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Abstract. In this paper, we investigate the complex oscillation of solutions of
non-homogeneous linear differential equations with polynomial coefficients, and
obtain some results, and in some cases obtain estimates of the exponent of
convergence of the zero-sequence of solutions. Theorem 2 and Theorem 4 are the
main results among the Theorems in this paper.

1. Statement of the results

Various authors have produced works on the complex oscillation of solutions of
second order homogeneous linear differential equations. In this paper, we investigate
the complex oscillation of solutions of the following non-homogeneous linear
differential equations:

f‘k)+ak-1f(k_l)+ak—zf(k—z)‘i‘ rtagf=F, )]

where ay, a;, - - -, a,_, are polynomials, F is an entire function. To state our results,
we need the following:

DEFINITION. If the entire function g(z) has infinitely many zeros, we call g(z) is
oscillatory. )

NOTATIONS. Denote the exponent of convergence of the zero-sequence of g(z)
by 4(g), the exponent of convergence of the sequence of distinct zeros of g(z) by A(g),
and the order of growth of g(z) by a(g). In addition, we shall use the standard
notations of the Nevanlinna theory (see [3]).

REMARK. All solutions of (1) are entire (see Lamma 2 in Section 2).

THEOREM 1. Let F be a polynomial and F#0. Then:
(@) For every solution f of (1) with k> 1, A(f)=(f) =0 (f).
(b) For every transcendental solution f of equation
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fP+af=F, @

where k=1, ag is a polynomial with deg a,=n, A(f) =A(f) =0(f) =(n+k)/k. Thus, f is
oscillatory.

If F is transcendental, the Theorem 1(b) does not hold. For example, f=ze*
solves f” +zf=(z*+z+2)e*. But we have the following Theorem 2.

THEOREM 2. Let F be a transcendental entire function with 6(F)<+ co. Then
for every solution f of (1) with k=1,
(@) If F is oscillatory, then f is also oscillatory.
(b) AN)ZAE).
“(¢) If a(F) is not a positive integer, then A(f)=0(f)>o(F)=A(F).
(d) I o(f)>o(F), then i(f)=a(f)>o(F).

The following Theorem 3 shows that the solution of (1) may be oscillatory
although F with ¢(F) < + oo is not oscillatory.

THEOREM 3. For the equation
fO4a o f* P+ ta,f=F, (3)
where k=2, ay, - * *, ay_, are polynomials. If F=e", P, is a polynomial with

degPy>1+ max M,
j=0,- k-2 k—j

Then every solution f of (3) is oscillatory. In addition, A( N=1).
If

dega;

degPo<1+ max e
j=0, k-2 k—j

we have the following Theorem 4 which is quite interest.
THEOREM 4. For the equation
f"+aof=Pef, @

where a,, P,, P, are polynomials, dega,=n, deg Py <1+n/2.

(@) If n>1 and deg P, <n, then every solution f of (4) satisfies W) =Mf)=
o(f)=1+n/2>degP,.

(b) Ifdeg P, >n>0, then the solution f of (4) either satisfies 2(f) =(fN=a(N=
14n/2>deg P, or is of the form '

f=0Qe",

where Q is a polynomial. And if (4) has a solution of the form QePo with Q polynomial,
then (4) must have solutions which satisfy A(f)=A(f)=0(f)=1+n/2>deg P,,.
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From Theorem 3 and Theorem 4(a) we immediately obtain

COROLLARY. Ifa,, P, are polynomials, dega,=n>1, deg Py#1+n/2, P, is a
non-zero constant, then every solution of (4) is oscillatory.

In Section 7, we shall give examples to show that the conditions in Theorem 4
and the Corollary are sharp.

It is an open problem whether the higher order equations have the similar
properties in Theorem 4.

If Fis a transcendental entire function with o(F)= + oo, the Theorem 2(a) does
not hold. For example, f=exp(e®) solves /" +f=(e**+ e+ 1) exp(e?). But we have

THEOREM 5. Let F be a transcendental entire function with o(F)= + .

(@) If0<n(r, 1/F)<K, where n(r, 1/F) is the number of zeros of F(z) in the disc
|z|<r, K=constant, then every solution f of (3), with a,, - -, a,_, polynomials and
k=2, is oscillatory, and A(f)=(f).

