COMMENTARII MATHEMATICI ed. RIKKYO UNIV/MATH
UNIVERSITATIS SANCTI PAULI IKEBUKURO TOKYO
Vol. 50, No. 1 2001 171-8501 JAPAN

Asymptotic Estimates for a Class of Summatory
Functions 1T

by
U. BALAKRISHNAN and Y.-F. S. PETERMANN

(Received December 12, 2000)

Abstract. As in two previous papers [2] and [3] we address here the problem of
providing a precise asymptotic estimate for the sum 2 n<x @(n) with generating function
Y amn=* = ¢(s)I1(s)H(s) (o0 > 0p), where I1(s) := ?:1 % @rs+y;)(reN;1-r <
Y1 < --- < y) and H is some “innocuous” factor. In the first part of this work [3] we
allow the «; to take any nonzero complex values, as a result zeros of the zeta function may
very well correspond to singularities of IT(s), and for this reason we are able to exploit only
the pole of £(s) at s = 1 and the right-most singularity of the first factor in IT(s). In this
sequel however, we assume all the o; to be positive integers, whence all the singularities
of I1(s) are poles, which we are able to use. Our result can be applied for instance to
estimating Zns , 0J(n) for positive integral values of m, where o,(n) = Y din d?®, with,
for negative a small enough in modulus, a significant explicit smallest term of order x 1+ma,
as an illustration we treat extensively the cases m = 2 and m = 3. Our method appeals
to a simple idea, an optimal use of Holder’s inequality on known bounds for the Riemann
zeta function and its mean in the critical strip, but requires extensive computation.

1. Introduction

1.1. Preliminary remark on the symbol o

The symbol o, sometimes with an index, is traditionally used in number theory to
denote (at least) two types of very different objects which, somehow unfortunately, both
constantly appear in this paper. The use of o has become for both such a matter of course,
that we feel the use of another symbol would look incongruous and be misleading. We are
however confident that in the context the reader will not mistake the real part o of a com-
plex number for the sum-of-divisors function o, nor the abscissa of absolute convergence
o, of some Dirichlet series for the divisors function o,.
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1.2. Introduction and notation
We consider the problem of giving a precise asymptotic estimate for the sum

Y am,

n<x

where for large enough o we have the representation

20 s + BFGs)

=
n>1

k
=L@ s+ B [ [ (s + B+ BIH(s),
i=2

where r is a positive integer, —r +1 < 8 < l,and B; :=0 < B < --- < B (see [3,
Section 2] for a complete treatment of the easier case 8 > 1; see [2] for the case 8 = 1
and r = 1), and where the product is allowed to be 1 (in which case k = 1 and H = F).
We assume that H has a representation

He =Y X0

s
n>1 n

with an abscissa of absolute convergence 6, = 0, (H) < #, and this implies in particular
that for every € > 0 we have

|H( +e+it) <Ce:=H(o +9), 1)
where H(s) := anl |b(n)|n~5. We also assume that the exponents
‘ai (i=1,---,k) are positive integers .

Theorem 1 below then provides an asymptotic estimate for ), _, a(n) which is more pre-
cise than that provided by the first part of this work [3] (in which the exponent o] (= «
there) is not assumed to be a real positive integer). But without an additional assumption
on H Theorem 1 is valid only under the rather strong condition o,(H) < 0. However, in
all the classical applications of this type of results we can think of, the coefficients b(n) are
all zero when 7 is not the 7-th power m” of an integer (in which case we say that H has its
support on the r-th powers of integers). In this case we write H(s) = h(rs + 8 + B¢) and
F(s) = f(rs + B), and we .ibtain, without assuming o, (H) < 0, a better estimate.
We need to introduce some additional notation. We put, foro > (1 — 8)/r,

v(n)

s

Lrs+ BF(s) =)

n>1
and we note that if F(s) = f(rs + B) has its support on the r-th powers of integers, then
we may write

v1(m)

o) = vimm™",  where £%()f (@) =} ———.

z
n>1
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In general (this notation will be used in Lemma 1 below), if

Fi(s) = fi(rs + B)
has its support on the r-th powers of integers, and if we write
w(n) wi(m)

s+ PR =Y —— ad @QA@ =), ,

Z
n>1 m>1 m

then
w(m”") = wi(m)ym™F .
Moreover we put

ﬁ@+ﬁ—Mﬁ@+ﬂ—mﬁ

N

at s =>b.

