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1. Introduction

The purpose of our paper is to study the behaviour of the (exponential) Chern
characters of complex projective manifolds under certain holomorphic maps. Let X
and Y be complex manifolds of dimension » and S= U:‘:l S; be a hypersurface in
Y with only simple normal crossings (i.e. S is a union of irreducible components
S, -, S; and the divisor ZL 1 S; has only simple normal crossings). Let ¢: X—Y
be a surjective holomorphic map such that the restriction map of ¢ to X—¢~1(S)
is locally biholomorphic and the map ¢ satisfies the following conditions:

(i) The inverse image ¢~ !(S) is a hypersurface in X which is a union of
irreducible components D, - - -, D, and the divisor ) ; _, D, has only simple
normal crossings.

(ii) The image @(D;) of D;is either S; N -+~ N S; (m<n, 1<j, <" - <j,<k)
orapointof §; n---nS; (1<j; <"+ <j,<k).

(iii) For any point peg~!(S), if peD,n--- "D, (r<n) and g=¢(p)e
SN+ nS,, then we can choose local coordinate systems (¢, - -, t,)
and (zy, -, z,) around p and q respectively, such that (1) a local equation
for D; (resp. S;) is #;=0 (resp. z;=0) and (2) ¢ is expressed as

Zy= a9 (L<j<m),
Z=1% 1t 1% (mt 1<j<n),

where a;y, -+, a;, (1<j<m) are positive integers and a;,,, T, Ay

(1<j<n) are nonnegative integers and moreover the determinant
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We simply say that the map ¢ satisfies the monomial (or toroidal) condition
over S if it satisfies the above conditions (i), (i) and (iii). In particular if
o(D;)=S; - NS, then for each point pe D;, we have local coordinate systems
(ty, -, t,) and (z4, - * *, z,) around p and g respectively, such that a local equation
for D, (resp. S;) is t;=0 (resp. z;=0) and ¢ is expressed as

Zy=tyeg o an (1<j<m),
Zj=13% 1 (m+1<j<n). (1)

In this case, it is easy to check that the above positive integers #y, - - -, 1,, are unique-
ly determined by D;. Therefore we call D; either a ramification locus of @ with
type (ny;S;) (including the case n;=1) or a contraction locus of @ with
type (ny, =, Ny Sy, * *» S,) according as m=1 or m>2 respectively.

We denote by ch(X) the Chern character of the tangent bundle 7(X) of a complex
manifold X. Our main result is the following theorem.

THEOREM 1.1. Let ¢: X— Y be a surjective holomorphic map between complex
projective manifolds of dimension n and S be a hypersurface in Y which is a union of
irreducible components Sy, -, S,, and the divisor " . S; has only simple normal
crossings. We assume that the restrictionmap of  to X — ¢~ Y(S) is locally biholomorphic
and the map ¢ satisfies the monomial condition over S.

(i) If the map ¢ has only a contraction locus D with type (g, ** "5 By S15 " "> S
and ramification loci D; with type (o; S;) (i=1, -+, m), where m<n, then we have
¢*S;=o;D;+n;D and the formula

preh(y)—ch(X) = . (e"¥ =)~ 1) @

in A(X)® Q, where A(X) is the Chow ring of X and Q is the field of rational numbers.
(i) If the map @ has only ramification loci D; with type (u; S) (i=1, -,
m,j=1, -, r;), then we have qo*Si=Z;.‘=l a;;Dy; and

@*ch(Y)—ch(X)= ), Y, (e?Si—e?S CumDlu). 3
i=1j=1 .

First of all, by extending the methods which can be found in Porteous [P] and
Kawai [Ka, §3], we shall prove Theorem 4.2 in §4 which is a generalization of
Theorem 2 in [Ka, §3]. The proof of Theorem 1.1 is given in §5 using Theorem 4.2
and the Grothendieck-Riemann-Roch theorem.

Next, applying Theorem 1.1, we shall examine the Chern classes of finite coverings
of complex projective manifolds. Let ¢ : X— Y be a finite covering which is branched
along S, where X and Y are complex projective manifolds and S =U:”=1 S;is a
hypersurface in Y with only simple normal crossings. Then we have the following
theorem.
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THEOREM 1.2. If @: X—Y has only ramification loci D; with type (%; S;)
(i=1, - - -, m), then we have

& 0-p*e,(N)== ¥ =D, @

A0~ g*ex(V)= 3 (= DD e (VD

+ Y (o4— 1)e;—1)D;D;, ®)

i<j
where c,(X) (resp. ¢,(Y)) is the i-th Chern class of X (resp. Y).

Putting n,=1 and ;=1 (i=1, - - -, m) in (i) of Theorem 1.1, the map ¢ gives
the blowing up of Y along C=S; n - NS, (which is the transversal intersection
of Sy, -+, S,) or at a point of §; N - - N S, (in this case m=n). Using our formula
(2) in Theorem 1.1, we can obtain the formulas expressing the behvaiour of the
Chern classes under the above blowing up.

THEOREM 1.3. Let Y be a complex projective manifold and S; (i=1, - - -, m) be
nonsingular hypersurfaces in Y such that the divisor ) | S; has only simple normal
crossings, where m<n. Let ¢ : X—Y be the blowing up of Y along C=S; - - 0SS, (in
this case m<n) or at a point of S; N -+ NS, (in this case m=n) and let D be the
exceptional divisor of the blowing up. Then we have

a(X)—@*c;(Y)=—(m—-1)D, (©)

c2<X>—<o*cz(Y>=<o*<Z S,-—(m—1>c1(Y>>D+i("12‘—3)D2, %

i=1

es0)—oesN=0(( £ 8i)eitr—m= s n-( £ s1))p
qo*(_’f’(m_“ﬁ cl(Y)—(m—2)( gl si)>Dz

2

_ m(m— I)(m—>5) D3

‘ ®)

