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§0. Introduction

Recently G. Frey found a remarkable connection between Fermat’s conjecture
and the Shimura-Taniyama-Weil conjecture on elliptic curves over Q, by associating
with a non-trivial solution (z,, z,, z3) of the Fermat equation

) zP+z%=2z%
an elliptic curve defined by
) yi=x(x+z7)(x—2%).

We refer to Frey [F1], [F2], Ribet [R] for this subject.

In this paper, we look at the equation (2) from a slightly different angle. Namely,
letting (z,:z,:1) (z3=1) be the generic point of the Fermat curve (1), we can view
(2) as the defining equation of an eqlliptic surface over the Fermat curve.

The properties of these elliptic surfaces can be studied by using the general theory
of elliptic surfaces due to Kodaira [K]. The singular fibres and the numerical characters
are easily determined. One noteworthy property is that the Mordell-Weil group of
these elliptic surfaces is always finite and, more precisely, it is isomorphic to either

Z|I2®Z27  or Z/AZDZ/AZ

according as m (=the degree of the Fermat curve) is odd or even (Theorems 3, 4 in
§2). This suggests that the elliptic surface in question might be an elliptic modular
surface attached to some discontinuous group I’ in the sense of our earlier paper
[S1]. We show that this is indeed the case (Theorem 7, § 3). The group I’ is isomorphic
to the fundamental group of the Fermat.curve (1) deleted the 3m cusps (i.e. the
points with z,z,z;=0); according to Klein-Fricke [KF], I' is not a congruence
subgroup if m#1, 2, 4 or 8. Thus we obtain some elliptic modular surfaces attached
to non-congruence subgroups which have a simple algebraic definition. It may be
suggestive to call I' the Fermat modular group of F-level m, and the elliptic surface
in question the Fermat modular surface of F-level m. '
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We expect that the Fermat modular surfaces may provide an interesting class
of algebraic surfaces, just as did the elliptic modular surfaces attached to congruence
subgroups.

§ 1. The elliptic surface F,, and its singular fibres

Fix a positive integer m. Let C,, denote the Fermat curve of degree m:
€)) C,zT+z5=z2%
in a projective plane P2 with homogeneous coordinates (z, : z, : z3). The ground field

is the field of complex numbers C, unless otherwise stated. There are 3m points of
C,, satisfying z,z,z,=0, and they are called the cusps of C,,. Let

C,,=C,—{cusps}=C,, n{z3#0} .

Any point of C,, is written as (z;:z, : 1) with zT+z5=1. ,
Consider the open elliptic surface, say F,,, over C,, defined by

() yr=x(x+zP(x—z7)  (T+z5=1),

and let F, be the elliptic surface over C, extending F, over C.,. As is
well-known, there is a unique such F,, which is a smooth, complete algebraic surface
containing no exceptional curves of the first kind in fibres. The surface F,, is obtained
from F,, by adjoining singular fibres over the 3m cusps.

PROPOSITION 1. The types of the singular fibres of F,, are given as folloes: (i) If

m is odd, the singular fibres over the finite cusps (i.e. the cusps where z;#0) are all

of type I,,,, while those over the infinite cusps (the cusps with z;=0) are of type I%,,.
(i) If m is even, all the singular fibres are of type I,,,.

Before the proof, let us recall that the Kodaira symbol I, (b>0) denotes a cycle
of b lines (a “b-gon”) and I} denotes a configuration of (b+ 5) lines (cf. [K]):

| )

Iy Iy

Further, the absolute invariant (the functional invariant in the terminology of [K])
has a pole of order b at the point of the base curve supporting a singular fibre of
type I, or I¥, and the distinction between these two can be read off from the local
monodromy: the conjugacy class of the local monodromy in SL,(Z) is represented by
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1) o )

according as the singular fibre is of type I, or I}.
Proof. First consider the case m=1. By the change of coordinates
A=z, X=x+z,, Y=y,
the elliptic surface F; over C, takes a familiar form
y2=X(X—1)(X 1)

which is an elliptic surface over P! (4-line) with the singular fibres over A=0, 1 and
co. It is easy to see that the singular fibres are of type I, at A=0, 1 and of type I'%
at A=o00. Moreover the monodromy representation of the fundamental group
n(C)=n(P'—{0, 1, 0}) can be normalized so that the small positively oriented
loops around A=0, 1, oo are respectively represented by the matrices

(0 I O O (e

In the general case m> 1, one should note that the open surface F’, over C., is
induced from F};—C’ via the morphism
C,—C (zy:23:25)> (2T :2%:2%) .