R,(f1,b) := the residue of

We also let

£(B) if B is not a singularity of £
0 otherwise

f*(ﬂ) = {

(this will be used when £ = ¢, £ = f, £ = f1). For u areal number we put

1 1
Y =u—u]-o={u}-7,

where [u] and {u} denote as usual the integral and fractional parts of u.
We shall also consider nonnegative numbers p(co) and G(A, o), where A > 0 and
1/2 < o, satisfying

¢(o +in)] « 1P @)
and r
f (o + in)|Adt « TIHOAFE 3)
1
the associated quantity
k
P(o) =) plo + Bai, “
i=1
and for real positive numbers g; (1 < i < k) with ZLI 1/q; = 1, the associated quantities
k
G(aigi, 0 + Bi)
K@, qio) =Y e T2 ®)
i=1 gi
and
Ko = Ko(o) = {igt;K(lIl, Gk 0). (6)

In Theorem 1 we obtain an expression for Zns , a(n) involving an error term of the
type O(x**¢). For this purpose we choose an abscissa of integration of the form o + ¢,
where ¢ is small, and with

o =max[roa(H1)+ﬂ,%}, ™
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(where H; will be H or 1). The value of u, as well as that of an auxiliary quantity §,
depend on a parameter A with
1 K
r=-(p-20F),
r Ko+1

We state here the definitions of u = u(A) and § = §(1). We put

1
u= -r-(l -B(1-9), (3
where § is the solution of
1 §—A1-=8) ifrA>0
—(1 - 1-96) =
r( 20 ) {S—A otherwise .

Thus we have

1—
ﬂ+A
_g if A>0
+A+1
5=1, g
—F 15
r .
W otherwise .
+1
r

REMARKS 1. Itis well known that in (2) we may take p(c) = O as soon as o > 1
(see for instance [10, Théoréme I1.1.17]). For more precise information see Section 3.
2. Since § > 0, we have w(A) > —A.

2. Main result .

THEOREM 1. Let the notation be that introduced in Section 1, and assume in addi-
tion that for the abscissa o defined in (7) we have

P(o) <1+ Kp. ®
Now suppose either that (1)
0,(H) <0 and A< —o,(H)
or that (2)
H(s) = h(rs+ B+ Bx) has its support on the r-th powers of integers, and vi(m) < m® .

Then we have

k g ai—1
Y am) =+ fr+Bx+ Zx' o D Anilog'x + O(x*te),
n=<x i=1 n=0

where the A,; are some computable constants.
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LEMMA 1. Suppose, with the notation of Section 1, that

k
(s + BYF1(s) = ¢%(rs + B) [ [ ¢% (rs + B+ B Hi(s) ,

i=2
where
Fi(s) = filrs + B) and Hi(s) = hi(rs + B + Bi)
have their support on the r-th powers of integers. Suppose further that

1—
outtt) < -2
where o is as in (7), that hypothesis (9) is satisfied, and that
wi(m) L m®.

Then

Sorflrwmy = 3 Ro(fi, —fo = Bi + D+ Ro(fi,0) + O(x7 7 ¥),

< i=1
= ﬂi;éﬂo—l

where By := B — p.

Proof. Since w(n) is zero when n is not of the form m”, we have

2. nP!mw(n) _ 2. mBw(m”)
Zl ns - 2:1 mrs+Bo
n= m=

= ¢%rs + Po) f1(rs + Bo) »

whence, as noted in Section 1, w(m’) = w;(m)m—? where w;(m) is the coefficient of
m ™% in the Dirichlet series expansion for £*(z) f1(z). It follows that
Z%"%)—'«a—“ as 0 — 0. (10)
m
m>1
An application of Perron’s truncated formula (see for instance [10, Théorémes I1.2.1 and
11.2.2]) yields

anw(n)

n=<x
1 [A/N=Bot+d+ico) x5
=5 £%(rs + Po) fi(rs + fo) —ds + O (x~F*IT)
L J(1/r)(1—Bo+9—ico) s
1 1-Bo+0+iT

xr
=5= £%(s + Bo) f1(s + Bo)—ds
Tl J1-Bo+0—iT s

1-By 14 r po—1-7
+o(ﬁl mefw ) im” ) (1)
m=1 1+ T|log(xr/m)|
1 1—ﬂ0+0+iT x% }_—_éﬂ
== £ + o) fils + o) —ds + O(x 7 ¥5/T),  (12)
270 J1-py+9—iT s
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where ¢ := 1/logx. Here the parameter T is still to be defined precisely in terms of the
parameter x, but we already fix the condition 7' « x1@") which ensures the correctness
of (11) and (12). In order to infer (12) from (11) we estimate in a standard way the sum
in the error term of (11) by splitting it in three sums, the first one indexed by the integers
m > 1withm < x%/Z orm > 2x%, the second one by those remaining with |m —x% | >1,
and the third one by those with [m — x% | < 1. We also appeal to (10).

Let now o be as in (7). We take a different path of integration P joining the points
1—-Bo+v0+iT, 0 —Po+iT,0 —Bo—iT,1—Bop+ ¢ —iT in that order, by line segments
in the s-plane (We make a small indentation at s = 0 if necessary, that is if o = g or
if o = 1 — B¢). Hence, if C is the contour formed by P and the line segment joining
1-Bo+9 —iTand1— Bg+ & +iT, then

