A Generalization of Shiokawa's Rational Approximations to the Rogers-Ramanujan Continued Fraction

by

S. BHARGAVA, Chandrashekar Adiga and D. D. Somashekara

(Received Nov. 1, 1991)

Abstract. In this note we obtain rational approximations to the continued fraction

$$1 + \frac{\alpha x}{1+} \frac{\beta x^2}{1+\cdots} \frac{\alpha x^{2n-1}}{1+} \frac{\beta x^{2n}}{1+\cdots} (\alpha, \beta \text{ and } x \text{: rational}).$$

The case $\alpha = \beta$ yields a recent result of Iekata Shiokawa.

1. Introduction

The following continued fraction expansion is found in the "Lost" notebook of Srinivasa Ramanujan [10]:

$$\frac{G(\alpha, \mu, \beta, x)}{G(\alpha x, \mu x, \beta, x)} = 1 + \frac{\alpha x + \mu x}{1 +} \frac{\beta x + \mu x^2}{1 + \cdots} \frac{\alpha x^{n+1} + \mu x^{2n+1}}{1 +} \frac{\beta x^{n+1} + \mu x^{2n+2}}{1 + \cdots}.$$

Here,

$$G(\alpha, \mu, \beta, x) = \sum_{n=0}^{\infty} \frac{x^{n(n+1)/2}}{(x)_n} \frac{(-\mu/\alpha)_n \alpha^n}{(-\beta x)_n}.$$

$$(c; x)_{\infty} = (c)_{\infty} = \prod_{n=0}^{\infty} (1 - cx^n)$$

and

$$(c; x)_n = (c)_n = \frac{(c)_\infty}{(cx^n)_\infty}$$
, *n*: integer.

It is assumed here and throughout the paper that |x| < 1.

Various proofs of the above and other expansions of $G(\alpha, \mu, \beta, x)/G(\alpha x, \mu x, \beta, x)$ can be found in the literature. For instance one may refer to [3], [4] and [5]. Many

interesting special cases arise. See for instance [1], [2] and [3]. In particular we have the expansion

$$\frac{G(\alpha/x, o, \beta, x^2)}{G(\alpha x, o, \beta, x^2)} = 1 + \frac{\alpha x}{1 + 1} \frac{\beta x^2}{1 + \cdots} \frac{\alpha x^{2n-1}}{1 + 1} \frac{\beta x^{2n}}{1 + \cdots}.$$

The case $\alpha = 1 = \beta$ in this is the famous Rogers-Ramanujan continued fraction. Setting

(1)
$$F(\alpha, \beta, x) = \frac{G(\alpha/x, o, \beta, x^2)}{G(\alpha x, o, \beta, x^2)}$$

and

$$f(\alpha, x) = F(\alpha, \alpha, x)$$

We have the following Theorems A and B of Iekata Shiokawa [11] with Theorem B establishing that Theorem A is best possible.

THOEREM A (Shiokawa). Let a, b, c and d be non-zero integers with

$$|d| > |c|^2$$
.

Then f(a/b, c/d) is an irrational number and furthermore, there is a positive constant C = C(a, b, c, d) such that

$$\left| f\left(\frac{a}{b}, \frac{c}{d}\right) - \frac{p}{q} \right| > Cq^{-2 - 2A - B/\sqrt{\log q}}$$

for all integers $p, q (\geq 0)$, where

$$A = \frac{\log |c|}{\log |d/c^2|} \quad and \quad B = \frac{\log |a^2d| - A\log |b/a^2|}{\sqrt{\log |d/c^2|}}.$$

THEOREM B (Shiokawa). Let a, b and d be positive integers such that (a, b) = 1, $d \ge 2$ and a divides d, and let

$$C = \begin{cases} \sqrt{b/a} & \text{if } (a/b)^2 > d, \\ \sqrt{a/bd} & \text{otherwise}. \end{cases}$$

Then, for any $\varepsilon > 0$,

$$\left| f\left(\frac{a}{b}, \frac{1}{d}\right) - \frac{p}{q} \right| < (C + \varepsilon)q^{-2 - \sqrt{\log d}/\sqrt{\log q}}$$

for infinitely many integers p, $q \ge 0$, while there is a positive constant $q_0 = q_0$ (a, b, d, ε) such that

$$\left| f\left(\frac{a}{b}, \frac{1}{d}\right) - \frac{p}{q} \right| > (C - \varepsilon)q^{-2 - \sqrt{\log d}/\sqrt{\log q}}$$

for all integers $p, q (\geq q_0)$.