In other words, F7, is just the fibre product of F; and C,, over C', the map C,,—»C’
being the restriction of the morphism C,,— C, above and unramified. Hence the local
monodromy at the cusps of C,, over A=0 (resp. A=1 or A=00) is given by

< 1 0)’”~<1 2m>
_2 1 conj. 0 1
<res ‘<—1 2)"‘ N (1 2m)
P\-23) o 1
—1 —2\m 1 2m
. <0 '—1> =D (0 1))

because the ramification index at each cusp is m. Since the type of a singular fibre
is determined by the conjugacy class of local monodromy in SL,(Z), we conclude
that the singular fibre at a finite cusp of C,, is of type I,,,, while the singular fibre
at an infinite cusp is of type I,,, or I%, according as m is even or odd.

PROPOSITION 2. The numerical characters of the elliptic surface F,, are given as
Sfollows:
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q=the irregularity of F,,
=the genus of C,,
=(m—1)(m—2)/2

by(F)=b,(C,)=2¢
Dy =the geometric genus of F,,
m*—3m (m:even)
B { m?>—m  (m:odd)
6m? (m: even)
2={ 6m?+6m (m:odd)
b2={ 8m*—6m+2 (m:even)
8m?+2 (m: odd)
6m?—3m+2 (m:even)
{ 6m*+2m+2 (m:odd)
(Here b,=v-th Betti number, hi=the Hodge numbers, c,=the Euler number.)

hl,l=

Proof. This is a simple exercise, using [K], once one knows the types of singular
fibres. |

§2. The Mordell-Weil group of F,,

The generic fibre of the elliptic surface F,, over C,, can be regarded as an elliptic
curve, say E, defined over the function field K=C(C,,) of the Fermat curve C,,.
Explicitly, E is the elliptic curve

Y =x(x+z7)x—2%)

over K=C(z,, z,), with (z,, z,) being the generic point of z7+z%=1 over C.

As usual, we take the point at infinity of E as the origin of the group law on
E. Then, by the Mordell-Weil theorem, the group E(K) of K-rational points of E is
a finitely generated abelian group. It is canonically isomorphic to the group of
holomorphic sections of F,, over C,, and so it will be also called the Mordell-Weil
group of the elliptic surface F,, (over C,,).

The Mordell-Weil rank of F,, say r, which is defined as the free rank of the
group E(K), is related to the Picard number p = p(F,,) of the surface F,, by a general
formula

3) p=r+2+ Y (m,—1)

veCyy, -

where m, is the number of irreducible components in the fibre over a point v of C,,
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(cf. [S1]).

THEOREM 3. For the elliptic surface F,, over C,, the following equivalent
statements hold:

@ p=n"1,
(i) r=0 (i.e. the Mordel-Weil group of F,, is finite).

Proof. By Proposition 1, the singular fibre over a cusp v of C,, is of type I%,
or I%,, and so the number of irreducible components is 2m or 2m+5 accordingly.
By the formula (3), we have

{ 2m—1)-3m
p=r+2+
Cm—1)2m+(2m+4)-m.
" Comparing with the value of A''! in Proposition 2, we see that

p=r+h**.
But, since we have p <h''! (we are working over C) and r>0, we conclude that

p=h'' and r=0.
O

THEOREM 4. The Mordell-Weil group of F, is isomorphic to (Z/2Z)®? or
(Z/4Z)®* according as m is odd or even.