Z n?"w(n)
n=<x

= sum of the residues of the integrand within the contour C

1
2mi

xS

s/rds + O(xﬂﬂ/T) )

k
/P]'[c"“(s + Bo + Bh1(s + Bo + i)
i=1

With the estimates (1) and (3), the notation (5) and (6), and by using Holder’s inequality,
we see that if the g; (i < k) are real positive numbers with Zf:i 1/g;i = 1 we have

o+e/2—Bo+iT _k /T
/ [T¢% (s + o+ Bk (s + o+ ) —ds
o+e/2—po—iT ;1 N
k T L
o—p £ R dt g
<x7otE (f (o + Bi +it)l“’q’7)
i=1 \7/1
« xRS TK@L o)+, |
The last expression is
TS TR+ (13)
if we choose the numbers g; such that K (q;, - - , qx; ) < Ko + £/4. Now we make use

of (2) and (4), of Remark 1 at the end of Section 1, and again of Holder’s inequality, and
verify that the integral on the horizontal sides of the contour is

< x@=Po)/r+e/2 Plo)—1+e + x{A=Bo)/rp—l+e

By hypothesis (9) we see that the first term is dominated by (13), whence the integral on
the path P is

o— Ko+o B
<<x-;’—39+§TK0+§ + x(=Bo)/rp—lte o O(XWTH)—%ﬂ)

1—o
if we choose T = x"*+X0). Thus the lemma is proved. (Note that in case some of the
residues in the statement of the lemma are not within the contour C, they are then absorbed
in the error term).
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Now if we set p = —r and p = O this yields the following.

LEMMA 2. Let) = %(ﬁ - ﬁgi‘f) Then, under the assumptions of Lemma 1, we

have

w(n)

= %0+ B filr + Px + Zx LS dyilogh x + 0 ()
n=0

n<x
and
D wom = Zx ' Zcm log” x + £%() fix(B) + OG+%)
n<x
where the cy; and d,; are some constants.

If the assumptions (2) of Theorem 1 are satisfied we shall apply Lemma 2 with f; =
f, thatis with w = v. Otherwise we use Lemma 3 with f}(rs+8) = f.‘=2 % (rs+B+8i)
and also need the following.

LEMMA 3. Under the assumptions (1) of Theorem 1 we have

Py - (r+ﬂ)f<r+ﬂ)x+2x ' ng log"x + 0670 (14

n<x =0

and

k _g_p Y
Sum =Y x Y ewlog'x + LB f(B + 0T, (19)

n<x i=1 n=0
where the e,; and g,; are some constants.

Proof. 'We can write v(n) as a Dirichlet convolution (w * b)(n), where Lemma 2
holds for w, and thus

dovm =) (wxb)m) =Y bk) Y wd)

n<x n<x m=<x d<x/m

_ Z b(m)(.Xk: (;)L—L icm log" (%) +¢%(B) + 0<%>_H8)

i=1

Z m(lbfsm;)s,)/r Zcm log" ( ) +¢%(B) Z b(m)

m=<x

i=1

; o(x—m ¥ L),

m<x

Since the last sum remains bounded as x — oo if ¢ is small enough, the error term is a
O (x~**%). And for the same reason we have

Y bm) = £(B)~ Y b(m) = f(B) + OG).

m=<x m>x
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Now we have

5 e (2)

m<xm r

~  b(m) logm\"
= Z T Zcm log" (x)(l— 10gx>

m<xm r

b
Z cnilog" x Z(—l)e (Z ) log~* x Z 1(—’;1—))3.' logtm
n=0 =0 o

m<xm r

o & 1--;
= Z cpi log" x Z(—l)z(’z ) log_e X (Cg,i + 07 loge x)) ,
n=0 £=0

for some constants Cg ;. From these observations we see that (15) holds. We then derive
(14) from (15) by noting that

DL T

n>1

and that

n>x 1 u X

where V(1) := anu v(n).
LEMMA 4. Under the assumptions (1) or (2) of Theorem 1 we have

Y am) = ;(r+ﬂ)f<r+ﬁ)x+2x ; thlogx

n<x

_ E{f(ﬂ)f*(ﬁ) - Zv(n)xp(;) + O(x_H'e) ’

n<x

where the hy,; are some constants.

Proof. Wehave ) o2 | “(”) =1(s) Yooy ”(") and so a(n) = ), v(d). Hence

> am) = Zv(d)[g] Xy @ - Z v(n) — Zv(n)tﬁ(%) (16)

n=<x d<x n<x n<x n<x

where ¥ (u) = u — [u] — —, as defined in Section 1. Now the lemma follows from Lemmas
2 and 3.
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LEMMA 5. Ifwelety = x'=% where 8 is some real number with 0 < § < 1, then
under the assumptions of Theorem 1 we have

AT = .
> v(n)w(;) =Y x"7 Y knlog'x
i=1 n=0

y<n=<x
O(XS—A(1—8)+6) Uc A>0

1
o ;(1—,3)(1—8)—6 1o a—1 +
+0G e P if <0,

where the ky; are some constants.

Proof. By Lemmas 2 and 3 we have

X x X
y;g”("w(E) _ fy w(;>dv<u>
x k _a_a Qi x
= f w(f)d(zul Y e log"u)+ f w(f)d(em))
y u im1 y u

n=0
=1+1,

where e(u) < u~*¢. The last integral is

X

I =— (g)e(y) + Y (De@) + / ’ e(%)dm) < (e +x‘*+8)§
1

< xB—A(1—8)+E ifA>0
x8-Ate if A <0.

