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Throughout, all rings are assumed commutative with 1, all modules are assumed
unitary. We denote the least and greatest elements of a lattice L by 0, and 1,
respectively (or simply by 0 and 7 if no confusion will result). If . is a multiplicative
lattice, we assume that /, is a compact multiplicative identity and that multiplication
is commutative. All lattices are assumed complete (though not necessarily modular).

Principal elements, as we use the term here, were introduced into the study of
multiplicative lattices by R. P. Dilworth. Principally generated multiplicative lattices
(r-lattices as they have come to be called) provide a rich framework in which to
describe, for example, the lattice of homogeneous ideals of a graded ring, or the
lattice of regular ideals of a Noetherian ring. However, there is a much older idea of a
principal element in a multiplicative lattice, namely an element E satisfying M.
Ward’s Postulate D): B< E implies B=EC for some C [W1]. Multiplicative lattices
satisfying D) for all E were called P-lattices or principal element lattices by Ward
[W1]. We use the term principal in the newer sense of Dilworth [D] and call a lattice in
which every element is principal a PE-lattice. We call a lattice satisfying the ascending
chain condition Noetherian, and (following Dilworth) we call a principally generated,
modular, Noetherian, multiplicative lattice a Noether lattice.

P-lattices have also been studied by McCarthy [Mc] and Janowitz [Ja].
McCarthy has shown that a Noether lattice is a P-lattice iff it is a PE-lattice.
Janowitz has shown that a principally generated P-lattice is a PE-lattice iff it is
Noether [Ja]. (McCarthy and Janowitz used the term M-lattice where we have used
P-lattice.)

Elements satisfying property D) are also called weak-meet-principal. A meet-
principal element is an element E satisfying the identity i) AEA B=(A4 A (B: E))E.
Weak-meet-principal elements are defined by the weaker form of the identity obtained
by setting A =I'in i). Elements satisfying the dual identity ii) (4: E)v B=(A4 v BE): E
are said to be join-principal. Elements satisfying the weaker form of ii) obtained by
setting A=0 are said to be weak-join-principal. Elements which are both join-
principal and meet-principal are said to be principal. (This is the definition of
Dilworth [D] referred to above). Elements which are both weak-join-principal and
weak-meet-principal are said to be weak-principal. Adopting the terminology of ideal
theory, we say that a multiplicative lattice % is h-local if no non zero element is
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contained in an infinite number of maximal elements.

In this paper, we consider multiplicative lattices in which the primes are join-
principally generated and weak-meet-principal. We show that such a lattice is a P-
lattice, and Noether iff (for example) % is h-local (Theorem 1.5). We also consider
similar problems in (fake) modules [Al]. We show that a (fake) module satisfying
similar hypotheses over a Noether lattice is the lattice of submodules of a Noetherian
module over a Noetherian ring (Theorem 2.8). The corollary that such (real) modules
are necessarily Noetherian is new.

Section 1. Multiplicative lattices

PROPOSITION 1.1. Let & be a P-lattice. Then & is completely (meet) distrib-
utive and any weak-join-principal element E is both compact and principal. If & is
weak-join-principally generated, then ¥ is Noether.

Proof. & is completely distributive by [Ja, Theorem 2]. If Ee & is weak-join-
principal, then E is weak principal. Since / is compact and % is completely
distributive, weak-principal elements are join inaccessible. Hence it suffices to show
that weak-join-principal elements are principal. Since £ is modular, this follows
from [Bo, Theorem 1], for example.

It follows from Proposition 1.1 that a weak-join-principally generated P-lattice
is generated by a multiplicatively closed set of compact elements (the principal
elements, as it turns out). In general, we call a multiplicative lattice & a €-lattice if it
is generated under joins by elements of a multiplicatively closed set € of compact
elements. In any %-lattice, one can localize at any multiplicatively closed subset S of
% by taking Ag=V {Be #|BX<A for some XeS} and Ps={As|Ae L} L5 is
then a subposet of .#. The inf is the same. The product and sup are given by 4-sB=
(AB)sand 4 v sB=(A4 v B)s. It is assumed in the similar localization used in [J-S] that
the elements of S are principal, but the properties listed there hold without this
assumption. As usual, if P is a prime and is S={E€ % | E £ P}, we denote Ag by Ap.
We observe in particular that Ag= By, for all maximal 9 implies A=B.

