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Abstract. In this note we obtain rational approximations to the continued
fraction

ax Bx2 axZn—l ﬁxZn

1+ 14 1+ 1+

(o, B and x: rational) .

The case a=p yields a recent result of Iekata Shiokawa.

1. Introduction

The following continued fraction expansion is found in the “Lost” notebook
of Srinivasa Ramanujan [10]:

G(a, u, B, x) g oxex Bx+px? ax"t 4 puxtt Bxmtl 4o pux2nt?
G(ax, px, B, x) I+ 1+ 1+ I+

Here,

©  nnt1)2 R
Glo o= 2, = ((fgi')'a ’

o0

(C;} x)ao=(c)oo= ].—.[ (1 _cxn)

n=0

and

(9o
(ex")g
It is assumed here and throughout the paper that | x|<1.

Various proofs of the above and other expansions of G(a, y, f, x)/G(ax, ux, B, x)
can be found in the literature. For instance one may refer to [3], [4] and [5]. Many

(c; X)y=(c)p= , n:integer.
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interesting special cases arise. See for instance [1]1, [2] and [3]. In particular we have
the expansion

Gle/x,0,B,x%)  ax px? ax" ! Bx
G(ax, o, B, x?) T+ 14 1+ 14
The case «=1= in this is the famous Rogers-Ramanujan continued fraction.
Setting
G(o/x, 0, B, x?)
1 o x)=——"-"">-""—"
@ Fe ) Glox, o, B, x?)
and

Sf(a, x)=F(a, a, x)

We have the following Theorems A and B of Iekata Shiokawa [11] with Theorem
B establishing that Theorem A is best possible.

THOEREM A (Shiokawa). Let a, b, c and d be non-zero integers with
ld>|c|*.

Then f(a/b, c/d) is an irrational number and furthermore, there is a positive constant
C=C((a, b, c, d) such that

a c¢ p —2-24-B/Jlogq
—_— | —> C g 4q
f< b d) q ‘ !

for all integers p, q (=0), where

_ logjc| and B=log|a2d|—Alog|b/a2|

A=__°""1
log|d/c?| Vlog|djc?|

THEOREM B (Shiokawa). Let a, b and d be positive integers such that (a,b)=1,
d=>2 and a divides d, and let

C={ bja if (a/by>d,

a/bd otherwise .

Then, for any ¢>0,

f(i, i>_£‘ <(C+g)g—2~ViowdNioRa
b d q

Jfor infinitely many integers p, q (20), while there is a positive constant q,=q, (a, b,
d, €) such that

a

1 p T
—, — | == |>(C—g)g 2~ Viegd/Jlogq
‘f<b d) ql (=0
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for all integers p, q (=q,).

As noted by Shiokawa [11], case c=1 of Theorem A improves an earlier result
of Osgood [8], [9], namely,

TreOREM C (Osgood). If a, b and d are non-zero integers with | d|>2, then for
any £>0, there is a positive constant qy=gq, (a, b, d, &) such that

a 1 P
4 (?7)7

The purpose of the present note is to establish a generalization of Shiokawa’s
Theorem A. For convenience, we present the generalization in two parts by means
of Theorem 1 and Theorem 2 below.

>q—2—a

Sfor all integers p, q (= q,):

THEOREM 1. Let a, b, c, d, e and f be non-zero integers with
2 |b2c?e?|<|a?df?|, |a?c?f?|<|b*de?]|.
Then F (a/b, e/f, c/d) is an irrational number.

THEOREM 2. Ifa, b, c, d, e and f are non-zero integers satisfying (2), then there
is positive constant C=C (a, b, ¢, d, e, f) such that

'F<i, e £>_£‘>Cq—2—2A—BNm

b f d q

for all integers p, q (=0) where A=log|c|/log|d/c?| and
Bzmin[loglbzdez|—2Alog|f/be2| log|a?df?|—24 loglb/azfl:l.

Again, Theorem 2 is best possible in the sense of Shiokawa [11]. In fact, since
fla/b, c¢/d)=F(a/b, a/b, c/d) we can restate Theorem B in the following form.

THEOREM B’. Let a, b and d be positive integers such that (a,b)=1, d>2 and a
divides d, and let

o |Vbia i @br>d
- /a/bd otherwise .

Then for any ¢>0

a a1 P [ ——
F —_—— )< C+8 2—/logd//logq
<b b d) q‘ (o

for infinitely many integers p, q (>0), while there is a positive constant q,=qo(a, b,
d, €) such that
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F(i, a i)_ﬂ >(C—g)g~2~Viordiiosa
b b d q
for all integers p, q (=q,).

We prove Theorem 1 in Section 3 after obtaining some necessary Lemmas in

Section 2. Theorem 2 and a necessary Lemma are proved in Sections S5 and 4
respectively.