As noted by Shiokawa [11], case c=1 of Theorem A improves an earlier result of Osgood [8], [9], namely,

THEOREM C (Osgood). If a, b and d are non-zero integers with $|d| \ge 2$, then for any $\varepsilon > 0$, there is a positive constant $q_0 = q_0$ (a, b, d, ε) such that

$$\left| f\left(\frac{a}{b}, \frac{1}{d}\right) - \frac{p}{q} \right| > q^{-2-\varepsilon}$$

for all integers $p, q (\geq q_0)$.

The purpose of the present note is to establish a generalization of Shiokawa's Theorem A. For convenience, we present the generalization in two parts by means of Theorem 1 and Theorem 2 below.

THEOREM 1. Let a, b, c, d, e and f be non-zero integers with

(2)
$$|b^2c^2e^2| < |a^2df^2|, |a^2c^2f^2| < |b^2de^2|.$$

Then F(a/b, e/f, c/d) is an irrational number.

THEOREM 2. If a, b, c, d, e and f are non-zero integers satisfying (2), then there is positive constant C = C(a, b, c, d, e, f) such that

$$\left| F\left(\frac{a}{b}, \frac{e}{f}, \frac{c}{d}\right) - \frac{p}{q} \right| > Cq^{-2 - 2A - B/\sqrt{\log q}}$$

for all integers p, $q \ge 0$ where $A = \log |c| / \log |d/c^2|$ and

$$B = \min \left[\frac{\log |b^2 de^2| - 2A \log |f/be^2|}{\sqrt{\log |d/c^2|}}, \frac{\log |a^2 df^2| - 2A \log |b/a^2 f|}{\sqrt{\log |d/c^2|}} \right].$$

Again, Theorem 2 is best possible in the sense of Shiokawa [11]. In fact, since f(a/b, c/d) = F(a/b, a/b, c/d) we can restate Theorem B in the following form.

THEOREM B'. Let a, b and d be positive integers such that (a, b) = 1, $d \ge 2$ and a divides d, and let

$$C = \begin{cases} \sqrt{b/a} & \text{if } (a/b)^2 > d \\ \sqrt{a/bd} & \text{otherwise} \end{cases}$$

Then for any $\varepsilon > 0$

$$\left| F\left(\frac{a}{b}, \frac{a}{b}, \frac{1}{d}\right) - \frac{p}{a} \right| < (C + \varepsilon)q^{-2 - \sqrt{\log d}/\sqrt{\log q}}$$

for infinitely many integers p, $q \ge 0$, while there is a positive constant $q_0 = q_0(a, b, d, \varepsilon)$ such that

$$\left| F\left(\frac{a}{b}, \frac{a}{b}, \frac{1}{d}\right) - \frac{p}{q} \right| > (C - \varepsilon)q^{-2 - \sqrt{\log d}/\sqrt{\log q}}$$

for all integers $p, q (\geq q_0)$.

We prove Theorem 1 in Section 3 after obtaining some necessary Lemmas in Section 2. Theorem 2 and a necessary Lemma are proved in Sections 5 and 4 respectively.

2. Some preliminary results

LEMMA 1. Let a_1, a_2, a_3, \dots , be a sequence of real numbers such that

$$|a_n a_{n+1}| > 4$$
 $(n \ge 1)$ and $\sum_{n=1}^{\infty} |a_n a_{n+1}|^{-1} = \sigma < \infty$.

Define as usual

$$p_n = a_n p_{n-1} + p_{n-2}$$
, $q_n = a_n q_{n-1} + q_{n-2}$ $(n \ge 1)$

with $p_0 = q_{-1} = 0$, $p_{-1} = q_0 = 1$. Then $p_n/(a_2a_3 \cdots a_n)$ and $q_n/(a_1a_2 \cdots a_n)$ converge to finite non-zero limits and they satisfy

$$e^{-4\sigma} < |p_n/(a_2a_3\cdots a_n)| < e^{2\sigma}, \qquad e^{-4\sigma} < |q_n/(a_1a_2\cdots a_n)| < e^{2\sigma},$$

so that the continued fraction

$$\frac{1}{a_1+} \frac{1}{a_2+\cdots} \frac{1}{a_n+\cdots} = \lim_{n\to\infty} \frac{p_n}{q_n}$$

is convergent.

Proof. For a proof see [6, Section 4.4].