Proof. First, note that the Mordell-Weil group E(K) contains all 2-torsion
points:
x»=0,0, (-z7,0), (23,0
for any m. Next, let
=0y 71(Cp, W —>SLy(Z)

denote the monodromy representation associated with the elliptic surface F,,—C,,
ue C,, being a reference point. Identify the first homology group of the fibre over u
with Z@®Z, and then any torsion point of that fibre is represented by some
(a, b)e(Q/Z)®2. If this torsion point comes from a global section of F,, over C,, (i.e.
from a torsion element of E(K)), then it should be invariant under arbitrary
monodromy. In other words, we should have

(@, b)(y—1)ez&@Z

for any 7 in the image of ¢.
New assume that m is odd. Then, as we saw in the proof of Proposition 1, we .

can take
(-1 —2)"’_(—1 —Zm)
Lo -1 0 —1
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: _<—2 —2m>
T o -2 )
This implies that every torsion of E(K) must be 2-torsion. Therefore we have
E(K),,~(Z/22)®2 if m is odd.
Finally consider the case m=even. As we noted before, F,, is the fibre product
of F and C,, over Cj. Since C,,—C, is a Galois covering with an abelian Galois

group isomorphic to (Z/mZ)®2, any commutator [y;, y,], y,, 7, in the image of the
monodromy representation of 7,(C"), belongs to the image of ¢,,. Taking

-1 =2 1 0
')’1=< 0 _1)3 )’2=(_2 1>eIm((p1),

(4 0)
Y12 =201 = 0 —4/)

This implies that every torsion of the Mordell-Weil group E(K) must be 4-torsion.
(We have not so far used the assumption m=even.)

If we can show that E(K),, is isomorphic to (Z/4Z)®? for m=2, then the same
will be the case for any m even, because we have

so that

we have

F,,= ’28;2C;,, (m:even),
the map C,,—C), being (z,, z,) > (z72, z7/?). O
Thus it suffices to prove the following proposition.

PROPOSITION 5. The elliptic surface F,, for m=2 is isomorphic to the elliptic
modular surface of level 4 (attached to the principal congruence subgroup I'(4) of
SLy(Z)) as elliptic surfaces over P'. In particular, the Mordel-Weil group of F, is
isomorphic to (Z/4Z)>.

Proof. Recall that the elliptic modular surface of level 4, denoted B(4), is an
elliptic K3 surface over P! (o-line) whose generic ﬁb;e is given by
1 2
Y2 =X(X—1)(X-21), /1=<7(a+a‘1)> .
(cf. [S2], [S3]). On the other hand, the elliptic surface F, over C, is defined by the
equation
yi=x(x+z})(x—z3), zi+z3=1.

First we can identify C, with P! (o-line) by the isomorphism:
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L
o=l T2 o /7).

122 Zl - 1
Then we have A= —(z,/z,)?, and the change of variables
X=x/z3, Y=y/z3

defines an isomorphism between the generic fibres of F, and B(4) over P'. Hence
the two surfaces F, and B(4) are birational, and since they are both K3 surfaces, F,
and B(4) are isomorphic as elliptic surfaces over P!. For the last assertion of
Proposition 5, we refer to [S1], [S2], [S3]. d

We can rephrase Theorem 4 in the following way.

THEOREM 6. Let k be an algebraically closed field of characteristic 0, and let 4
be a variable over k. For any m, let K,,=k("\/ 4, ™/1—2) in a fixed algebraic closure
of k(A). Then the Mordell-Weil group of the elliptic curve

E:Y?=X(X—1)(X—1)

over K, is finite and isomorphic to (Z/2Z)®? or (Z/4Z)®? according to the parity of
m. Consequently, for any abelian extension K/k(2) unramified outside A=0, 1, o, the
Mordell-Weil group E(K) is a torsion group of order at most 16.

Going back to our elliptic surface F,,, we have:

PROPOSITION 7. The Néron-Severi group of the surface F,, has the discriminant
given by

—24m=y2m  (m: odd)

det NS(F,, ={ )
—23m=8p3m (m:even).

Proof. Since we know the singular fibres, the finiteness of the Mordell-Weil
group and its order, we have only to apply a general formula proved in [S1, §1].
The minus sign comes from the Hodge index theorem. O

§3. The relation to elliptic modular surfaces

We shall show in this section that the elliptic surface F,, over C,, we have been
considering so far is an elliptic modular surface attached to certain discontinuous
subgroup I' of SL,(Z) in the sense of [S1].