2. Some preliminary results

LEMMA 1. Let ay, a,, a5, - -, be a sequence of real numbers such that

a0
|a,a,+11>4 (n=1) and Y |a,a,+,| '=0<o0.
n=1

Define as usual

Pn=0pDy-1+Pp-2, 9n=0nqn-1+qn-> (nZl)
with po=q_,=0, p_y=qo=1. Then p,/(a,a; - -a,) and q,/(a,a," - -a,) converge to
finite non-zero limits and they satisfy

e_4d<|pn/(a2a3. : ,an)|<220 ’ e—46<|qn/(a102' : 'an)|<e2a s

so that the continued fraction
1 1 1 Pn

= lim
a1+ a2+... an+... n— oo qn

is convergent.

Proof. For a proof see [6, Section 4.4].
LemMA 2. If F(a, B, x) is an in (1), then

1 1 1
) Rl pg =
where
n—1 o
(€) az"_1=o:—")c_"_ and a2n=w,
Moreover,
“ loglalaz--~a2,,_1l=—Lt«liloglxl—@—;iloglaxHO(l)

and
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®) log|a,a,- - -a,,|= —n?*log|x|—nlog| x|+ 0(1) .
Proof. (1) follows easily on using the transformation [12, p. 20]
b, b, b, 1 1 1 1

I+ L+ T 1 by by biby
bl b2 b1b3 b2b4
1 1

bzb4"'b2k b1b3"'b2k+1 +
b1b3' bkt b2b4' “byksa
To prove (4) and (5) note that

n—1
aiG;" " Ay —1=0zp-1 nazr—ﬂzr
r=1

A= U

= >
oc"x" =1 ﬁx2r anxn )

and
a,a, " -a —ﬁa a—ﬁ I _ L
1“2 2n o] 2r—1%42r ot Ber ann(n+1)'
Hence,
2n—1)>? 2n—1
toglasas sy 11 =~ loglxl 2= toglax+01)
and

log|a,a,- - - az,| = —n*log| x|—nlog| fx|+O(1) .

Lemma 3. If a=a/b, B=e/f and x=c/d, where a, b, c, d, e and f are non-zero
integers and if

dzn_l_:'ancnzfn—l" d2”=|b"6'"2+"en|,

then d,p, and d,q, are integers. Also

2n—1)? 2n—1
6) logdz,,_1=—(—n—)log|c|+(—n2—)log|acf|+0(l)
and
@) logd,,=n?log|c|+nloglbce|+O(1) .

Proof. Using the recurrence relations for p, and ¢, and employing induction
on n one can easily prove that d,p, and d,g, are integers. (6) and (7) follow directly
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from the definition of d,.
3. Proof of Theorem 1

Since a,,_1a,,=1/px*" and a,,a,,,;=1/ax?"*1, from (2) it follows that the

Q0
series ). (@,a,+,) "' is absolutely convergent. Hence there exists an integer N such

n=1
that
aa, . |>4, forall n>N.
Now, put
1 1 :
®) By=——t——

[ Ay 2

Then by Lemma 1, 6, converges for each n> N and
-6
e <)@y 10pinl<e®

®

-6
€ % <@y ir 1Gnpl Gnger1 1 <€

where p,;/q,; is the kth convergent of the continued fraction (8) and

o= |a,a,, | *. For sufficiently large k

n=1
: 1 2
(10) g Pnk | < :
Ink |qn,k(qn,k+1 +0n+k+1qn,k)| | Gaknrr+1l
(10) follows on using
0 — 1 1 _ (@nsx4 11 Ontks Pni+Pui—1
"yt Auiir1H0isis1r @uixe1 +0pins )i+ Gus—1

Pnk+19nk—Pnidni+1= 1 1 and, a consequence of (2) and (9) namely, lim 0,,,,,=
: k= o0

0=1lim(1/a, . ). Using Stolz’s theorem [7, p. 75] that lim (X,/Y,)= lim [(X,,,—
k—0 n—o n— o

X)(Y, 1 —Y,)] if {Y,} is increasing and diverges to +oo and the fact

{| gn/(@n+18,+2° " "ay1;)|} converges to a non-zero limit as k tends to oo, one
can easily show that

2log|b2ce?/a’f?|

m IOquikan+k+1| _ log|b*de*/a*f?|

koo 10g|dyipt1Gnl ) 2log|a’cf?/b?e?|

log|a2df?/b%e?|

Therefore, for a given 6>0 we have

. if n+k iseven

R if n+k isodd.
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2_2log|b2ce2/azf2 |

10g|qp2.,kan+k+1| > log|b*de?[a”f?|

10g|dy i 1dnil |, 2logla’ef?[b%e*|
‘ log|a?df?/b%e?|

—e, if n+k iseven

an

e, if n+k isodd

for all sufficiently large k, using (11) in (10) we obtain
[ 2log|b3ce?ja’f?|
log|b2de?/a*f?|
s if n+k iseven
2log|a®cf?/b%e?|
log|a2df?/b2e?|
s if n+k isodd

2| dn +kqn,k |
dn+kpn,k

dn +k4n.k

<

0,—

2| dn +kqn,k I

for all sufficiently large k. This proves that 6, (n> N) is irrational. Hence Fla/b, e/f,
¢/d) is also irrational.