We note that the product of compact elements in a € lattice is compact, so thata
@-lattice is a K-lattice in the sense of [N-A]. However we feel that the ¢-lattice point
of view is the natural one.

LEMMA 1.2. Assume that the primes of & are weak-meet-principal. If Q is a
weak-meet-principal element containing a power of a maximal prime MM, then MO is
weak-meet-principal. In particular, the powers of I are weak-meet-principal.

Proof. Assume A<INQ. Then A<Q,s0 A=(4:0)Q. If MO =Q then MO is
weak-meet-principal. Otherwise, MQ is M-primary, so (4: 0)<M. Hence 4:Q=
((A:0): MM and A=(4:0)0=((4:0): MM =(4: MOYMO.

LEMMA 1:3. Let & be a %-lattice with join-principally generated weak-meet-
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principal primes. Then ¥ is completely distributive and locally a PE-lattice satisfying
dim(¥)<1.

Proof.  Fix 9 maximal in & and set P= A\, I". Assume " =9N"*'. Then P is
weak-meet-principal (Lemma 1.2). If E< P is join-principal, then E=KP— KNP —
INE (for some K), so I=M v (0: E). It follows that I =0y : Eqy, and hence that Ey, =
Ogp. Since the product of join-principal elements is join-principal, P=9M" is join-
principally generated. Since (IM")q, =IN", it follows that P=Pgy =0,

Assume r# s implies I # M. If AB< P, A& Pand B« P, then we can write A —
CI" and B=DI with C£ M and D« M. Then AB=CDIN** <M *5*1, which is
primary, and 9" " £ M *5*1, But then CD <M. It follows that P is prime and there-
fore join-principally generated. As above, if E<P is join-principal, then =0y,: Ey,,
50 P =Py =04y,

In either of the two cases considered, every non-zero element of Lo is a power
of M: if 4 <IN"and A LIN"*?, then A =(A4: MM €I **,50 4: M LM, s0o A=M".
Hence, Ly, is a principal element lattice. It follows that . is locally distributive, and
hence completely distributive, since & is a %-lattice. Dim(#) <1 is clear.

THEOREM 1.4. Let ¥ be a €-lattice with Join-principally generated weak-meet-
principal primes. Then & is a P-lattice.

Proof. In view of Lemma 1.3, the proof of Mott’s theorem on multiplication
rings [M, Theorem)] carries over with relatively minor changes. The details are lengthy
and we omit them. However, we note that for everyelement Ae ¥, A=\ Ap, where P
runs through the primes minimal over 4. Also, for every prime P minimal over 4, 4,
is a power of P.

THEOREM 1.5. Let & be a €-lattice with Join-principally generated weak-meet-
principal primes. Then & is an r-lattice and the Sfollowing are equivalent:
1. & is a Noether PE-lattice.
& is Noetherian.
The minimal primes of & are compact.
The set of minimal primes of & is finite.
& is h-local.

GoR e

Proof. By hypothesis, % is compactly generated. If £ is compact, then E
satisfies the principal identities i) and ii) locally and therefore globally. It follows that
& is an r-lattice. 2) implies 1) by Theorem 1.4 and [Mc, Theorem 1].

Now assume the minimal primes of % are all compact. If 9 is any non-minimal
prime of #, and if ¢ = Z(M) is the collection of all residuals £: M, with E< Pt and E
compact, and if J is the join of #, then JM=IN. But if P> =IN, then M =04, in
contradiction to the non-minimality of 9t as a prime. Hence J=1. But then since / is
compact it follows that ¢ has a finite subset # with I=\/_, E:9, and hence that
M=M= V,_, ME: M= V,_, Eis the finite join of compact elements. Hence, all
primes are compact. Hence 3) implies 2) by Cohen’s Theorem for r-lattices [Al,
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Theorem 2.5]. »

Assume the set of minimal primes of & is finite. By passage to a direct factor if
necessary, we may assume that % is indecomposable. From Lemma 1.3 it follows
that 0= A0y (MM maximal)= A0, (P minimal) and that the components 0p are
pairwise comaximal. It follows that % has only one minimal prime. But if P is the
only minimal prime of .#, then by Lemma 1.3, either P is maximal or Py, =0g, for
every maximal 9. In the first case, % is local so P is compact by Lemma 1.3. In the
second case, P=0 so is trivially compact. Hence, 4) implies 3).