LEMMA 2. If $F(\alpha, \beta, x)$ is an in (1), then

(1')
$$F(\alpha, \beta, x) = 1 + \frac{1}{a_1 + a_2 + \cdots} + \frac{1}{a_n + \cdots},$$

where

(3)
$$a_{2n-1} = \frac{\beta^{n-1}}{\alpha^n x^n} \quad and \quad a_{2n} = \frac{\alpha^n}{\beta^n x^n}$$

Moreover,

(4)
$$\log|a_1 a_2 \cdots a_{2n-1}| = -\frac{(2n-1)^2}{4} \log|x| - \frac{(2n-1)}{2} \log|\alpha x| + O(1)$$

and

(5)
$$\log|a_1 a_2 \cdots a_{2n}| = -n^2 \log|x| - n \log|\beta x| + O(1).$$

Proof. (1') follows easily on using the transformation [12, p. 20]

$$\frac{b_{1}}{1+\cdots} \frac{b_{2}}{1+\cdots} \frac{b_{n}}{1+\cdots} = \frac{1}{\frac{1}{b_{1}}} + \frac{1}{\frac{b_{1}}{b_{2}}} + \frac{1}{\frac{b_{2}}{b_{1}b_{3}}} + \frac{1}{\frac{b_{1}b_{3}}{b_{2}b_{4}}} + \cdots$$

$$\frac{1}{\frac{b_{2}b_{4}\cdots b_{2k}}{b_{1}b_{3}\cdots b_{2k+1}}} + \frac{1}{\frac{b_{1}b_{3}\cdots b_{2k+1}}{b_{2}b_{4}\cdots b_{2k+2}}} + \cdots$$

To prove (4) and (5) note that

$$a_1 a_2 \cdots a_{2n-1} = a_{2n-1} \prod_{r=1}^{n-1} a_{2r-1} a_{2r}$$

$$= \frac{\beta^{n-1}}{\alpha^n x^n} \prod_{r=1}^{n-1} \frac{1}{\beta x^{2r}} = \frac{1}{\alpha^n x^{n^2}},$$

and

$$a_1 a_2 \cdots a_{2n} = \prod_{r=1}^n a_{2r-1} a_{2r} = \prod_{r=1}^n \frac{1}{\beta x^{2r}} = \frac{1}{\beta^n x^{n(n+1)}}.$$

Hence,

$$\log|a_1a_2\cdots a_{2n-1}| = -\frac{(2n-1)^2}{4}\log|x| - \frac{(2n-1)}{2}\log|\alpha x| + O(1)$$

and

$$\log |a_1 a_2 \cdots a_{2n}| = -n^2 \log |x| - n \log |\beta x| + O(1).$$

LEMMA 3. If $\alpha = a/b$, $\beta = e/f$ and x = c/d, where a, b, c, d, e and f are non-zero integers and if

$$d_{2n-1} = |a^n c^{n^2} f^{n-1}|, d_{2n} = |b^n c^{n^2+n} e^n|,$$

then $d_n p_n$ and $d_n q_n$ are integers. Also

(6)
$$\log d_{2n-1} = \frac{(2n-1)^2}{4} \log |c| + \frac{(2n-1)}{2} \log |acf| + O(1)$$

and

(7)
$$\log d_{2n} = n^2 \log |c| + n \log |bce| + O(1).$$

Proof. Using the recurrence relations for p_n and q_n and employing induction on n one can easily prove that $d_n p_n$ and $d_n q_n$ are integers. (6) and (7) follow directly

from the definition of d_n .

3. Proof of Theorem 1

Since $a_{2n-1}a_{2n}=1/\beta x^{2n}$ and $a_{2n}a_{2n+1}=1/\alpha x^{2n+1}$, from (2) it follows that the series $\sum_{n=1}^{\infty} (a_n a_{n+1})^{-1}$ is absolutely convergent. Hence there exists an integer N such that

$$|a_n a_{n+1}| > 4$$
, for all $n \ge N$.