4. A lemma

We now prove a Lemma which will be used in proving Theorem 2.

LEmMMA 4. Ifa, b, c, d, e and f are non-zero integers satisfying (2), then there
exists a positive integer n=n(q) such that

F( a e i>_£'>l q-l-llosldnqnlllogq]
q 2

(12 D

for all integers p, q (=0).
Proof. On using (4) and (5) we have

2m—1)? d 2m—1 bd
(13) 1081 gam—1 1= 1og| £ |4 Mlog‘— +o(
4 c 2 ac
and »
d dj
(14) log| g, | =m?log —‘+mlog —f‘+0(1).
c ce
Further from (6), (7), (13) and (14) we have
2,2
(15) log| L2m*1 | _tog| 42m | _miog| 242 | 4 0(1)
2m+1 2m a‘c’f

and
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a’df?

b*c2e?

dom

2m

Hence, from (2), (9), (15) and (16) it follows that there exists an integer N, (> N)
such that

9am-1

2m—1

(16) log —log =mlog +0(1).

1
(17) |9m|<?’ Iqm~1'<|qm|5 Iqm—l/dm—1|<|qm/dm|’

for all m>N,. Now, let p and ¢ (>0) be given integers. Then we may assume that
|gn,/dn,1<4q. Therefore by (15), (16) and (17) there exists a positive integer
n=n(q)> N, such that

(18) | Gn—1/du-11<49<]q,/d,]| .

Since p,g,—1 —Pn-19,= £ 1 at least one of p,_q—pq,_1, p.g—q,p is different from
zero. So we first assume that p,g—q,p#0 and consider

19) dnqn[,,(i, £ i)-ﬁ}MMn[qn F(f_, e i) _ ,,n] ,
b f d q q b f d

where |d,(p,g—q.p)|>1. But

dn[q” F(i, e i) _ p,.] _ 4 _2d, 1

b f d an+l+9n+1qnl |qnl 2q
by (17) and (18). Substituting (20) in (19) we obtain after simplification
F(i,i,i>_£ Sl t 1
b fd] q

— gt =__ g~ 1~[og |dnan|/logq]
2 ldugnl 2

The same inequality is obtained in the other case namely p,_,;q—¢,_,p#0. This

completes the proof of the Lemma 4.

(20)

5. Proof of Theorem 2

In what follows C;=C; (a, b, ¢, d, e, f), i=1,2, - - -, 10 are independent of g and
n. If n (of Lemma 4) is odd, say n=2k—1, by (3), (6), (7), (13), (14) and (18) we have

_ Gox—
@1 108 | dyy - 1031 | =108 | dyy_ 1y, | +1og| 2L | 4 log| T26=2
9ok-2 2k—2
2k — 1)? 2k—1
<logq+(—2—)log|c|+(—2llog|b2de2I+C1.

Again if n (of Lemma 4) is even, say n=2k, by (3), (6), (7), (13), (14) and (18) we
have as before,



Generalization of Shiokawa’s Rational Approximations 133

(22) log | dyq,i | <logq+2k2log|c|+klog|a?df?|+C,.
Further from (6), (7), (13), (14), (18), (21) and (22) we obtain

(2k—1)? (2k— 1) f
(23) ———4—log = + 3 log be? —Cy<logg
(2k—1)? (2k—1) l bd
<—"log|—|+ 1 +C,
4 8| 2 2 ogl a’c*f 4
and
2 d 2 d
24) k log +klog —Cs<logg<k log 5| tklog|——- b2 5|+ Ce

Thus if n=2k—1 or if n=2k by (23) and (24) we have

(25) n=[2,/logq/\/log|d/c*[1+0(1) .
From (23), (24) and (25) we obtain
4loggq 4\/lo?log|f/be2|
26  nix log|d/c?| Wlog|d/c|
4logg  4./logqlog|bja’f| iC
logld/c?| Jiog|djc?|log|djc?|

On using (25) and (26) in (21) and (22) respectively we obtain

c,, if n=2k-1,

if n=2k.

@ log|dnq,,|<{1+2A+[B1/\/@]+C9, if n=2k—1,
logg 1+2A+[32/\/10E]+C10, if n=2k,
where,
_ log|c| . _ log|b?de?|—24log| flbe? |
log|d/c?|”’ ! Slogldjc?|
and ’

log|a%df?|—2Alog|bja’f|

Jlog|d/c?|

B2=

Substituting (27) in (12) and putting

1 |
C=max{—2-q—cs’ __q—Cw} and B=min{B,, B,} we obtain

2
F(i, e 3>__p_ o——
b fd] q
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This completes the proof of Theorem 2.
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