Finally, we shall apply Theorem 1.1 to investigate some properties of certain
covering space (or its nonsingular model) of P", where P” is the n-dimensional
complex projective space. Let X be a complex projective manifold of dimension n
and Ky be the canonical divisor of X. It is known that if X is a minimal z-fold of
general type (i.e. Ky is numerically effective and 0<K%), then the inequality
kn< 2D o (X)K% 2 holds (see e.g. [M1], [M2]). First we have the following

n
theorem.
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THEOREM 1.4. Let ¢: X—P" be a finite covering which is branched along S,
where X is nonsingular and S is a hypersurface in P" with only simple normal crossings.
If the covering space X is a minimal n-fold of general type, then

K% <2c,(X)K%2 . ©)

If the covering space has singularities, then the explicit construction of its
nonsingular model is generally difficult. We shall examine the Kawai cover X which
is a nonsingular model of certain covering space of P" constructed by Kawai [Ka].
Let ¢ : X— P" be the v-th Kawai covering of P" associated with S, where S= U, S
is a hypersurface in P" with only simple normal crossings (see e.g. Fujiwara [Fj]).
Then we have the following theorem.

THEOREM 1.5. For 2<m<n—1, if the Kawai cover X is a minimal n-fold of
general type, then we have the inequality

K% <2c,(X)K% 2 . (10)

2. Difference of tangent bundles and some lemmas

From now on, let ¢: X— Y be the same as in Introduction and we denote by
7(X) and 7(Y) the holomorphic tangent bundles of X and Y respectively. Let ¢ *1(Y)
be the induced bundle of 7(¥) by ¢. We use the same notation for a holomorphic
vector bundle and the coherent sheaf of its holomorphic sections. By the assumption,
we may assume that for any point p € X, there are local coordinate systems (¢,, - - -, t,)
and (zy, - - -, z,) around p and g respectively such that ¢ is expressed as z; = ¢4+ - - i
(i=1, - - -, n), where the determinant | 4|=|a;;|#0. Then it is easily checked that

det a(Zl, el Zn) =|A|tq“+...+aln_1. A -t:nl+"'+ann_1 ] (11)
aty, =5 1)

From (11), we see that the homorphism of locally free sheaves ¢ : (X)—p*t(Y)
given at p by the equations
0 t 0z; 0
"’<a—,,.>‘i§1 e

is a monomorphism, where 0/0t; and 0/0z; are local sections which are local bases
for ©(X) and @ *t(Y) respectively. Therefore we can regard t(X) as a submodule of
@*1(Y). In this section, we study the quotient sheaf ¢ *7(Y)/z(X).

Let p be a holomorphic section of ¢ *7(Y) over X and is written at p in the form

n 0
p=7>, hi(t)a— .
=1 Z,

12

CIfits germ p, at p belongs to the image of the induced map ¢,: 1(X),—»¢*(Y), on
the stalks, then we shall express it as p=0 mod(X) at p.
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Now, from (11), we can easily show that the equality
( I ) _Z ,(r) (12)
holds if and only if the following relations are satisfied
&l (t)
.l |A| P ij

U=L--,n), (13)

where A;; is the (i, j)-cofactor of | 4|. The following lemma follows immediately from
(13).

LEMMA 2.1. If each hi(t) (i=1, - - -, n) satisfies the relations

tjA;ihi(t)=z;0,(t)

for j=1, -+, n, where the o,;;(t) is holomorphic at p, then p=Yi_, hi(t)0/0z;=0 mod
(X) at p.

LEMMA 22. Ifp=)7_, h,-(t)(')/aziEO mod 1(X) at p and ¢ is expressed as

Z_=tl!ij1. . 't?:jrpi(' e fj,, SRR M ) (1 <ji < '<jrSn),

Sl t} , "+ *) is holomorphic at p and does not contain variables

then each h; can be written in the form

h(@)=1t5017 01557 gy(1)

where the p;(- -

tjp.. > J:

where the q;(t) is holomorphic at p.
Proof. By (12),wehave h;(t)= Z;’= 19;0z;/0t;, from which Lemma 2.2 follows.

LEMMA 2.3. Let D be a contraction (or ramification) locus of ¢ with type
(ys = *s M3 Sy, **, Sy) and p be a point of D—\ ) (D N Dy), where D, is a contraction
(or ramification) locus of @ which is different from D. Moreover we assume that there
are local coordinate systems (ty, ---,t,) and (z{, *- -, z,) around p and q=q@(p)
respectively, such that a local equation for D (resp. S; (i=1, - -+, m)) is t; =0 (resp.
z;=0) and ¢ is expressed as

z;=1tYpi(ty, -+, 1) (1<i<m),
zi=pi(ty, " "5 1) (M+1<i<n).
Then p=2?= L hi(1)0/0z;=0 mod ©(X) at p if and only if hy(t), - - -, h,(t) can be written
in the forms
hi(t)ztrf—lqi(t) (14)
and f;=q;/p; is holomorphic at p and f,, - - -, f,, satisfy the relations

m

Z ufl j(t) (j=2a T, n) s (15)

i=1
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where the u;(t) is holomorphic at p.

Proof. Let hft)be as in (14). Then, since h;/z;= f;/t, (i=1, - - -, m), the equation
(13) can be rewritten in the form

|A|9j=i > Ayfitt; X Aij£~ (16)
- by i=1 i=m+1 z;
Now we shall prove that ¢;)7_ ., A;h/z; is always holomorphic at p. Since
D, (#D) does not contain p, we may assume that the coordinates z; (i,>
m+1,a=1, ---,[) can be written in the forms z, =¢; (2<j;<-'-<j;<n) and if
i#i, and i>=m+1, then z; is a non vanishing holomorphic function. Then, since
A4; ;=0 (j#j,) and 4;; =0 (i#1i,), we see that

. A;, jahiu U=Jd >
tj Z Aij*iz hi
d i i 2 Ay— .
i# iy Z; (J#Ja) -
‘Note that p; (i=1, - - -, m) are non vanishing holomorphic functions and if f; are

holomorphicat p, then g, is holomorphic at p. Lemma 2.3 follows Lemma 2.2 and (16).