Now, put

(8)
$$\theta_n = \frac{1}{a_{n+1}} + \frac{1}{a_{n+2}} + \cdots$$

Then by Lemma 1, θ_n converges for each $n \ge N$ and

(9)
$$e^{-6\sigma} < |a_{n+k+1}\theta_{n+k}| < e^{6\sigma}$$
$$e^{-6\sigma} < |a_{n+k+1}q_{n,k}/q_{n,k+1}| < e^{6\sigma}$$

where $p_{n,k}/q_{n,k}$ is the kth convergent of the continued fraction (8) and $\sigma = \sum_{n=1}^{\infty} |a_n a_{n+1}|^{-1}$. For sufficiently large k

(10)
$$\left| \theta - \frac{p_{n,k}}{q_{n,k}} \right| = \frac{1}{|q_{n,k}(q_{n,k+1} + \theta_{n+k+1}q_{n,k})|} < \frac{2}{|q_{n,k}^2 a_{n+k+1}|}.$$

(10) follows on using

$$\theta_{n} = \frac{1}{a_{n+1} + \cdots} \frac{1}{a_{n+k+1} + \theta_{n+k+1}} = \frac{(a_{n+k+1} + \theta_{n+k+1})p_{n,k} + p_{n,k-1}}{(a_{n+k+1} + \theta_{n+k+1})q_{n,k} + q_{n,k-1}},$$

 $p_{n,k+1}q_{n,k}-p_{n,k}q_{n,k+1}=\pm 1$ and, a consequence of (2) and (9) namely, $\lim_{k\to\infty}\theta_{n+k+1}=0=\lim_{k\to 0}(1/a_{n+k+1})$. Using Stolz's theorem [7, p. 75] that $\lim_{n\to \infty}(X_n/Y_n)=\lim_{n\to \infty}[(X_{n+1}-X_n)/(Y_{n+1}-Y_n)]$ if $\{Y_n\}$ is increasing and diverges to $+\infty$ and the fact $\{|q_{n,k}/(a_{n+1}a_{n+2}\cdots a_{n+k})|\}$ converges to a non-zero limit as k tends to ∞ , one can easily show that

$$\lim_{k \to \infty} \frac{\log |q_{n,k}^2 a_{n+k+1}|}{\log |d_{n+k+1} q_{n,k}|} = \begin{cases} 2 - \frac{2 \log |b^2 c e^2 / a^2 f^2|}{\log |b^2 d e^2 / a^2 f^2|}, & \text{if } n+k \text{ is even} \\ 2 - \frac{2 \log |a^2 c f^2 / b^2 e^2|}{\log |a^2 d f^2 / b^2 e^2|}, & \text{if } n+k \text{ is odd.} \end{cases}$$

Therefore, for a given $\varepsilon > 0$ we have

$$(11) \quad \frac{\log|q_{n,k}^2 a_{n+k+1}|}{\log|d_{n+k+1}q_{n,k}|} > \begin{cases} 2 - \frac{2\log|b^2 c e^2/a^2 f^2|}{\log|b^2 d e^2/a^2 f^2|} - \varepsilon, & \text{if } n+k \text{ is even} \\ 2 - \frac{2\log|a^2 c f^2/b^2 e^2|}{\log|a^2 d f^2/b^2 e^2|} - \varepsilon, & \text{if } n+k \text{ is odd} \end{cases}$$

for all sufficiently large k, using (11) in (10) we obtain

$$\left|\theta_{n} - \frac{d_{n+k}p_{n,k}}{d_{n+k}q_{n,k}}\right| < \begin{cases} -2 + \frac{2\log|b^{2}ce^{2}/a^{2}f^{2}|}{\log|b^{2}de^{2}/a^{2}f^{2}|} + \varepsilon \\ 2|d_{n+k}q_{n,k}| &, & \text{if } n+k \text{ is even} \\ -2 + \frac{2\log|a^{2}cf^{2}/b^{2}e^{2}|}{\log|a^{2}df^{2}/b^{2}e^{2}|} + \varepsilon \\ 2|d_{n+k}q_{n,k}| &, & \text{if } n+k \text{ is odd} \end{cases}$$

for all sufficiently large k. This proves that θ_n $(n \ge N)$ is irrational. Hence F(a/b, e/f, c/d) is also irrational.

4. A lemma

We now prove a Lemma which will be used in proving Theorem 2.

LEMMA 4. If a, b, c, d, e and f are non-zero integers satisfying (2), then there exists a positive integer n = n(q) such that

(12)
$$\left| F\left(\frac{a}{b}, \frac{e}{f}, \frac{c}{d}\right) - \frac{p}{q} \right| > \frac{1}{2} q^{-1 - \lceil \log |d_{nq_n}| / \log q \rceil}$$

for all integers p, $q \ge 0$.