As for I, it is

L
E E f u_r ”le,,,‘nlog””l ut/f(i)du,
4 u

i=1 n=0"Y

to which we must add

1 _ _R. a;i—1 X 1-p—g;
1=F-h Z/ u—r leylog" u'/f(f)du
r u

BiF1—p n=0
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(since if B; # 1 — B then ey;; = 0). So we can write, for some constants e;i

k a,——l
I= m/ 1log ut//( )
i=1
ko 1opg 4 Xy Bl
=Zx z Ze;,,.f Ty () log" (x /t)dt
i=1 n=0 1
k o;—1
_ﬂ_ﬂ.
—_-Zx_Ll G Zemlog x/ —1+—L—¢()( —%) dt
i=1
ko 1pg “"1 logz\"™
— — / _1+_z_ n ogt
- Zx > e)log" f wm(Z (m)(—l)m(logx> )dt.
i=1 n=0 m=0
k 1-B—B; (Xj—l n di
=Zx G Ze;ilog ( ( )( l)mlog_mem,(1)+O<(z) )),
i=1 n=0 m=|
where )
dz =1+ _ﬂr_ﬂz
and

o0
Cnmi(2) i= / 1%y (1) log™ tdt < z % log™ 7.
Z

Thus, for some constants k,;, we have

k o
X 1-8—B; 1o_ e _
> v<n>w(;>—§ X7 Y knilogtx < xr(17PU=DT8 jggu 1

y<n<x i=1 n=0

§=M1=8)+e if A >0
X 1
+ { - (17)

x8—Ate if A <0,
and the lemma is proved.

LEMMA 6. Ifwelety = x'=% where § is some real number with 0 < 8 < 1, then
under the assumptions of Theorem 1 we have

Y o) = 0@rI=P0-9 jog1 5y
n<y
Proof. Lemmas 1,2 and 3 apply to |w(n)| and |v(n)], with H (s) = anl |b®n)|/n’
instead of H (s). The result follows immediately.

Proof of Theorem 1. By Lemmas 4, 5 and 6 we have

Y am) = ;<r+ﬂ>f<r+ﬁ)x+2x G ZAmlogx

n=<x

| O(xa-*<1-3>+8) ifA>0
19} 7(1—/3)(1-—8)1 a—1 =
+Oo@ 08" " X) 1 g (xo-rtey if 2 <0.
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And it is easy to check that all the constants cy;i, dy;i> €a;i> Joyis Peyi and kg;;, occuring
in Lemmas 2 through 5, are all zero when 8; # 1 — B: thus this property is also satisfied
by the constants Ag;;. Theorem 1 now follows from the definition (8) of u, and from the
fact that when 8; = 1 — 8, then the terms in the double sum above corresponding to i are
negligeable with respect to the estimate of the error term.

3. Bounds for { and its mean in the critical strip

In the next section we shall give some applications of Theorem 1. For that purpose we
first need explicit estimates of types (2) and (3) for [{ (0 4 it)| and for f2T ¢ (o +it)|Adt.
We borrow the seven lemmas below from the literature.

LEMMA A (Phragmén-Lindelof). If f(s) is regular, and O(e®") ast — oo for
every positive ¢, in the regiona <o < fB,t > e, and if

fla+it) <t® and f(B+it) <t®, ast— oo,

where a and b are nonnegative real constants, then
flo +in < (@9 @7

uniformly fora <o < f,t > 1.

A proof of Lemma A can be found in § 237 of Landau’s book [7], and another one in
§ 5.65 of Titchmarsh’s book [11]. Both consist in two parts: first a proof of the case where
a = b = 0, and then using this a proof of the general case. The first case is clearer in [7,
Erster Hilfssatz, p. 849-850], as there is an oversight in the other version. The general case
is established in a simpler manner in [11].

LEMMA B (Carlson; Hardy-Ingham-Pélya). Let f be a complex function, real for

real s, regular for s > a except possibly for a pole at s = s, and O (e® 11y gs |t| — oo, for
every positive g, in the strip « < o < B, and suppose that

T T
f |f(a+in))?dt < T® and / If(B+iD)Pdt <« T?, as T — oo,
2 2

where a and b are positive constants. Then

T £ N2 a b b=
f |f(o +it)|"dt K (T*)F~(T")F=
2

uniformly fora <o < B, T > 2.

A proof of Lemma B can be found in § 7.8 of [12]. (Note however that the argument
given by Titchmarsh doesn’t work in the case a = b = 0, which we don’t consider here.)

Now we appeal to known bounds for the Riemann zeta-function and its mean in the
critical strip.
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LEMMA C. We have

;(% +it) < B0 (18)
¢(1+ir) < log ¢ (19)

and
(CHin K1 ifC>1. (20)

Estimate (18) (under a more precise form) is due to M. N. Huxley [5, Chapter 21].
Estimate (19) is well-known (see for instance [7, § 46]; see [9] for a better one). Estimate
(20) is trivial.