LEMMA 2.4. Let D be a contraction locus of ¢ with type (ny, =, By Sy, * 5 Sp)
and D; (i=1, - - -, m) be a ramification locus of ¢ with type («;; S;). Let p be an arbitrary
point of either ) DD, n - nD,_; I<r—1<m)or(ii)D,;n---nD, (1<r<n).
We assume that any other contraction (or ranification) locus which is different from
the above D and D; does not contain p and moreover there are local coordinate systems
(ty, ~* -, t,) and (zy, - * -, z,) around p and q=q@(p) respectively, such that in case (i)
(resp. (i), @ is expressed as

=Py, k) (== 1),
zi=0pilpsy, sty (=r, 0, m), 17
zi=pty+r, "5 1) (=m+1,--.n),
(resp. zi=17pi(tys1, " "5 1) (i=1,--,n),
zi=pi(ty+1, "5 1) (=r+1l, -, n), )

where a local equation for S; is z;=0 and local equations for D; (i=1, ---,r—1) and
Daret;=0andt,=0respectively (resp. alocal equation for D;(i=1, - - -, r)ist;=0).

Then p=Y7_, hi(t)0/0z;=0 mod 1(X) at p if and only if hy(t), - - -, hy,(t) can be
written in the forms

(18)

h(t)=15"1i " g (0) (=1, -, r=1),
h()=t"1q()  (i=r, -, m)
and f,=q;/p; is holomorphic at p and f1, - - -, f,, satisfy the relations

(19)
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A”_f:,‘l'z A,Jt}f,=t,uj(l) (]=1, "’,r_l),
i (20)

ZAijﬁ=truj(t) (]=r+19 ”',n)s

where the u,(t) is holomorphic at p (resp. hy(t), - - -, h(t) can be written in the forms

hit)=15""q{t) @1
where q,(t) is holomorphic at p).

Proof. 1In case (i), let A;(¢) be the same as in (19). Since

o ny

A= . , (22)

it is easy to check that 4;;=0 for 1<i<r—1 and i#j. Therefore, in this case, the
equation (13) can be written in the forms

gj 1 { < ]]f)+ZAl] ]f;>+t Z AU } (j=1a“'ar_1)7
|A| i=m+1 Z;
1 m

gr=ﬁ{z irﬁ+t Z+1A"—~},

9i= |A| { <Z lin>+t i §+ Alj'_.} (]=r+1, ...,n)‘

l

By the same argument as in the proof of Lemma 2.3, first we see that Y ey Aijhilz;
is holomorphic at p. Since p; (i=1, - - -, m) are non vanishing, again using Lemma
2.2 and these equations, we can prove that gy, - - -, g, are holomorphic at p if and
only if f,, - - -, f., are holomorphic at p and satisfy (20).

In case (ii), let 4,() be the same as in (21). In this case we have 4;;=0 for 1<i<r
and i#j. Therefore we obtain

1 tih; h; .
gij= {A J1+t Z AU__} (.]=1a'“’r)a

lA‘ j i=r+1 Z;




182 S. YAMaMOTO

Z Au (j=r+1»""n)-

J IAI i=r+1 Z;

The assertion in the case (ii) follows from this.

3. Kawai’s sheaves and several sheaf homomorphisms

DEeFINITION 3.1. Let D, (i=1, - - -, r) be contraction (or ramification) loci of ¢
and S; be an irreducible hypersurface in Ywitho(D;n---nD,)n S;# . Then for
1ntegers ki, -+, k,suchthatk;> — 1, we define K kg, -, k,; Dy, -, D,; S;)tobe

K(p(kl’ ks Dy, -, D, Sj)
=(Up){@FF(S) @ FD )M ® - - - @ (WD,)*)®*}
if £,20 (i=1, ---,r) and
Kk, -+, ky; Dy, -+, D)=0

if thereis a k; such that k;= — 1, where Bis D, n - - A D, orapomtofD1 N -nD,
¥(S;) is the restriction of normal boundle v(S) of S;in Y to ¢(B), V(D; )* is the
restriction of the dual bundle of normal boundle v(D ) of D; in X to B, Ay is the
injection of B into X, ¢y is the restriction map of ¢ to B and (4p)4() is the direct
image induced by iB We call it a Kawai’s sheaf associated to contraction (or
ramification) loci (D, - - -, D,) and a hypersurface S; of orders (k,, - - -, k,) (since such
a sheaf was first 1ntroduced by Kawai in [Ka]).

Note that applying the projection formula in the Grothendieck group (see [P])
to the injection Ap, if k;>0 (i=1, ---,r), then the Kawai’s sheaf K (ky, -,
k,; Dy, -+, D,; S;) can be identified with the coherent sheaf

(1)U ® 0*[S;1® ([P 19" ® - - - ® ([D,]%)®*,

where [S;] (resp. [D;]) is the associated line boundle of the divisor S; (resp. D;) and
Oy is the structure sheaf of B.

Now, to examine the difference of tangent bundles, we shall define two sheaf
homomorphisms

®(ky, -, ki Dy, o, Dy 8;): Ky, -, Ky Dy, o+, D, )

= ¢*1(Y)/t(X) (23)
and
¢(k1, s, kr7 D19 . D Dll’ e lp’ J)
Kq;(kla T, kr, D17 t '9 r’ ])_)K ( i1 : k D119 T, Dip; S]) (24)

for any nonempty subset {i;, - - -, i,} of {1, -+, r}.
Let p be any point of B such that g=o(p)eS;. We take coordinate systems
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(t, -- -, t,) and (z4, - - -, z,) around p and q respectively, satisfying the condition (iii)
in Introduction. We assume thatpe BN D,,.; N - - nD,andgeS;nS; - - NS
Then ¢ can be expressed as

m-1"

=gty ey (=1, 000, m),
zy=tRyt g (j=m+l,ccom),

where a local equation for D; (i=1, - - -, r') is ;=0 and a local equation for S; (resp.
S;) is z; =0 (resp. z,.,;=0). With respect to these coordinate systems, we define
@,=® (ky, ", k,; Dy, -+, D,; S;) to be