Proof. On using (4) and (5) we have

(13)
$$\log|q_{2m-1}| = \frac{(2m-1)^2}{4} \log\left|\frac{d}{c}\right| + \frac{(2m-1)}{2} \log\left|\frac{bd}{ac}\right| + O(1)$$

and

(14)
$$\log|q_{2m}| = m^2 \log \left| \frac{d}{c} \right| + m \log \left| \frac{df}{ce} \right| + O(1).$$

Further from (6), (7), (13) and (14) we have

(15)
$$\log \left| \frac{q_{2m+1}}{d_{2m+1}} \right| - \log \left| \frac{q_{2m}}{d_{2m}} \right| = m \log \left| \frac{b^2 e^2 d}{a^2 c^2 f^2} \right| + O(1)$$

and

(16)
$$\log \left| \frac{q_{2m}}{d_{2m}} \right| - \log \left| \frac{q_{2m-1}}{d_{2m-1}} \right| = m \log \left| \frac{a^2 df^2}{b^2 c^2 e^2} \right| + O(1).$$

Hence, from (2), (9), (15) and (16) it follows that there exists an integer N_o ($\geq N$) such that

$$|\theta_m| < \frac{1}{2}, \quad |q_{m-1}| < |q_m|, \quad |q_{m-1}/d_{m-1}| < |q_m/d_m|,$$

for all $m \ge N_o$. Now, let p and q ($\ge o$) be given integers. Then we may assume that $|q_{N_o}/d_{N_o}| < 4q$. Therefore by (15), (16) and (17) there exists a positive integer $n = n(q) \ge N_o$ such that

$$|q_{n-1}/d_{n-1}| \le 4q < |q_n/d_n|.$$

Since $p_nq_{n-1}-p_{n-1}q_n=\pm 1$ at least one of $p_{n-1}q-pq_{n-1}$, p_nq-q_np is different from zero. So we first assume that $p_nq-q_np\neq 0$ and consider

(19)
$$d_n q_n \left[F\left(\frac{a}{b}, \frac{e}{f}, \frac{c}{d}\right) - \frac{p}{q} \right] = \frac{d_n (p_n q - q_n p)}{q} + d_n \left[q_n F\left(\frac{a}{b}, \frac{e}{f}, \frac{c}{d}\right) - p_n \right],$$

where $|d_n(p_nq-q_np)| \ge 1$. But

(20)
$$\left| d_n \left[q_n F\left(\frac{a}{b}, \frac{e}{f}, \frac{c}{d}\right) - p_n \right] \right| = \frac{d_n}{|q_{n+1} + \theta_{n+1} q_n|} \le \frac{2d_n}{|q_n|} \le \frac{1}{2q}$$

by (17) and (18). Substituting (20) in (19) we obtain after simplification

$$\left| F\left(\frac{a}{b}, \frac{e}{f}, \frac{c}{d}\right) - \frac{p}{q} \right| > \frac{1}{2} q^{-1} \frac{1}{|d_n q_n|} = \frac{1}{2} q^{-1 - \lceil \log |d_n q_n| / \log q \rceil}.$$

The same inequality is obtained in the other case namely $p_{n-1}q - q_{n-1}p \neq 0$. This completes the proof of the Lemma 4.

5. Proof of Theorem 2

In what follows $C_i = C_i$ (a, b, c, d, e, f), $i = 1, 2, \dots, 10$ are independent of q and n. If n (of Lemma 4) is odd, say n = 2k - 1, by (3), (6), (7), (13), (14) and (18) we have

(21)
$$\log |d_{2k-1}q_{2k-1}| = \log |d_{2k-1}d_{2k-2}| + \log \left| \frac{q_{2k-1}}{q_{2k-2}} \right| + \log \left| \frac{q_{2k-2}}{d_{2k-2}} \right|$$

$$< \log q + \frac{(2k-1)^2}{2} \log |c| + \frac{(2k-1)}{2} \log |b^2 de^2| + C_1.$$

Again if n (of Lemma 4) is even, say n=2k, by (3), (6), (7), (13), (14) and (18) we have as before,

(22)
$$\log |d_{2k}q_{2k}| < \log q + 2k^2 \log |c| + k \log |a^2 df|^2 + C_2.$$

Further from (6), (7), (13), (14), (18), (21) and (22) we obtain

(23)
$$\frac{(2k-1)^2}{4} \log \left| \frac{d}{c^2} \right| + \frac{(2k-1)}{2} \log \left| \frac{f}{be^2} \right| - C_3 < \log q$$

$$< \frac{(2k-1)^2}{4} \log \left| \frac{d}{c^2} \right| + \frac{(2k-1)}{2} \log \left| \frac{bd}{a^2 c^2 f} \right| + C_4$$

and

(24)
$$k^2 \log \left| \frac{d}{c^2} \right| + k \log \left| \frac{b}{a^2 f} \right| - C_5 < \log q < k^2 \log \left| \frac{d}{c^2} \right| + k \log \left| \frac{df}{bc^2 e^2} \right| + C_6$$
.