(b) If F(z)#0 for any ze C and o(F'|F) is not a positive integer, then every solu-
tion f of (3), with a,, - - -, a,_, polynomials and k=2, is oscillatory, and A(f)=A(f).

(c) If F has finitely many zeros, then every solution f of equation

SO4a 3 f* I+ tayf=F, )
with a,, - - -, a5 polynomials and k >3, is oscillatory, and A(f)=A(f).

The above Theorem 2 and Theorem 4 are the main results in this paper.
Theorem 1 is quite simple. Theorem 3 and Theorem 5 are, in fact, the corollaries of an
important theorem which belongs to G. Frank and S. Hellerstein (see Theorem A in
Section 2).

The author would like to acknowledge valuable conversations with Dr. J. K.
Langley.

2. Preliminary results needed for the proofs of theorems

The following Theorem A is the Theorem 1 in [1].
THEOREM A. Let
fO4a o+ taf=Qet,
with ay, - - -, a,_, polynomials and k=2, have a solution
f=Per,

where P and Q are polynomials, p and q are entire. Then, either
(i) p and q are polynomials with p—q constant, or
(ii) P and Q are constants,

pl2)=w fe"“’dt ——;—(k —Dh(z), k=1,
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and q—p=kh, where h is a polynomial determined by a, _, through the equation
k(k—1)(k—2)(h'*—2h")+24a;,_,=0.

If Q is a constant and p is a polynomial, then

dega:
degp<1+ max —ey_l.
j=0, k-2 k—j

The following Lemma 1 belongs to H. Wittich (see [1, Lemma 4]).
LEMMA 1. Let f be a solution of the differential equation
f(k)+ak_1f(k—1)+ e +a0f=0

with ag, - + -, ay_, polynomials and k> 1. Then f is entire of order
o(f)<1+ max dega‘j ,
=0, k-1 k—j
and of mean type.
LEMMA 2. Let f be a solution of (1) with ag, - - -, a,_ polynomials, F entire

function and k> 1. Then f is entire. And if o(F)<+ oo, then o(f)<+ .
Proof. Assume {f,,f,, -, fi} is a fundamental solution set of
fO4ag fe Dy g f=0. ‘
By variation of parameters, we can write
f=4,)fi+ @0+ -+ A,

where 4,(2), - - -, Ax(2) are determined by

AL fit Asfot o+ Aifi=0

A f{+ Azt + A fi=0 (6)

ALE DL AL A=
Noting that the Wronskian W(f,, f5, - - -, fi) =exp(— [ @ dz), we have from (6)

A}=ngexp<fak_1dz>, j=1k,

where g; are differential polynomials in f;, 5, - - -, fi with constant coefficients. Thus,
by Lemma 1, 4 are entire, and so is . And if o(F) < + oo, then, again by Lemma I,
0(A4j)<+ o0, and so a(f) <+ oo.

The following Lemma 3 is the Lemma 1 in [5].

LEMMA 3. Suppose that P=a,z"+ - - - +a, is a non-constant polynomial with’
O(P, ) =Re(a,e™) #0 on [a, b], and that H(z) is analytic on the sectorial set S given by
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lz|=7,, argzela, b]

with

H'(z)=0(r")e®
there. Then in a sectorial set

lz|=ry, a+e<argz<b-—eg,

where &€ may be chosen arbitrarily small and positive, we have

H(z)=0(™)e?
if 8(P, 0)>0 on [a, b], while if 5(P, ) <0 on [a, b] we have

H(z)=c+ O(r™)e”

Jor some constant c. Also if H'(z) satisfies the stronger estimate

H'(z)=az?(14 o(1))e”

15

™

®)

©®

on S, where p is real and « is non-zero, then the term O(r™) in (8) and (9) may be

replaced by
(14+o0(1))az?/P'(z).

3. Proof of Theorem 1

Part (a). We can write from (1)

Thus, by Lemma 2 and (2.4) in Lemma 1 in [1],

1 1 ( f"")
m<r,7>5m(r,7>+m T,T +
=0(logr) .