0
0z,

@Gmm”3mé;®mm3“®m0=*”ﬁ%Mp”3w
1

for k;>0 (i=1, - - -, r), where g is a holomorphic function and 8/0z, is considered
to be a local section of the line bundle @ *[S;] on the left and a local section of
¢*17(Y) on the right, dt; is a local section of the line bundle [D;]*. To show that this
is well defined, we take any other coordinate systems (s, - - -, s,) and (wy, -, w,)
such as above. Here we assume that a local equation for D; (resp. S;, S;) is 5;=0
(resp. w; =0, w,, =0). Then we have z;=aqw; (i=1, - - -, m)and t,=b;s;(i=1, - - -, r),
where a; and b; are non vanishing holomorphic functions. Therefore we have

0z, Oa, 0z;  Oa

awl 5W1 awl_awl

w; =2, -, m). 25
Moreover we have the relations of the sections of ¢ *[S;] and [D,]*

L=al i and dt,—=b,»dsi (26)
ow, 0z,

respectively. Suppose that g/0z, @ dt?*' ® - - - @ dt®* and hd/ow, R dsEH ' ® - - - ®
ds®* are the same holomorphic sections. It follows from (26) that

gb%t-- bk =ha, . 27
Therefore, using (25) and (27), we obtain

0 0 0
skl...sl:rh _tkl...t:fr — —
! ow, g 0z, LS 0z;
where
da.
fi=wis,il”'s’rfrh§ (=1, m)),
1
0z.
fimskteoosbn EL (i=mt1, ).

wy
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Now, as in the proof of Lemma 2.3, assume that z; =¢; (i,>m+1,a=1, -, r'+
1<j, < -<j,<m)and if i#i, and i,>m+ 1, then z; is a non vanishing holomorphlc
function. In this case, for i=i, one gets

0 (J#7a) »
tinjfi={ o,
ZiAijfi (=7 -
From this, by Lemma 2.1 we see that @, is well defined. Hence we have (23).
Next we define @,=® (ky, -, k,; Dy, -+, D,; D;,, - -, D;) to be

<Dz<a(tr+1, Lt QAP ®dt;®"*>

0
0z,

— .. kj kj
—a(tr+1a ) n)t L t;:r pp

Qdifh® -+ dtfir
1

fork;>0(i=1, ---,r), where (¢,, - *, t,), (24, - *, z,), dt; are the same as above, 9/0z,
is a local section of the line bundle ¢@*[S;], a is a holomorphic function and
{1, =" " Jr-p} is the complement of {i;, - --,i,} with respect to {1, ---, r}. Then,
using (26), it is easy to check that the map @, is well defined. Therefore we have (24).

THEOREM 3.2. For a contraction (resp. ramification) locus D of ¢ with type
(e, -5 1 S1, 0005 Sy (resp. (ng; S1)) we have a sheaf homomorphism

ny—2

Bp: Y KaDiS)+ 5 T Kylki DiS)— o*e(Y)/e(X)

j=2 k=0

ng—2

(resp. ®p: k; ) K,(k; D; §1) = ¢*1(Y)/t(X))

such that @y, is an isomorphism over D—Ui(DnD,-), where D; is a contraction (or
ramification) locus of ¢ which is distinct from D.

Proof. Usmg homomorphisms ®(k; D; S;), if ny >2, then we define @), to be

'Z_cb(kp

n12

Q)= Z D(k; D; S,)+ i

k=0

=

Let p be an arbitrary point of D— U .(D N D;). We may assume that there are local
coordinate systems (¢, - -, t,) and (z,, - - -, z,) around p and ¢=¢(p) respectively,
such that a local equation for D (resp. S;) is ¢; =0 (resp. z;=0) and ¢ is expressed
as (1) and we have

ny—2 m a
‘DD< > gkl ®dt®k+ Z JZ gk,—®dt®k>= ) higa
k=0 i=1 i

=2 k=0 0

where the g,; are holomorphic functions of variables ¢,, - - -, 1, and

ny—2 ni—1

hy= Z Jualh h;= Z Gl (i=2, -, m).
k=0 k=0
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Now suppose that ) ;- #;0/0z;=0 mod t(X) at p. By Lemma 2.3, we can write
hi= t'ii_ lqi(t) s

where each ¢; is holomorphic at p. Therefore we see that g,; =0 (k=1, -, n—2)
and g,;=0 (k<n;—2 and i>2). Consequently, we have h;=0 and h;=17""g, 1
(i>2). Moreover, putting f;=g;/p; (in this case f; =0and f;=g,,_1;/p;), it follows from
Lemma 2.3 that Y./, 4;ign—1/pi=0 (j=2, ---,n). Now, using the relations
Y mAy=|A4] (j=2, - -, n), where 4;; is the (i, j)-cofactor of | 4|, we can easily

verify that
Ay o Am
rank| : -, ¢ |=m—1.
A2n T Amn

From this we see that g,;=0 (i=2, - - -, m). This implies that the induced map on
the stalks (®p), is injective.
Next we suppose that 2?=1 h;0/0z; is an arbitrary section of ¢*7(Y) at p. We
can write
ni—2

hi= Z uki(tZ’ Y tn)t,i
k=0
+t'ii_l (bi(tb T tn)+ci(t23 T tn)tl) @i=1,---, m),

where u,;, b; and c; are holomorphic at p. Now, since the equality

Ayy = A Ay, 0 Am Z?:lAn%?
rank{ -, ¢ |=rank| : ..
A2n e Amn AZn e Amn :n=1 Ain%l;'
holds, we can choose the solutions (x5, * =, X)) =(Ba(t2, * 5 1)~ 75 Bultas * = "5 1))
of the system of equations
b; < b;—x; .
Alj_+ZAij =0 (]=2a'“an)'

P i=2 pi
Then, with the aid of Lemma 2.3, we have

“ i m [ ni—2 5
i=1 62 0z, i=2\«k=o0

0z;

(mod 7(X) at p). This proves that the induced map on the stalks (®p), is surjective.
In the case in which n, =1, we can define ¢}, to be

@D=fj '_i ®(k; D; S

Then, by the same argument as above, we see that @, induces an isomorphism over
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D—{),(D n D;). Moreover, if D is a ramification locus of ¢ with type (n,; S,), then
for ny >2, we define &, to be

nyg—2
Op= ) Dk D;Sy).

k=0

Then the assertion follows immediately from Lemma 2.3.

