, where F| is free of finite rank. Suppose at the
K" step we get Ak_Ak+1+Fk+1, where F,CJ,1 is free of finite rank. If 4., is
mdecomposable then let F=F,,,+F,+---+F, and let G, =4, ,. If for each k=
0,1,2,3,---, 4, is not indecomposable then F=|J.°, F, is a pure subgroup G of
infinite rank. By Pontryagin’s criterion, [1, Theorem 19 1] Fis free. This contradicts
the hypothesis that G is essentially purely indecomposable. []

PROPOSITION 2. If G is purely indecomposable then G®F is essentially purely
indecomposable for any free group F of finite rank.

Proof.  Let H be a pure subgroup of G@ F. We shall first show that H=H, + F,,
where F) is free of finite rank and H, has no free direct summand. If H has no free
direct summand then set H; = H and F, =<0). Suppose H=H, ®F,, where F, is free
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of rank >1. We shall see below that F, must be of finite rank. Suppose that at the K"
step we get that H, =H, @ F, ,, where F, | is free of finite rank > 1. If for each k=
0,1,2, -+, H, has a free direct summand, then we proceed as in the proof of
Proposition 1 to get that H, hence G F, has a free pure subgroup, A=Y" Lap,
where {a,>=~Z. Let a,=g;+f,;, 9:€G, fieF, i=1,2,3,---. Let rank F=n<oo.
Therefore for appropriate integers ki, ky, <+, k,1q, We get that b, =Y""ka,=
Yt kig;. Since S={a;};>, is a basis for 4, b, #0. By partitioning S into a denu-
merable set {S;};~, with card S;=n+ 1 for all , we get, in the same manner as we got
bl, a new set of Z-linearly independent elements {b;};~,, b;€ G. One readily sees that

. <{b>, is a pure subgroup of G. This contradicts the hypothesis that G is purely
decomposable Therefore every pure subgroup H of G@ F is of the form H=H, + F,
where F, is free of finite rank and H, has no free direct summand.

We now show that H is essentially indecomposable. Suppose H =A+B. Then
A=A, +F,, B=B,+F, where F, and F, are free of finite rank and neither 4, nor B,
has a free direct summand. Hence 4, + B, has no free direct summand. Hence 4, ® B,
has no nonzero component in F, i.e., 4, + B, = G. Since G is purely indecomposable,
either 4, or B, is 0. Therefore either 4 or B is free of finite rank. This proves that
G@F is essentially purely indecomposable. [

Remark. There are essentially purely indecomposable groups that are not of
the form G@®F, where G is purely indecomposable and F is free, e.g., any
indecomposable group of finite rank >3 with the property that every pure proper
subgroup is free. See [1, Section 88] for examples of such groups.

PROPOSITION 3. Every essentially purely indecomposable group G is isomorphic
to a subgroup of HPEPJP@F, where F is free of finite rank.

Proof. By Proposition 1 we may assume that G is indecomposable. The proof
that G embeds in [ [,_pJ,, is essentially the same as the proofin [1, Theorem 88.5] for
purely indecomposable groups.

Since G is reduced, it follows from [1, Theorem 39.5] that G is pure in its Z-adic
completion, G. Moreover, G =l_[pe p G, where G is a module over Q j—the ring of p-
adic integers, by [1, Theorem 40.1]. By Corollary 1 of Theorem 22 in [3] every reduced
Q-module of rank one is isomorphic to J,. Also by Lemma 17 of [3], G is a reduced
Qx-module.

Now let 0#£geG. Then g={g,},cp: 9p€ G If g,#0, then 9p€ {gp>4=J, Since
J, is algebraically compact, <{g,), is a drrect summand of G Hence geC=
l—[pe,,(gp)*, where (gp>* =01if g,=0. Since C is a direct summand of G, Cn G and
D~ Gare pure in G, hence in G, where D is a direct complement of C in G. Hence
H=(Cn G)+(Dn G) is pure in G. Therefore either Cn G or D G is free of finite
rank. Suppose C G is free. Since 0#ge C n G, the projection map

pc: G-C

maps G onto a nonzero free subgroup of C n G, thereby implying that G has a free
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direct summand. Therefore Cn G is not free. So D~ G must be free. A similar
argument with pj, replacing pc implies that D n G=0. Hence p, maps G isomorphi-
cally into C. [

From Theorem in Section 4 of [2] and Proposition 3 above we deduce.

PROPOSITION 4. The collection of all nonisomorphic essentially purely inde-
composable groups has cardinality 2°, ¢ the cardinality of the continuum.

The next result is analogous to the theorem in Section 3 of [2] and at a key point
we borrow from [2].

PROPOSITION 5. A pure subgroup H of l_[pe pdp is essentially purely inde-
composable if and only if every nonzero endomorphism of pure subgroups of H has a

kernel that is free of finite rank.

Proof. Suppose H is not essentially purely indecomposable. Then there is a
pure subgroup A=A, 4 4, of H, where neither A nor 4, is free. Then pr,,: A—>A4
has a kernel that is not free.

Suppose H is essentially purely indecomposable. Let 4 be a pure subgroup of H.
By Proposition 1, 4 =4, + F, where F is free of finite rank and A, is indecomposable.
This implies that 4, is fully invariant in 4. Let 05 ¢ € End A. Consider ¢ as being in
End A;. Let K, =Ker ¢ and let K, ={(Im ¢), where Ker ¢ and Im ¢ are the kernel of
¢ and the image of ¢ respectively. The argument in the proof of THEOREM in Section
3 of [2] gives that K; N K, =0 and K, + K, is a pure subgroup of H. Since A, has no
free direct summand, Im ¢, hence K,, is not free. Therefore K, is free of finite rank.
Now reconsider ¢ in End A. Since 4, is fully invariant, ¢ = ¢, + ¢, where ¢, € End A,
and ¢, € Hom(F, A). Moreover, Ker ¢ = Ker ¢, + Ker ¢,. Since K, = Ker ¢, is free and
F is free and both K, and F are of finite rank, Ker ¢ is free of finite rank. []
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