LEMMA D. The estimate
T
f |¢(o +it)|’dt < TlogT
1
holds uniformly for 1/2 < o < 2.

For a proof see the more precise {12, Theorem 7.2], due to J. E. Littlewood.

1.
g 5+lt)

LEMMA E. We have

r

A
dt < T1+g(A)+a ,

where
0 0O<A<d,;
A—4
—~ 4<A<12);
g(A) ={3A-14 178\
12<A<—);
22 - T 13
89 3361 178
—A - — A>—).
570 3705 - 13

For A < 4 this follows from Lemma D. For4 < A < 12 and 12 < A < 178/13,
this is Theorem 8.3 in Ivi¢’s book [6]. And for A > 178/13 the estimate given by Ivi¢ in
his Theorem 8.3 can be slightly improved with a use of Huxley’s result (18) instead of the
weaker Corollary 7.1 in [6].

LEMMA F. For1/2 < o < 1let m(o) be the supremum of all numbers m such that

T
/ |c(o +it)|"dt < T'*®
1

forany e > 0. Then for 1/2 < 01 <0 < 03 < | we have
m(o1)m(02)(02 — 01)
m(o2)(02 — o) + m(o1)(o —o1)

m(o) =

This is Theorem 8.1 of [6].

LEMMA G. With the notation of Lemma F we have
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4 1 5
3_ 4o for 3 <o=3%;
10 for é <o < 3—5-
5— 60 8~ ~ 54’
180351 35 2
65'154 — 696060 for gs0=3;
220429 2 7
80470 — 86/3300 for 30 =155
—132 forl<a<§'
61 — 700 0= -7
132 5 3
m©@) = { 36— 49 for 3 so=g;
12/408 for 3 .5,
4537 — 48900 4=" "¢’
4324 f0r§<g<z,
1031 — 10440 6~ —8’
9016+/5385 — 522/928 7 _ 271+ /5385
2821+/5385 — 173/817 — (2944+/5385 — 182/408)0 forg <o 376
= .91591106. .. ;
240 — 9 for 271 + /5385
(4o — (1 —0) 376
<o<l-¢.

In the intervals (0, 35/54], [3/4, 7/8] and [.91591106. .. , 1), this is Theorem 8.4 of
[6] for which, as Ivi¢ writes in the notes following his Chapter 8, “no effort has been made
(except when o = 2/3) to obtain the best possible estimates for m (o) that [his] method al-
lows, as this would involve tedious computations with exponent pairs, and the possible im-
provements would be rather small”. In the intervals [35/54, 3/4] and [7/8, .91591106...]
we nevertheless replaced 1vi¢’s printed estimates by some slightly better ones, using in a
straightforward manner Lemma F and the bounds m(2/3) > 9.61872, m(7 /10) > 11 and
m(5/7) = 12 (which Ivi¢ also gives in his Theorem 8.4 of [6]). This has in particular the
@sthetic advantage of providing a continuous lower bound for m (o). In our calculation we
wrote the number 9.61872 under the form 60°117/62°500, in order to ensure a certain uni-
formity in the expression of the results. This choice is partly responsible (but only partly)
for the occurence of very large integers in the estimates we obtain in the next section.

The following theorem is established by straightforward arguments exploiting the
seven lemmas above.

THEOREM 2. For A a nonnegative real number we have, uniformly in % <o,

£(o +in)] < [¢|B0=0+e 4 @1)
and r
/; |é.(o, + lt)IAdt < T1+G(A,0)+8 , (22)

where
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0 az%) O<A<4;

4=<A=<8;
3A-4
(0= 47)
3A(A—4) (5(A~2) 1 5(A—2)
i (Y o) (b=0=%G2)
5 ®<A<9);
0 (a > A2
= 764
11601A(A—4) (21’718A—60’117 _a) 1 o5< 21’718A—60’117)
4(101174-60117) 2372024 2="= 2372024 ©<A<961872);
0 ((, > MMM) - ’
= 232024
43/'165A(A—4) (80’470A—220’429 _ U) ( oo < 80/470A— 220’429)
4(377305A—2207429) 86/330A 2=9= 86/330A 961872 < A < 11);
0 ( - 80/470A— 220/429) ’ -T
8673304
35A(A—4) (61A—132 1 61A—132
(6A-T )(W"’) (75°< TT0A ) (1< A<12);
614—132 -Ts
0 (" z _76,4-)
49ABA—14) (46A-132 _ 1 oo < 464-132
TI@3A—264)\~ 494 2=9=7394 (12<A < 1_7§)
46A—132 =T=-nBp
0 (o= *4542)
= 49A(1157A—6722) (46A—132 _ (L <o < 464-132
“3705(434A—264) \~ 49A 2=29= _TJ 178 _ 4 < 528
A6A— (1— =A= 37)’
0 (a vy u )
- 163A(1157A—6722) (4537A—12408 _J) (l <o < 45374 12408)
247(2092A—127408) 4890A 2 =79 =" 48904 (523 <A< m)
0 ( o 4537A— 12’408) I =r=2)
Z TUIR0A
174A(1157A—6722) ( 1031A—4324 _ 1 10314—4324
1235(509A —4324) ( 10444 ‘7) (§ =0 = T0agA ) (ﬂ 4 184)~
0 (6 - 10314-4324 2t =4 =75
Z T 1044A