4. Description of the difference of tangent bundles

DrerINITION 4.1. Let D be a contraction (resp. ramification) locus of ¢ with
type (ny, =+, 1y S1, -+, S,,) (resp. (ny; S,)). We define Ass, (D) to be
n1—2

m n;j—1
Ass D)= 3 K(k:D:S)+ Y T K(kDiS)

j=2 k=0
n1—2
<resp. Ass, (D)= ), K,k D; Sl>,
k=—1

where ) denotes the direct sum of coherent sheaves, and we call it the sheaf associated
to the contraction (resp. ramification) locus D with type (ny, -, 0,3 Sy, =+, S,) (resp.

(ny3 S4)).
The following theorem is a generalization of Theorem 2 in [K, §3].

THEOREM 4.2. Let ¢: X—Y be a surjective holomorphic map of complex
manifolds of dimension n and S be a hypersurface in Y which is a union of irredudible
components Sy, -, S,, with only simple normal crossings. We assume that the
restriction map of @ to X—q¢~XS) is locally biholomorphic and the map ¢ satisfies
the monomial condition over S.

(i) If the map ¢ has only a contraction locus D with type (1, " * ", Bp; Sy, " *5 Sw)
and ramification loci D; with type (o;; S;) (i=1, - - -, m), where m<n, then we have a
sheaf homomorphism

Y, Ass,(D)+ :Zn: Ass(D;) = ¢*1(Y)/1(X)

such that
a1—2 n1—2 m a;—2 ni—1
Ker¥,~ Y Y K, ikDy,D;S)+> > Y K,(jikD,D;S), (28)
j=—1k=-1 i=2 j=—1 k=0
COkCl‘ T(P%Kq,(dl—l, nl—‘l; Dl’ D; Sl)' (29)

(ii) If the map @ has only ramification loci D; (i=1, - - -, m), then we have a
sheaf isomorphism

T .

e

Mz

Z Assy(D)= @*(Y)/r(X) .
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Proof. First we shall prove (i). Using @, and @, in Theorem 3.2, we define
the map ¥, to be

¥,=Pp+ ), Dp,.
i=1
To begin with, we consider the case (I)inwhichpeDnD;n -+ nD,_; (1<r—1<m)
and p¢D,u - -+ U D, and assume that n, >2, a; >2 and ¢;>2 2<i</—1), ;=1
(/<i<r—1). Then we have

nyg—2 a
Ttp( kZOﬁd(tl, '”’tr—latr-l-la ”"tn) a ®dt,-®k

2

ol d
kl(tb '”9 r—1» tr+15 '”’tn)a— ®dt:-8k

i

h; (30)

s

N
- 0 e
Z Z g]:(tl,“'a i— 19'”91‘1'+1a'”9tn)a_QDdtiJ
9.
0z;

1

i

where (¢,, - - -, t,) and (z,, - * *, z,) are local coordinate systems as in case (i) of Lemma
24,

ny—2

h1= Z .f;cl(tl’ MR S A T tn)t:f
k=0

a1—2

+ 2 gl ot
e

ni—1

hi= Z ﬁci(tb ) tr—l’ tr+13 T tn)tf

+ Z g]l(tI’ T, ti—la ti+19 T, tn)t{ (2S1Sl_ 1)
j=0
and

ni—1

hi= Z ﬁci(zl’ R PSP SR '”9tn)t': (lSlSM) (31)
k=0

To prove (28), now suppose that Y 4;0/0z;=0 mod 7(X) at p. By Lemma 2.4, h; can
be written in the same form as in (19), where ¢, =0 and each g; (i=2, - - -, m) does
not contain the variable ¢,. Therefore, putting f;=g;/p; (i=1, - - -, m), the conditions
(20) of Lemma 2.4 are equivalent to the following conditions
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Z A41/;=0,
Ayfi+ Y Ayt fi=0  Q<j<r—1),

> Ayfi=0  (r+l<j<n).

We can easily verify that if the matrix A4 is the same as in (22), then

Ay o A Ay 0 Aw Ay
A e 4 A o4
rank | 7T ™ \=rank| 7T Tl 0 32)
14."" A;nn 14‘.7"1 T A;nn 6

=m—r+1, where 4;;is the (i, j)-cofactor of the determinant | 4 |. Therefore we have
fi=--=f.=0. Hence h, =" --=h,=0. This implies that, putting

Ji= Z Cixit 1
J
gii= 2 diit¥ »
k
where cj; and d,; are holomorphic at p and do not contain variables #; and ¢,, the
following relations
Cii i1 =0 (0<j<a;—2,0<k<n,—2) and
Cii+d;i=0 (2<i<l-1,0<j<o;—2,0<k<n;—1) 33)

are satisfied and moreover the functions c; and dy; which do not appear in the
relations (33) are zero functions. Since the maps &(j, k; D;, D; D;S;) and
&(j, k; D,, D; D;; S;) in Section 3 can be defined to be

0
@(j, k; D;, D; D Si)<cjki
0z,

®dtP® dz?") =cyti ai Rdt®*,
. Z;

0 , 0 .
&(j, k; D;, D; D;; Si)<cjki . ®dtf®dt?k>=cjkitf . ®dt®

respectively, it follows from (30) and (33) that the map

a3—2ny1—2
Y Y (®(j, k; Dy, D; D; S,)—9(j, k; Dy, D; Dy; Sy))

j=0 k=0

I-1a;—2n;—1
+3Y Y Y (9, k D;, D; D; S;)— ®(j, k; Dy, D; Dy; ;)

i=2 j=0 k=0



The Behaviour of Chern Characters of Projective Manifolds under Certain Holomorphic Maps 189

induces an isomorphism on the stalks
ay—2n; —2 I-1o;=2n;—1
(Ker,Ptv)pg( 'ZO kz (.]’k D1>D S1)+ 22 Z Z K(.]>k DvD S))
j= = i j= P