First the open Fermat curve C,,=C, —{3m cusps} is an unramified Galois
covering of C'y =C,; —{3 cusps} with the Galois group isomorphic to (Z/mZ)®2. As
in the proof of Proposition 1, C’; can be identified with the A-line P! deleted the
three points {0, 1, c0}. The universal covering of C; =P*—{0, 1, oo} is the upper half
plane H, and the fundamental group =,(C",) is realized as the covering transformation
group of H as the group
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I'(2)<PSLy(Z)=SLy(D)/{ %1},

the image of I'(2) (the principal congruence group of level 2) under SL 2(Z)—>PSL2(Z).
group of level 2) under SL,(Z)— PSL,(Z).
Thus we have a projective representation of n,(C}):

@:1,(Ch) 5 1,(C) 3T(2) 5 PSLy(Z) .

Let I'=the image of ¢. Then I' is of index m? in I'(2), with the quotient
I'(2)/T ~(Z/mZ)®2. The cusps of C,, become exactly the cusps associated with I" in
the sense of automorphic functions.

These discontinuous groups I', indexed by m, have been studied by Klein-Fricke
[KF]. According to [KF], I" is not an congruence subgroup of PSL,(Z) if m#1, 2,
4 or 8 (cf. [KL], p. 196).

Now we have an elliptic surface F,, over C,, whose absolute invariant j has the
familiar expression in A: j=const. (A2—A+1)3/(A(1—A4))%. Its monodromy repre-
sentation on the first homology of a fibre gives a homomorphism

¢ :71,(Ch) = SLy(2)

which lifts the projective representation ¢ above. In fact, by Kodaira’s general
theory [K], to give the following data (i) or (ii) is equivalent to each other:

(i) an elliptic surface over C,, with the given absolute invariant, having a global
section;

(ii) a lifting of @ to a representation in SL,(Z).

Letting

I'=the image of ¢ =SL,(2),

we see that I' is a subgroup of finite index in SL,(Z), not containing — 1, (note that
@ is injective) such that I'~T.
To such a I', we can attach an elliptic modular surface in the sense of [S1].

THEOREM 7. The elliptic surface F,, over C,, (defined by Frey’s construction) is
the elliptic modular surface attached to I'.

Proof. Call ¢, and ¢, the maps @, ¢ for m=1. Then, since we have F,,~F’ & C
(fibre product) and ¢, ¢ factor through ¢,, ¢,, we are reduced to the case m=1. In
this case, n,(C}) is a free group on two generators /, and /,, represented by the
positively oriented loops around A=0 and 4= c0. Given the projective representation
@, of n,(C}), there are exactly 4 liftings of ¢, to a representation of n,(C) into
-2

1) and [, to

—1
SL,(Z). Among them, there is a unique one mapping /, to < 0

1
( 5 ?) And this coincides with ¢,, because the type of singular fibres over 1= o0,
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0 (of type I% and I,) forces this choice of sign (cf. §1). It coincides also with the
monodromy representation associated to the elliptic modular surface attached to I
(for m=1), for the same reason. Hence we have proved the assertion. O

DEFINITION 8. With the same notation as above, let us call I' (=Im(p) = SL,(2)
the Fermat modular group of F-level m and write I' =I"x(m).

Thus Theorem 7 says that the elliptic surface F,, (over the Fermat curve C,,) is
the elliptic modular surface attached to I'g(m).
The following is a . consequence of Proposition 5, and it refines a result of

Klein-Fricke [KF] that I F(2) is a congruence subgroup.

COROLLARY 9. The Fermat modular group of F-level 2 coincides with the
principal congruence subgroup of level 4, i.e. I'5(2)=1(4).

Now a nice property of elliptic modular surfaces is that the space of holomorphic
2-forms is canonically isomorphic to the cusp forms of weight 3 (cf. [S1]). We can
study these spaces for the elliptic surfaces F,, over C,, using the automorphisms of
C,,. We hope to come back to this subject in some other occasion.

Remark. This work was done during the author’s stay at the Mathematical
Science Research Institute, Berkeley, in the summer of 1987 and distributed as
preprint from MSRI.

In the spring of 1988 at the Max-Planck Institue fiir Mathematik, Bonn, D.
Zagier pointed out that the last step in the proof of Theorem 4 can be directly shown,
without using Proposition 5; namely, the standard argument in the proof of the weak
Mordell-Weil theorem for m-division of a point (here m=2) is sufficient. Of course,
Proposition 5 is of independent interest as shown in the last section, and so our
original proof is given in the text.
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