Therefore

T(r, /)= T(r, %>+ 0(1)

N <r, %>+m <r, —117>+ o@1)

IY (r, —}—) +O(logr). v

(10)
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In addition, if f has a zero z, with order >k, then z, is a zero of F. But F has only
finitely many zeros, so

N(r, %)Skl\_f <r, %>+0(logr). (11)
(10) and (11) give a(f)=A(f)=A(f).

Part (b). It follows immediately from Wiman-Valiron theory and Part (a).

4. Proof of Theorem 2

Part (a). From Lemma 2, also a(f) <+ co. If f has only finitely many zeros,
then we can write f= Pe?, P and p are polynomials. Substituting it in (1), we find that
F has also finitely many zeros. This is a contradiction.

Part (b). Since o(f) <+ o0, 6(F)< + o0, we can write

f=H1€P1 s F=H28P23

where H, and H, are canonical products formed respectively with the zeros of fand
F, P, and P, are polynomials. It is easy to see that H, also solves the linear differential
equation

HP+ b (HE V4 by Hy = Hye™ ™™ (12)
where b,, - - -, b;_, are also polynomials. From (12), we get

MF)=0(H,) < a(Hye"> Py <a(H) =),
and then Part (b) holds.

Part (c). If o(F) is not a positive integer, then o(F) =0(H,) >deg P,. Divide the
discussion into two cases. Case 1. Suppose that a(f) is not a positive integer. In this
case, from (1) and the properties of canonical product, A(f) =0(f) = o(F) =A(F), and
Part (¢) holds. Case II. Suppose that o(f) is a positive integer. In this case, if

o(f)>deg P,, then A(f)=0(H,)=0(f)=0(F)=A(F), ie. Part (c) holds. Otherwise,
i.e. o(f)=deg P, deg P, >o(F)>deg P,. But then from (12) we have;

deg P, <o(H,e™ ")<a(H,).
Thus from A(f)=0(H,)<o(f)=deg P; we get A(f)=0(f), and Part (c) holds again.

Part (d). The proof is similar to the discussion of Case I and Case Il in Part (c).

5. Proof of Theorem 3

Since o(F) < 4 o0, from Lemma 2 o(f) <+ co. If f has only finitely many zeros,
then from Theorem A, f must have the form (i) or (ii) (h=constant). But then in
Theorem A, ¢ and p are both polynomials, and
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degp=degg=deg Py <1+ max dﬁ@,
J=0,- k-2 k—]

since O=1 is a constant. A contradiction is obtained for P,
The proof of A(f)=A(f) is the same as Theorem 1(a).

6. Proof of Theorem 4

Part (a). We assert that 6(f)>1+n/2. Assume the contrary, i.e. 6(f)<1+n/2,
and set

ay=d,z"+ - +d,,

dy, - -+, d, are constants and d,#0. Let 0; (6, <0,<---<Op,4,4+,;=0,+4n) be
solutions of

Arg(d,)+(n+2)0=0 (mod2m),

and take a small ¢>0 and a large r,.
Note first that the sectors

Sie, r)={z: |z|>ry, 0,4+ e<argz<0;,,—¢}
are such that for any samll ¢>0,
{z:|z|>r}s)Sie, r).

Take such a sector S;(e, ry), and set

z:(z)=fao(t)“2dt=(1+o(1»D,.z" (13)
with N=1+n/2 and D,=./d, #0. Now
V'+a,y=0 (14)
has solutions (see [4])
yi=ag *(1+o(1)e,  y,=aq*(1+o(l))e* | 15)
in S;(2¢, ry). Also the Wronskian W(y,, y,)=c#0, say. We can now write
f=A4y,+ By,

where, using (4) and variation of parameters,
Ay, +B'y,=0, A'y{+B'y;=Pelo.
This gives

1
A’=_%y2P19P°a B'=—y,P ™.
c
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For a suitable point a,

1 z :
f‘_"?(J’z J y,Piefedt—y, J szleP°dt)+c1y1+c2y2 . (16)

a

We estimate (16) in the sectors
Si2e, ry))={z: |z|>1,, 0;+2e<argz<0;.,—2¢},
Si(2e, rp))={z: |z|>1, 0.1 +2e<argz<b;.,—2¢}

for some r, >r,. Now because of the choice of the 6, in S}(2¢, r,) one of yy, y, is large,
say y,, and the other is small, while in S7(2¢, r,) y, is large and y, is small. We can
integrate asymptotically using Lemma 3 to get (noting deg Pj<n/2)