A(1157A—6722)(1472+/5385—91/204)
3705((1349+/5385—82/613) A—(9016+/5385—522/928)) (1

s <o
((2821 5385—173/817) A—(9016+/5385 522’928) ) -
A(2944+/5385—182/408)

(2821 5385—173/817)A—(9016+/5385 —522’928))
A(2944+/5385—182/408)

(U> (2821+/5385—173/817) A—(9016+/5385 522’928))
A(2944+/5385—182/408)

™l

0

184 4606 )
<A< ———F—);
(T = 373-4/5385
4A(1157A—6722) <5A—24+\/9A2—96A+576 _ a) (% < o < JAT24HVOAT96A1ITE \W)
3705(A—24+v/9A2~96A+576) 84
0 (a - 5A—24+\/9A2—96A+576)
e 7 S

(775 =4).

4. Applications

Our first application is to Zn<x 63 (n), |b| < 1, where op(n) denotes the divisors
function de d®, and more generally to D on<x Pb .(n), Irb| < 1,r € N, where Py r(n)
(capital “rho”) denotes the Gegenbauer rho- function Zdln 4l /,ENd (hence op = Pp1).
From Crum’s generalization of the Ramanujan’s formula (which is the case r = 1)
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i P_gr(m)P_p,(n)  £(s)¢(rs +ra)i(rs +rb)s(rs +ra+rb)
ns - tQ@rs+ra+rb)

n=1
(see for instance [8]), we have

i Pza’,(n) _ £(8)¢2(rs + ra)e(rs + 2ra) 23)
b L @2rs + 2ra) ’

If 0 < a < 1 the hypotheses of Theorem 1 are satisfied withk =2, 0 = a1 = 2, a2 = 1,
B=ra,B1=0,B=ra,and H(s) = ((2rs+2ra))~}. Indeed 6, (H) = % —a, whence
the abscissa o of (7) is % Thus from estimate (21) in Theorem 2 we see that P(1/2) < 1/2
and that hypothesis (9) is (amply) satisfied.

Now we have

1 1 1 1 1
K (q1,qz; —) =—G (2q1, —) +—G (qz, = +ra> ,
2 q1 2 l7p) 2

and by choosing g1 = g2 = 2 we see that Ko = 0. Thus A = (ra — 1/2)/r,

1 1 2r 1 . 1
if ra> = - —a if ra > -
2r +1 ) 2r+1 \r 2
= and u=
1 i ra 1 2r+1—=2ra (1 " 1
5 > |-—a it ra<—
2r +2 —2ra 2 2r +2 —2ra \r 2

Hence we established the following.
THEOREM 3. If0 <a < 1/r, we have

> (Poar(m)? = Ax + Apxt ~logx + Aqux 7™ + Agpx? "4 + Eo(x),

n<x

where the error term E,(x) = E, ,(x) satisfies

Qr%l(%—a)-f-s Lo 1 1

x if 5 Sa<i

E,(x) < g ’
2r+1-2ra (l—a)+e . 1

x r2zalr .lf0<a<2—.
r

Note in comparison that if we apply to this case our earlier (and more general) result
. . 14
[3], the estimate for the error term is only < x+*~%~¢ for some ¢ = £(x) — 0, so that the

1 9, . . . .
term of order x * ~22 is never significant. Here this term becomes significant as soon as

r2+3r/2 —/(r2 +3r/2)2 — 212
= 2r2 ’
that is for instance whena < .219... forr = 1 and whena < .0746... forr = 2.
In the special case where r = 1, if we gather all the information at our disposition we
can state the more precise and complete following result.
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THEOREM 4. If0 < |b| <1, we have

2 21 —b)g(1 —2b) b, $A=b)A+D) 4y,
Z(Gb(n)) = 2@ - 2b) x + Kpx + —_§(2)(1 D) x logx

n<x

0 Fo# =1 201 4 b)r(1+2b) 4o
1, x + Ep(x),
Zlog?x ifb=-1 ' (@+2h)(1+2b)

where the error term Ep(x) satisfies

Ep(x) < xPtPl(log x)*3 (loglog x)8  if |b| =1; (24)
1

Ep(x) < xPHPH30- 1D+ if 5 <Ibl<1; (25)

Ep(x) < xPTV meamte if 0 < |b| < % . (26)

This requires some comments. We didn’t compute the coefficients of the five terms
forming the main part of the sum: for a justification see the second (corrected) part of [4]
(where an explicit expression of K}, is also given). Estimate (24) is a result of our previous
paper [2]. Estimate (25) for b < 0 is provided by our Theorem 2 and improves on the
current best estimates, which are due to Ishibashi and Kanemitsu [4] when 1/2 < |b| <
+/2/2, and to ourselves [3] when V2/2 < |b| < 1. On the other hand estimate (26) is due
to Ishibashi and Kanemitsu [4], and supersedes what is given by Theorem 2.