To prove (29), for an arbitrary section Y h;0/0z;, we can write

ni—2

h;= Z 2Y PV MU AP W) 1
k=0
i—2 .
+ ) Giilty, s limtivg, 0 L+ g (I<i<i-1),
=0

n,»—2
hi= z fki(tla T tr—1’ tr+19 T tn)t:f"l"t;”_lai (lSiSM),
k=0

where f;, g;; are holomorphic at p and fi;=g;;=0fork=—1orj=—1. Furthermore
we write

ay=coy(lz, " s b—prtrwss st FC(tn G by, s L) + 2401,
a=cifty, bt ler, ST W)+ C2:(0)1L, (<i<m),
where ¢;; are holomorphic at p. In view of (32), we can find holomorphic functions

S;(t4, ”-, Lt tys1s - 5t (i=r, -+, m) which do not contain ¢, and satisfy the
system of equations

+ Z Ai1Si=0 ’
Pr i=r

€11

All

Then, using Lemma 2.4, we can verify that, putting

fm_”=<cu+% Y AjitiSj>t‘,3“_1 Q<i<r—1),
iij=r

Jni—1:=d1:—D:iS; (r<i<m),

the relation

Zh — (COIt"‘"lt"‘_l)

0z,

;_ : +i <nz_1fk,— ®dt®">

0z,

-1 /a;—2 2 ) P
+3 < > G ®dti®’>>+¢<2gj(t)——> (34)
i=1\ j=0 (3Zi 6tj
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holds, where the g;(f) are holomorphic functions. Since the map P(a; —1,n; —
1; Dy, D; S,) in Section 3 is defined to be

0
P(o;—1,n,—1;D,, D; S1)<‘301 a—

. RdtP 1 ®dtr®"1_1>=001t°{‘"1t;‘1—1 —
1

0z,

(34) implies that the composition map Po ®(o; —1,n, —1; Dy, D; S,) is surjective,
where P: ¢*1(Y)/t1(X)—Coker ¥, is a canonical homomorphism. Moreover, to prove
that this map is injective, we suppose that

coltal ltnl 1

(mod ©(X) at p), where 4; is the same as in (31). By the relation (20) in Lemma 2.4,
we have

aZl i Zi

where u, is holomorphic at p. Since ¢,; does not contain variables ¢, and ¢,, this
implies that ¢,; =0. Hence we infer that the map Po &(o; — 1, n, — 1; Dy, D; S;) induces
an isomorphism on the stalks

(Coker ¥,),=(K,(#; —1,n;—1; Dy, D; S,)), . (35)

Ifn, =1o0ra, =1, then, by the same argument as above, we can verify isomorphims

I-1a;—2n;—1
(Ker m,,;( Y 2 X KJlikD,D; S.-)) (36)
i=2 j=0 k=0 p
and (35).

We consider the case (II) in which peDnD,n---nD, 2<r<m) and
p¢D,uD, U -UD,. We assume that o;>2 (2<i</—1) and ;=1 (I<i<m).
Using Lemma 2.4, we obtain, in a similar manner to the case (I), isomorphisms (36)
and (Coker ¥,),=0.

Finally, we consider the case (III) in which peD;n - nD, (1<r<m) and
p¢DUD, U UD, If ,>2 (1<i<l—1) and o;=1 (I<i<m), then, since the

map ¥, can be defined to be ¥,= "¢, we have
-1 a;— P . 5
<Z Z g_]l(tl "ti—lti.{.l"'tn) _ t J_Zh_
st 6Zi i=1 0z

where h,:Z‘}" 12 gjitl. Using the case (ii) of Lemma 2.4, we can easily prove
isomorphisms (Ker Y’q,)p_O and (Coker ¥ ), =0. This completes the proof of (i) and
the argument given in the case (III) proves (ii).
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5. Proof of Theorem 1.1

In this section, using the Grothendieck-Riemann-Roch theorem, first we shall
prove the formula (2). By Theorem 4.2, (i), there is an exact sequence

ar—2n1—2 —2n;—1

0— Z z (]ale’D S1)+Z Z Z K(]sk DnD S)
j=0 k=0

i=2 j=0 k=0
— Ass (D) + i Ass (D;) = ¢ *1(Y)/t(X)
i=1

- (p(al_l’nl_l;Dl,D;Sl)—’O,

where K,(j, k; D;, D; S;) is the Kawai’s sheaf assoéiated to (D;, D) and S; of order (j, k)
and Ass,(D) (resp. Ass,(D;)) is the sheaf associated to D (resp. D;) with type
(ny, = 1y Sq, "7, Sy (resp. (a;; S;)). From this, we have

@*ch(Y)—ch(X)
= ch(Ass(p(D)) + i Ch(ASSq,(Di))

Cay—2n;—2 ;=2 ni—1
- z Z ChK(lak DlaD Sl)_ z Z Z Ctha(.]ak’DnD,Sz)
i=2 j=0 k=0
+ch K, (o;—1,n,—1;D,,D; S;) .
LemMma 5.1.
*S . ‘ l_e_Di —k;D;
chK,(ky, -+, k,; Dy, -+, D,; S;)=Be”S [] — e (38)
i=1 i
where the notation is the same as in Definition 3.1.