J nyle"°dt=J P,(B)ao(t) " 14(1 +o(1))e*VePVdt

a a

_1+0(1) PoPoe 1+0(1) p p,_ 1+o(1)

- - 7 — Po
lc/+P/O Y1ty lc,(l'f‘O(l))yl 1€ lCI yIPIe (17)
and similarly
z 1+o0(1) 14+0(1) '
L szle”°dt=cs+:m y2P 1e"°=c3+—_ic—, y,Pief (18)

(It is true that { might not be a polynomial but the proof is the same in Lemma 3).
The formulas (17) and (18) hold in S}(3e, r,). Now (16), (17), (18) give

2+0(1) 1 2+o0(1)
f=c4y1+c5y2+7- 7y1y2P1eP°=c4yl+c5y2+

P e
ao

in S;(3¢, r,). Because o(f)<1+n/2, we must have ¢, =0, and so
| %"lﬁ e Pof—2-0.
Similarly in S7(3¢, r,) we get

2+o0(1)

f=ceyitey,+ PlePO’

¢;=0and
icag

p¢ =20

Since o(f)<1+n/2 and & can be chosen initially as small as we like, by the
Phragme’n-Lindeldf Theorem (see e.g. [2, p. 104]) we get
icag

~Pop_n _,
Ple f—2—-0
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(in fact, uniformly) in S;(3e, r,), or

2+0(1)
icag

f= Pef.

Noting {z: |z|>r,} =( ) Sj(3¢, r,), this implies that f has only finitely many zeros in
the whole plane. So by Theorem A we can write f=Qe"°, where Q is a polynomial.
Substituting it in (4) we get

Q"+2Q'Pi+QP3+ QPP +a,0=P, .
This is impossible, since deg(Q"+2Q'P{+ QP+ QP+ a,Q)=deg(a,Q)=>n>
deg P,.
So we now know that o(f)>1+n/2. On the other hand, using the Wiman-

Valiron theory in (14) we get o(y,)=1+n/2, 6(y,)=1+n/2. Thus from (16) we get
o(f)<1+n/2. So we must have o(f)=14n/2. Since

o(f)=1+3->deg Po=0(P,"),

by Theorem 2(d) we get A(f)=0(f)=1+n/2>deg P,

The proof of A(f)=A(f) is the same as Theorem 1(a).

Part (b). By checking the proof of Part (a), it is easy to see that the first part of
Part (b) holds. Noting that the solution of (4) are of the form

S=c1y1+ ¢ y,+ Qe

-then, where y,, y, are linearly independent solutions of (14) satisfying a(y,)=0(y,)=
1+ n/2, the second part of Part (b) is clear.

7. Examples for Theorem 4 and Corollary

Example 1. f=e* solves f"+zf=(z+1)¢?, and f=ze* solves f"+z7*f=
(z2>+z+2)e”. These show that Part (a) of Theorem 4 does not hold if deg P, >n and
deg P, <1+n/2, and also show that there is a solution of form Qe’° in Part (b) of
Theorem 4.

Example 2. f=exp(z®’) solves f"—9z%f=6zexp(z’), and f=zexp(z?) solves
f" —42*f=6zexp(z?). These show that Part (a) of Theorem 4 does not hold if deg P, =
1+n/2 and deg P, <n.

Example 3. f=exp(z®) solves f”—4z’f=2exp(z?). This shows that the
Corollary does not hold if deg P, =1+#/2.

8. Proof of Theorem 5

Part (a) and Part (b). Assume f has only finitely many zeros. Then, from
Theorem A, F can only have the form in (ii) of Theorem A. This contradicts the
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assumptions of F. The proof of A(f)=A(f) is the same as Theorem 1(a).

Part (c). Since a,_,=0, & is a constant in Theorem A. If f has only finitely
many zeros, then, by Theorem A, 6(F) < + co. This is a contradiction. The proof of
M f)=A(f) is the same as Theorem 1(a).
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