Proof of the theorem. There remain to treat the case where 1/2 < b < 1. This
follows easily from the case where —1 < b < —1/2 by putting B = 2b and A(n) =
o2 »(n) in the following lemma.

LEMMA 7. If S(B,x) := Znsx nB A(n) where A is a real arithmetical function
and B a nonzero real number, then

X
S(B, x) = x85(0, x) —B/ tB-15(0, r)dt .
1

Proof. We have
1 B B * Bt Bt
EZ(x —n )A(n):ZA(n)/nt dt=/1 tB-15(0, )dt ,

n<x n=<x
whence the lemma.

Since Ko = O for every value of 8 = ra in this first application, a very limited use of
Theorem 2 was sufficient for our purpose. The other applications we discuss now exploit
more fully these estimates.

Ramanujan’s formula was generalized to sums of the type Z:il O—q,(N)O_gy(n) - -+
0_g(m)n™° (k > 3) by Balakrishnan, and from his general result [1, Theorem 1]
it is clear that our Theorem 1 can be applied to the arithmetical functions a(n) =
0_q,(N)O_g,(n) - - - T_g,(n). As an illustration we choose to treat the cases a(n) = ag” (n),
1/2<1bl <1,m =3,4,5, -, where the use of Lemma E, instead of Theorem 2, is suffi-
cient for our purpose, and then more extensively the particular case a(n) = ag’ (n), b} < 1.
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It is for the latter, when |b| < 1/2, that we appeal to Theorem 2. From Balakrishnan’s
Theorem 1 of [1] we have

3 74 pwens + @5+ 200 B s +30) 25 + mas) Has)

n=1

=)™ (s +a)H(s),

where H (s) as a Dirichlet series has an abscissa of absolute convergence o,(H) =
max{1 — 2a, } 5 —a}. If 1/2 < a < 1 the hypotheses of Theorem 1 are satisfied with
r=lLk=1a=qa _m,ﬂ—a,ﬂ1 =O,ando=%.Wehave

£ -5 (s3)=o(n)

and with Lemma E it is easy to see that

[0 if 3<m<4;
—4
mT if5<m<12;
Ko=13m—-14
- ifm=13:
> if m 3;
1157m — 6722
" ifm > 14:
7410 ifm 2 14;
whence
2 .
- if 3<m<4;
3
(1 ) if 5<m<12;
m+ 8
u=tm@ =(1-a)x ;
if m=13;
( 3m+19) hm =13
3705
l1l-— - if m=>14.
( 1157m+4393> gm=

Thus hypothesis (9) of Theorem 1 is satisfied and we have obtained
THEOREM 5. If1/2 < |b| < 1and m > 3 is an integer, we have

m
Z(ab(n))’” = Ax!FECGHED |y 1-1bl+3 G+bD Z Aplog’ x 4+ Enp(x),

n<x n=0

where A and the A, are computable constants, and where the error term Em.p(x) satisfies
Emp(x) K xTEHED (log x)2" loglog x)*™/?  if |b] = 1; 27)
. m 1
Ep(x) « x2OFIbDFute if 3 <Ibl<1; (28)

SJor u = wm(|b]) as defined just above.
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Estimate (27) is a result of our previous paper [2]. And, similarly as in Theorem 4,
estimate (28) for 1/2 < b < 1 is obtained from the case where —1 < b < —1/2 by using
Lemma 7. Note that A,, # 0 only when b = —1.

We pass now to the case a(n) = org’ (n), |b| < 1. From Balakrishnan’s formula on
page 148 of [1] we have

= Gia(") 3 3
Y TE =P+ s + 2056 + 30 H)
n=1

where H (s) is given explicitly under the form of an Euler product and, as a Dirichlet series,
has an abscissa of absolute convergence o,(H) = % —a. If 0 < a < 1 the hypotheses of
Theorem 1 are satisfied withr = 1,k =3, a =a1 =3, 0 =3, 3 =1,8=a,$1 =0,
Br=a,B3=2aando = % We have

1 1 1 1 1 1 1
K(q1,92.93:= ) =—G|(3q1,= )|+ —G|3q2, s +a |+ —G|g3, 5 +2a]),
2 q1 2 92 2 q3 2