Proof. Applying the Grothendieck-Riemann-Roch theorem (see e.g. Hirze-
bruch [Hz], Fulton [F1]) to the injection A5, we see that

ch(dp),Op=(Ap),(ch Op - td((B) "),

where td(v(B)) is the Todd class of the normal bundle w(B) of B in X. Note that in
this case,

WB)=WD)® - ®WD,),

where ¥(D;) is the restriction of w(D;) to B. Using the projection formula, we can
prove that

ch(A),0p= B]'[<1 De )

i

It is easy to check that
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ch@*[S;]1=e?S/ and ch([D;]*)®=e kDi,

From these relations, we have (38). This proves our lemma.
Since, by Lemma 5.1,

*: 1_
ch K (k; D; S;)=De?™Si Te e,

we see that

ch(dss,D)=e? S (1—e~ VD)4 ' o#Si(] —e~mP) (39)

i=2
Similarly we see that
ch(dss,D)=e?S(1—e~ =Py (40)
Moreover, using Lemma 5.1 again, we have

. w5, 1—€P 1—e”?
chK,(j; k; D;, D; §;)=D;De?> ——— — ¢ /Dig7kD
D, D
From this, by an easy computation, we can prove that
ay—2 n1=2
Y ¥ chK(pk Dy, D S)=e?Si(1—e” @ IR 1 —e 70 (41)
=0 k=

ai—2n;—1
Y. Y chK,(j, k; D, D; S;)=e?Si(1—e @~ DPiy] —g~mD) (42)

j=0 k=0
and
cth,(ocl _ 1, n,— 1; Dl, D; Sl)=e¢*81[e—((a1—1)D1 +(n1—1)D_e—(a1D{+(n1—1)D)

_e—((au—l)Dl+”1D)+e_(“1D‘+"‘D)] . (43)

Note that in the case in which n, =1 or o;=1 for some i, formulas (39), (40), (41)
and (42) hold. Now, since the map ¢ is expressed as in (1), it is easy to see that
@*S;=o,;D;+n;D. So, combining (39), (40), (41), (42) and (43) with (37), we can
verify the formula (2). Using (ii) in Theorem 4.2, the same argument as above yields
the formula (3).

6. Proof of Theorem 1.2

As an application of Theorem 1.1, first we shall prove Theorem 1.2. In this case
we have @*S;=o;D;. Therefore, since ¢*S;—(x;—1)D;=D,, it follows from the
formula (3) in Theorem 1.1 that

@ *Ch(Y)— Ch(X) = .gl (e(p*Si _ eDi) .
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Equating terms of degree 1, (4) is obvious. Next equating terms of degree 2 and

using (4), the formula (5) is easily proved by a simple calculation. This completes
the proof of Theorem 1.2.

7. Proof of Theorem 1.3 and Examples

Let D, be the proper transform of S; by ¢. Then we have ¢*S;=D;+ D. By the
formula (2) in Theorem 1.1, we see that

LS|
¢*Ch(Y)~_Ch(X3== 2: —rlia
r=11!

where

Mz

E =

r
i

(¢*S;) —(p*S;— Dy —D".

1]

1

In particular, for r=1, 2, 3, we can write

E,=m=1)D, (44)

E2=2<p*<i Si>D—(m+l)D2, (45)

E3=3qo*< 3 S,.2>D—3¢*< 3 S,~>D2+(m—1)D3. (46)
i=1 . i=1

Therefore, equating terms of degree 1, (6) follows from (44). For terms of degree 2,
using (6) and (45), we can verify (7). Finally, we equate terms of degree 3. Combining
(6), (7) and (46), (8) is proved by a simple computation. This completes the proof
of Theorem 1.3.

Now we shall give some examples.

Example 7.1. For m=2, since it holds that ¢ *(S; + S,)D=0*(S,S5,) + D?, one
has '

c,(X)=0*c,)(Y)—*c)(Y)D+¢*(S,S,)
cs(X)=@*cs(Y)+ 0*(cy(Y)S1S)— o *(cx(¥)+ ST +S83)+D3,
where = denotes the numerically equivalence.

Example 7.2. For m=n, note that if r—1>j>1, then ¢*()D’/=0 for any
(r—j)-cycle « on Y. From this, one has

c(X)=p*cy(Y)+ n(n2_3) D?,

_ n(n—1)(n—>5) D3

cs(X)=@*cy(Y) 7
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In particular, in the case in which n=3, the formulas for ¢,(X) in Examples 7.1
and 7.2 are numerically equivalent to the formulas which can be found in Griffiths
and Harris [GH, pp. 609-610].

8. Proof of Theorem 1.4

Let ¢ : X— P" be a finite covering of P" branched along S and assume that X
is nonsingular. Now note that ¢,(P")=(n+1)H and c,(P")=n(n+ 1)H?/2, where H
is a hyperplane in P". We apply the formula (3) in Theorem 1.1 to the case in which
Y= P". Since in this case we have a;;=a; (j=1, - - -, r;), we see that <p*(S,-)=Zj o; Dyj.
Equating terms of degree 1, we have

KX=(p*<< § 4=l n,.—(n+1)>H>, 47)

=1 o

where n; is the degree of S;. Moreover, using (47),

m i n—2
w*(HZ)(Kx)”‘2=<Z<a’ 1>ni—(n+1)> *(H"). (48)

i=1 i

Next equating terms of degree 2, we have
2¢5(X) —c3(X) = @*Q2cy(P) —cH(P)+ X (@ —1)D}. (49)
i=1

Using (49) together with (48), we obtain
2c,(X)—cHX)KY ?

~dezo( 3 (S - 0)( & (P men)

Now, using the projection formula, it follows from (47) that K, is numerically effective
and K%>0 if and only if the relation Y 7" ot - - *(;— 1) - -0, m;—I(n+1)>0 holds.
The inequality (9) follows from the above equality and this. This completes the proof
of Theorem 1.4.

9. Proof of Theorem 1.5

We start by recalling the definition of the v-th Kawai covering of P" associated
with S, which was introduced in [Ka]. Let H be a subgroup of the fundamental
group 7,(P"—S) of P"—S generated by vn,y,, - -, vu,y, With 2<m<n—1, where
v is an integer and y; is the class of a positively oriented little loop around S;.
Let Y : Z— P" be the covering associated to the subgroup H and X be the nonsingular
model of Z constructed by Kawai in [Ka]. We denote by ¢ : X— P" the composition
map of the desingularization of Z and the covering s, which is called the v-th Kawai
covering associated with S. By virtue of Theorem 1 in [Ka], it is easily checked that
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¢~ (S) can be written as a union ¢~ '(S)=DuD;uU---uUD, of irreducible
components, where D is isomorphic to Cx P"~' (C=8;n - nS,) and D; is the
proper transform of S; by ¢. Moreover we infer readily that the restriction map of
¢ to X—¢~X(S) is locally biholomorphic and the map ¢ satisfies the monomial
condition over 'S and that D is a contraction locus of ¢ with type
(ny, M3 Sy, - *» S,,) and each D; is a ramification locus of ¢ with type (vn;; S;).
Moreover we have D, n - nD,=.