Since % is a %-lattice, it is immediate that A-local and locally Noether imply
Noether. That the number of primes minimal over 0 is finite in a Noether lattice was
shown in [D). Hence 5) implies 4).

The implication 1) implies 5) is clear: such lattices are ideal lattices of principal
ideal rings [J-L1].

Section 2. (Fake) modules

Let % be a multiplicative lattice and let L be a (complete) lattice on which &
acts. If the action is reasonable, then it is natural to think of L as a module of sorts
over %. In particular, we assume of a (fake) module that I,N=N, 0 +N=0, and
(V, 4V ;3 Np) =V, ;5 4,N; are identities.

If & is %-lattice and L is generated under joins by a set ¢’ of compact elements
closed under multiplication by elements of &, we will say that L is a (%, ¢")-module
over #. (¢, %’)-modules have a localization procedure that works as one would
hope: If S is a multiplicatively closed subset of % and NelL, then Ng=
Vv {TeL| XT<N, for some XeS} and LS={NS| NelL}. Lg is a subposet of L with
inf and sup and product satisfying properties similar to those satisfied in Zs.

We will call a (fake) module L a P-module if N< N’ implies N=AN"’ for some
Ae & (ie., if every element of L is weak-meet-principal). We call an element PeL
prime if AN <P implies N<P or AI <P. In particular, I, is prime.

We assume from now on that & is an r-lattice and that L is a (%, ¢’)-module
over .#. We call a module L a Noether module if it is principally generated, modular
and Noetherian.

LEMMA 2.1. If (¥, M) is quasi-local and Fe L is weak-meet-principal and not
completely join irreducible, then IMF=F.

Proof. Assume F is the join of elements F, <F. Since F is multiplication, it is
immediate that F, <9RF for all «, and hence that F<INF.

LEMMA 2.2. Let F be a weak-meet-principal element of L which is generated by
compact, join-principal elements. Then F is locally weak-principal. If F is compact, then
F is weak-principal.

Proof. An element Fe L is join-principal over % iff it is join-principal over £/
(0,: F). Similarly, F is join-principal as an element of L iff it is join-principal as an
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element of the submodule [0, F]. Also, if F is compact, F is join-principal iff F is
locally join-principal. Hence it suffices to consider the case F=1I, with 0,:1, =0,, &
quasi-local with unique maximal element 9 and I, =V, E, where each E, is compact
and join-principal.

If 1, is completely join- 1rreduc1b1e, then I} =FE,, for some a, so I is weak-
principal.

On the other hand, if I is not completely join-irreducible, then M/, =I; (Lemma
2.1). Since each E, is a multiple of I, also ME, =E,, for all «. Then M v (0,: E)=1,
so E,=0,, for all a. It follows that I, =0,, so I, is principal.

LEMMA 2.3. Assume I, is the join of compact, join-principal elements and that
the primes of L are weak-meet-principal. Then L is a completely distributive P-module
and locally a PE-module.

Proof. We may assume 0, : I; =0 . Fix 9 maximal in . By Lemma 2.2, I, is
weak principal over Zqy. It is easy to see that the primes of Ly, are primes of L and
therefore weak-meet- pr1nc1pal Set ¥ = Za/(0ry, : I1,,). Then the map A—»AIL is an
Z-isomorphism of # onto Ly, The conclusion now follows from Lemma 1. & and
Theorem 1.4.

LEMMA 2.4. Assume Pe ¥ is prime and Ec & is principal. If I, is weak-meet-
principal and generated by compact join-principal elements and if 0,:1, =0, then
EI, < PI, implies EXP or I, =PI,

Proof. Let .# be the collection of join-principal elements of L. We first consider
the case E< V_, F: 1. Since E is compact, it follows that E< V_, F: I for some
finite subset & of #, say # ={F,,---, F,}. Then EXF:I;, where F=F,v --- v F,
From EI;<PI; we get E(F;:I)I,<P(F;:I;)I;, and hence EF, <PF,., for i=
1,---,n Since each F; is join-principal, E<Pv(0:F), i=1,---,n, and hence
ESA,(PV(O F))=Pv N@O:F)=Pv(0:V,F)=Pv(0,:F).