Thus if n=2k-1 or if n=2k by (23) and (24) we have

(25)
$$n = \left[2\sqrt{\log q}/\sqrt{\log |d/c^2|}\right] + O(1).$$

From (23), (24) and (25) we obtain

(26)
$$n^{2} \leq \begin{cases} \frac{4\log q}{\log |d/c^{2}|} - \frac{4\sqrt{\log q}\log |f/be^{2}|}{\sqrt{\log |d/c^{2}|}\log |d/c^{2}|} + C_{7}, & \text{if } n = 2k - 1, \\ \frac{4\log q}{\log |d/c^{2}|} - \frac{4\sqrt{\log q}\log |b/a^{2}f|}{\sqrt{\log |d/c^{2}|}\log |d/c^{2}|} + C_{8}, & \text{if } n = 2k. \end{cases}$$

On using (25) and (26) in (21) and (22) respectively we obtain

(27)
$$\frac{\log |d_n q_n|}{\log q} < \begin{cases} 1 + 2A + [B_1/\sqrt{\log q}] + C_9, & \text{if } n = 2k - 1, \\ 1 + 2A + [B_2/\sqrt{\log q}] + C_{10}, & \text{if } n = 2k, \end{cases}$$

where,

$$A = \frac{\log |c|}{\log |d/c^2|}, \qquad B_1 = \frac{\log |b^2 de^2| - 2A \log |f/be^2|}{\sqrt{\log |d/c^2|}},$$

and

$$B_2 = \frac{\log|a^2 df^2| - 2A \log|b/a^2 f|}{\sqrt{\log|d/c^2|}}.$$

Substituting (27) in (12) and putting

$$C = \max \left\{ \frac{1}{2} q^{-c_9}, \frac{1}{2} q^{-c_{10}} \right\} \text{ and } B = \min\{B_1, B_2\} \text{ we obtain}$$

$$\left| F\left(\frac{a}{b}, \frac{e}{f}, \frac{c}{d}\right) - \frac{p}{q} \right| > Cq^{-2 - 2A - B/\sqrt{\log q}}.$$

This completes the proof of Theorem 2.

References

- [1] ADIGA, C.; A study of some identities stated by Srinivasa Ramanujan in his "Lost" note book and earlier works, Ph.D. Thesis, University of Mysore, December 1983.
- [2] ADIGA, C., BERNDT, B. C., BHARGAVA, S. and WATSON, G. N.; Chapter 16 of Ramanujan's second notebook: Theta-Functions and q-series, Mem. Amer. Math. Soc., 315 (1985), 1–85.
- [3] Andrews, G. E.; An introduction to Ramanujan's "Lost" notebook, *Amer. Math. Monthly*, **86** (1979), 89–108.
- [4] BHARGAVA, S. and ADIGA, C.; On some continued fraction identities of Srinivasa Ramanujan, Proc. Amer. Math. Soc., 92 (1984), 13-18.
- [5] Hirschhorn, M. D.; A continued fraction of Ramanujan, J. Aust. Math. Soc. (Series A), 29 (1980) 80–86.
- [6] JONES, W. B. and THRON, W. J.; Continued fractions: Analytic theory and applications, Addison-Wesley, London, 1980.
- [7] KNOPP, K.; Theory and applications of infinite series, Blackie and Son Limited, London and Glasgow, 1948.
- [8] OSGOOD, C. F.; On the diophantine approximation of values of functions satisfying certain linear q-difference equations, J. Number Theory, 3 (1971), 159-177.
- [9] OSGOOD, C. F.; The diophantine approximation of certain continued functions, *Proc. Amer. Math. Soc.*, 3 (1972), 1–7.
- [10] RAMANUJAN, S.; The "Lost" note book and other unpublished papers, Narosa, New Delhi, 1988.
- [11] Shiokawa, I.; Rational approximations to the Rogers-Ramanujan continued fractions, Acta Arithmetica, L (1988) 3-30.
- [12] Wall, H. S.; Analytic theory of continued fractions, D. Van Nostrand, New York, 1948.

Bhargava and Adiga:
Department of Mathematics
University of Mysore
Manasagangotri
MYSORE-570 006
India

Somashekara:
Department of Mathematics
Yuvaraja's College
University of Mysore
MYSORE-570 005
India