Now, by the formula (2) in Theorem 1.1, we have

@*S;=wn;D;+n,D , (50)
qD*Ch(P")—Ch(X)= Z Er s
r=1
where

1 m m
et [ S omsr( £ 1007)]
rt L i=1 i=1
From this, equating terms of degree 1 and noting that
D1 = EDm s
where =denotes numerically equivalence, we have
Ky=(Wd—n—2)+(v—m))D,+(d—n—-2)D, (51
where d=Y n;is the degree of S. Moreover, since ¢ §(P") — 2c,(P") = (n+ 1)H?, equating
terms of degree 2, we have
c}(X)—2¢y(X)= Y., (n}(vD;+D)>~D7)—D*—(n+1)o*(H?) .
i=1
From this, we get
cf(X)—2c2(X)E< Y. n? ——n—2>(vD1 +D)?>+(v2—m)D?+2vD,D . (52)
i=1

LeEMMA 9.1. We have the following intersection formula

. . . - i—1
Drln—tDn—m+t=(__v)1—1<n ;nj'r:l )”1"'”»; (l=1, ...’m),

where <n—m+i_1> is the binomial coefficient.
n—m
Proof. From (50), we have ¢*S;=vn;D,+nD. First, note that dego=
v"~ 1y, -n,. By the relation

0*(S)'=nlp*(H")=n"dego,
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we obtain
(vwD,+Dy'=v""n, - n,. (53)

Furthermore, for i=1,---,m—1, since dim¢ (D} 'D)=dimC=n—m, by the
projection formula, one has

9*(STIDITID=0.
So we obtain
(vD,;+Dy""'D\"1D=0 =1, m-1). (54)

Now, noting that D, n - nD,=, we have DPD" m=Dr+ipr—m-l_...—
D't =0. Therefore, putting X;=(vD )"~ ‘D" ™*i(i=1, - - -, m), we see from (53) and
(54) that X; (i=1, - - -, m) satisfy the system of equations

( " >X1+"'+<n>Xm=v""1n1-~-nm (55)
n—m+1 n

and

< " >X1+"'+<n_l:>Xm—i+1=0 (=1, m-1). (56)

n—m n—i

It is easy to check that (55) and (56) are equivalent to the system of equations

X,=v""'n;---n, and 57
k k k
b X+ 4+ ) Xeomime1 =0
<n—m> 1+<n—m+1> 2 <k> k—n+m+1
(k=n—m+1, -, n—1). (58)

Then, by induction on k, we can show that Xi=(—1)i'1<"_m+i—1)vm_1n1~ Cn,
(i=1, - - -, m) are solutions of (57) and (58). Hence we can prove Lemma 9.1.

Now we put k=v(d—n—2)+(v—m), I=d—n—2and L=Y n?—n—2. Then, by
(51) and (52), we see that

Ky=kD,+ID, (59)
¢3(X)—2c(X)=L(vD, + D)*+(v2—m)D?+2vD,D . (60)
Moreover, note that D D"~'=0 for n<i. From (59), we obtain
m—1 _
Ky 2=y ( n—2 '>km—1—iln—m—1+iDrln—1—iDn—m—1+i'
i=o \ n—m—1+i

Using Lemma 9.1 and this, we have



The Behaviour of Chern Characters of Projective Manifolds under Certain Holomorphic Maps 197

mt -2 . .
(vDy+DPKy *=ny - ny 3 < " .>(_V)'km_1—l
i—o \n—m—1+1i

xl""”‘l‘“"(( n—m+i—2 )_2< n—m+i—1 >+<n—m+i>>
n—m n—m n—m ’

where ( ’ )=0 (r<n—m—1). Since it holds that
n—m

<n——m+i—2> (n—m+i—1> (n—m+i>
-2 +
n—m n—m n—m

("_"””_2) (m<n—2,i>0),

n—m—2

1 (m=n—1,i=0),
0 (m=n—1,i=1),

we obtain

(vD,+D)*K% ?

U = n—2 n—m+i=2\ i m—i-1pn—m+i—1 .
= " nmi§o<n—m+i—1>< n—m-—2 >( v)k ! (mSn 2)’ (6])

k" 2ny o n, 4 (m=n—-1).

Furthermore, for m <n—2, using the relation

n—2 no3 j
(o) 2 (eica)
n—m+i—1 j=n-m+i—2\n—m+i—2

n—3 j—(n—m-—2) J
(VD1+D)2K')‘(_2=’11”'”mln_m_l Z Z < >

we see that

j=m-m-2  i=0 n—m+i—2

x(n_m+l_2>k""i“‘(—vl)i.

n—m—2

From this, using the following relation
( j )x<n—m+i—2>=< j >x<j—(n—m—2))’
n—m+i—2 n—m—2 n—m—2 i
we obtain
(WD, + DK% 2=n, - -n,d" ™

j=n—-m-2 n—m—2
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By the same argument as above, we can verify that

me el S (] Ny ),

D%K"X_z = j=n—m n—m (63)
0 (m=2)
and
n—2 n— n—2 m—2
D DK% *=n, ni"™™ (k—viy"= 2. (64)
m—2
Note that k—vl=v—m. Using (60), we have
(c1(X)—2c,(X)K ?
=L(vD,+D)*K%y *+(v>—m)D2K% 2 +2vD, DK% 2 (65)

Now, according to a result of [Fj], we see that K is numerically effective and K% >0
if and only if v>m and d>n+2. Therefore, in this case, combining (61), (62), (63),
(64) with (65), we can prove (10). This completes the proof of Theorem 1.5.
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