From EI <F we get 0,:F<O0,:EIl;,<(0.,:1;):E=0,4:E (since 0.:1,=0,).
Now, E(0: E)<P implies E<P or 0: E<P. In the latter case, E<Pv(0:F)<
Pv(0:E)<P.

On the other hand, if E VFE,F:IL and E'< \/,_,F:1 is principal, then
EE’I; < PI;, so by the above, EE’<P. If E£ P, then it follows that E’< P for all
E’'<06(I,), and hence that \/_, F:I; <P. Since I, =(\_, F:I)I, it follows that
I, < PI,.

LEMMA 2.5. Assume I} is weak-meet-principal and generated by compact join-
principal elements. If Pe & is prime and 0y :1; =0, then PI, is prime.

Proof. Assume AN<PI; and AI, £ PI;. Then A% P. Fix E principal, E< A,
E£P. Then EN<PI,. Set N=BI; and let E'<B be principal. Then E(E’I,)=
(EE")I < PI;. Assume PI; #1I,. Then by Lemma 2.4, EE’ < P, whence E’ < P, by the
choice of E. Since E’ < B is arbitrary, it follows that B< P, so N=BI, < PI,,
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LEMMA 2.6. Assume I, is generated by compact join-principal elements and that
the primes of L are weak-meet-principal. If L has only a finite number of minimal
primes, then I, is compact.

Proof. Let K be the inf of the minimal primes of L. We first show that I} x is
compact. For notational simplicity, we assume K=0. Since L is distributive, it suffices
to show that I p, is compact for every prime P of L. Hence, we may assume 0, is
prime, 0, # I;. Also, by passing to £/(0,,: 1) if necessary, we may assume 0, : /=0,
and hence that 04 is prime. _

Fix M maximal in %. Then [, is principal. Hence (NI,:I)p<
Ny, Iy <Ny v (Or,: I, ). Since 0p, =0y is prime, it follows that (N1} : I} )gy < Ngy.
Since this is so for every maximal element I, NI, : I; <N. It follows that I} is weak-
join-principal. Since I, is weak-meet-principal, it follows that the map 4—AI; of &
to L is an isomorphism, and hence that /; is compact. Hence I x is compact.

By the preceding paragraph, I, x is compact, so I; =Cv K for some compact
Ce L. If Pe Lis prime, then P=(P:I)I;,and P: I, is prime in #. Hence M/, > K for
every maximal element Me #. It follows that I; =Cv 9/, and hence that I, =
Cq VORI, in Ly But I, =1, is principal in Lg, so Mv (Cop: 1) =1, and there-
fore Coy=1,,, =1I,, for every maximal element M. It follows that I, = C, and hence
that I, is compact.

THEOREM 2.7. Let L be a (%, €')-module over an r-lattice . Assume that I, is
the join of compact, join-principal-elements. If L has only a finite number of minimal
primes, and the primes of L are weak-meet-principal then L is a PE-module. In
particular, L is Noether.

Proof. By passage to £/(0,:1;), we may assume that 0, :/; =0,. By Lemma
2.3 and Lemma 2.6, I, is principal. Hence, the map A—AI, of & to L is an
isomorphism. It follows from Theorem 1.5 that L is a (Noether) PE-module.

THEOREM 2.8. Let L be a (€, €’)-module over a Noether lattice . Assume
that I, is generated by join-principal-elements and that the primes of L are weak-meet-
principal. If 0, : I, =0, then there exist a Noetherian ring R and a Noetherian module
M over R with isomorphisms p: £ — % (R) and t: L— % x(M) with 1((AN) = p(A)t(N),
forall Ae ¥, NeL.

Proof. As in the proof of Theorem 2.7, L~ %, so & is a Noether principal
element lattice. It follows [J-L1, Theorem 5] that % is the lattice of ideals of a
Noetherian ring. Since L=~.%, the remainder of the result follows easily.
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