and with (tedious but) straightforward calculations we see that

445 + /8527009
Kog=0 (az——ér——.2238“.=‘a0),
611242 + 2278a + 91 3 _
TR (0> a > 3 = 2185 =:an):
203242 +493a + 16 83 + /5385
e T > 2TV 2079, =ay);
21124 + 132 (a1zaz 5 0 a)
25/733+/3385 — 1/444/433 + (222/548+/5385 — 13/164'216)a (a S S )
1987352./5385 — 11504416 224> 3=2=a)
680/994/487+/5385 — 38/534' 185/087
3974775'728+/5385 — 230/536/992/ 224
(3/632/939/792/5385 — 215'849/ 148/784)a (a R I )
39747775/ 728+/5385 — 230/ 536/992' 224 329716 “a4);
357016/175 + 1/580/128/512a ( vl )
17906/269'992 Hmzaze=-0=045)
60/892/941 + 362/903/877a 4
3 > L= 148 =
Ko= g- 372/965/868 (a5 z a2 35 = T8 =ac):
14/356 + 160'572a 1
—_— - =.125= B
124080 (s6zaz g = 1% "7)
23 +988a 3
S CETE 55 = 10714285 = a);
7+ 536a 1
264 ("83“3E‘1—“9)‘
71209 + 3/335'788a 1 _
e — > — = = 5
177637432 ("9 zaz ;=08 “10)
19/649 + 907'020a 2
w096 (s0z 0z 37 = 7= an):
1+ 84a 1
0 (au Zaz o= 0625 = alz);
%a (a2 2a>0).
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The last equality is obtained by choosing g3 = 4/(1 — 8a), and any g1, g2 both in the
interval [4/3, 4] (and satisfying g, ! +q, =1 —-q5 1), All the other equalities are obtained
by finding the maximal quantity g, l=1- q, r_ qs U satisfying K (g1, g2, 43; %) =
G(3q1, 3)/q1- Now

A=a—1+

1
5 (a = aop);
4224a + 264 s a>a)
a ai) s,
635 + 9338a — 611242 0=a=4a
2112a + 132

> > .
331 + 4822a — 4064a? (a1 2 a>a);

99/176+/5385—5"752'208
247'001~/5385—14'374'139—(222/548+/5385—13'164'216)a

1/987'387'864+/5385—115'268'496/112
4'784/322/139+/5385—278/454179'221—(3/632/939/792+/5385—215'849'148/784)a

(a3 =a=>aq);

(a2 >=a=a3);

953/134'996
22647105064 — 1580'128'5124 (@4 2 a2 as):
372/965'868
903/870'255 — 725'807'754a (as 2 azas);
31020
78127 — 80/286a (@ 2z azar);
264
703 — 988 (a7 > a > as);
33
39— 1342 (ag > a > ag);
440/858
1176755 — 1667'89%a (@9 =z a = aw);
120234
320'819 — 453/510a (@0 zazan);
10
> —a2a (a11 = a > an2);
1 =202 —420a (a2 = a);

and with estimate (21) in Theorem 2 we can ensure that hypothesis (9) is satisfied. Finally
we verify that A < 0 when a < 1/2 and compute the parameter §, whence
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( ; )
a > 5

2

3

(e (t20m):
2- a)2 2

( 422440 + 264 )

N

1-

1-— >q > .
(2 — a)(635 + 93384 — 611222) @ zazay;

. 21124 + 132 > asa
(2 — a)(331 + 4822a — 4064a2) ar=a=a);
99'176+/5385—5'752/208 .
(1 (2—a)(247'001+/5385—14/374'139—(222/548+/5385 13’164'216)a)) (a2 zaz a3) ’
(1 1/987'387'864+/5385—115'268/496'112 )
(2—a)(4'784'322'139+/5385—278/454'179'221—(3/632/939/792+/5385 —215'849'148'784)a)
(a3 >a=>ay);
953/134'996
1- (a4 > a > as);
(2 — a)(2264'105'064 — 1'580/128'512a)
mo_l(, 372/965'868 s> a > a0
= a H
l1-a (2 — a)(903'870'255 — 725'807'754a) a5 =a=do

1—-

31020
(as = a > a7);

(2 —a)(78'127 — 80'286a)

1-

2- a)(89 - 134a)) (ag = a > ag);

440858
(2 —a)(1'176'755 — 1’667’894a))
120234
2- a)(320’819 453’510a))

1-—-

(ag > a=>ay);

1- (a0 = a = a1y);

(a11 = a = an);

(
(
(
(l @- a)(70: 988a)) (a7 2 a>ag);
(
(
(
(1-

2 - a)(27 42a))

4
(1 S Q2-a)(l- 20a)) (a2 > a).

Hence we proved the following, in the case where —1 < b < 0.

THEOREM 6. If0 < |b| <1, we have

3 2
D (op(m)® = Ax +x'P Y Ay log" x + x1+2 D Amlog"x + Apsx ' + £,(x)

n<x n=0 n=0

where A and the A, are computable real constants and where the error term E,(x) satisfies
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Ep(x) < x2@HD (log x)? (loglog x)*  if b] = 1; (29)
Ep(x) < x3GHbDFute if0<Ibl<1; (30)
for = u(|b|) as defined just above.

Estimate (29) is again a result of our previous paper [2]. And again, estimate (30) for
0 < b < 1 is obtained from the case where —1 < b < 0 by using Lemma 7.

Note that by Theorem 1 we have A = ¢3(1 — b)¢3(1 — 2b)¢(1 — 3)H(1) for b <
0. And that for b < 0, the terms of order x!*?? log" x are significant when 0 > b >
—.2184, and the term of order x'*t3? when 0 > b > —.1038. Finally note that the term
Az1x!*? Jog? x is non zero and significant in the single case b = —1, which is not provided
for by Theorem 1 but by [2] (see (29)).
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