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§0. Introduction

In [Im], Imai studied a converse theorem for Siegel cusp forms of degree 2, which
characterizes Siegel cusp forms of degree 2 with the functional equations satisfied by the
corresponding Koecher-Maass series with Grossencharacters. Her work was an attempt
to generalize the celebrated converse theorem of Hecke for elliptic modular forms to the
case of Siegel modular forms. Since then there have been almost no applications of Imai’s
converse theorem. Only recently Duke-Imamoglu [DI] gave a new proof of a substantial
part of the Saito-Kurokawa lifting for Siegel modular forms of degree 2 by using a slight
modification of Imai’s converse theorem as well as the Shimura correspondence for Maass
wave forms due to Katok-Sarnak [KS]. However their work is restricted to Siegel cusp
forms, since Imai’s converse theorem can be applied to only cusp forms.

The aim of the present paper is to obtain a convenient converse theorem applicable
to not necessarily cuspidal Siegel modular forms of deree 2 and moreover to apply it to
a proof of the Saito-Kurokawa lifting for degree 2 including the case of Eisenstein series
along the lines of [DI].

We explain our purpose and results in a little more precise manner. Imai’s original
formulation of the converse theorem is not suitable to actual applications, since the as-
sumptions of her theorem contain other condition that seems hard to verify than analytic
properties of Koecher-Maass series. Therefore Duke-Imamoglu [DI] reformulated the con-
verse theorem in a form which serves an actual use (see Ibukiyama [Ib] for a detailed dis-
cussion on this point). On the other hand, shortly after the appearence of Imai’s paper [Im],
Weissauer [We] has already given this kind of improvement of the converse theorem as well
as its extention to Siegel cusp forms of arbitrary degree. The method of Imai ([DI], and
[Ib]) is based on the full spectral decomposition of L2(SLy(Z)\SLy(R)/S0O(2)), while
the method of Weissauer is based on an easier part of the theory of Eisenstein series.

In this paper, following the method of Weissauer, we generalize the converse theorem
to the one (Theorem 14) which is available to not necessarily cuspidal Siegel modular
forms of degree 2. More precisely let P, denote the set of half-integral positive semi-
definite symmetric matrices of size 2. For a mapping A : P, — C satisfying a certain

197



198 T. ARAKAWA, I. MAKINO and F. SATO

growth condition ((A-0) in §4.1), we form a function f4(Z) on the Siegel upper half space
of degree 2 by
fa(2) = Z A(T)exprio (T 2)).
TeP,

We can also associate with the function f4 Koecher-Maass type zeta functions with
Grossencharacters.  Then, under the assumptions on some analytic properties of the
Koecher-Maass type zeta functions ((A-1)—(A-4) in §4.1), our converse theorem asserts
that f4(Z) is a Siegel modular form of degree 2 and weight k with respect to the full
Siegel modular group. The assumptions of Imai’s theorem involve the analytic continua-
tion of the real analytic Eisenstein series E(z, u) for the group SL,(Z) to the critical line
Reu = 1/2, while ours concern only with the Eisenstein series E(z, #) in the domain of
absolute convergence, which are easier to handle. This is one of the merits of Weissauer’s
method.

The final part of this paper is devoted to an application of our converse theorem, where
we construct a mapping A : P, — C starting from a modular form of half-integral weight
k — 1/2 belonging to the Kohnen space (see (5.21)). Then we can prove that this mapping
A satisfies the condition from (A-0) to (A-4), and consequently that f4 becomes a Siegel
modular form of degree 2 and weight k. This gives another proof of the Saito-Kurokawa
lifting whcih is a generalization of the result in [DI] to not necessarily cuspidal Siegel
modular forms of degree 2.

§1. Preliminaries

1.1. Grdssencharacters (Maass wave forms) on SL,(Z)\$
We put
I'=GLy(Z), I =SLyZ).
Denote by B the group of upper triangular matrices in G L, and put

[w=INB, I'w=INB.

A real matrix g = Z € GL;' (R) with positive determinant acts on the upper half
plane $§ = {z € C|Imz > 0} by ‘
az+b
= (S .
cz+d (<)

For u € C, we define the Eisenstein series E(z, u) by
Ezu= Y (Imy-2)*.
Y€lo\I"
We recall the well-known basic properties of E(z, u).

LEMMA 1. The series E(z, u), initially defined for Reu > 1, has an analytic con-
tinuation to a meromorphic function of u and satisfies the functional equation

B _ = $Qu-—DI'(u—1/2)
(1.1) E(zu)=CWE@E 1-u), Cu) =+n cQu)T ()
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Moreover E(z, u) is holomorphic in {u € (C] % <Reu,u # 1} and

1
|E(z,u)| < ClImul® (Imu| — o0) uniformly on 3 <Reu

for some positive constants a and C. E(z, u) has a simple pole at u = 1 with residue 3 /7.
For later use we recall the formula for the constant term of the Fourier series expansion
of E(z, u):
1
1.2) f E(x + iy, u)dx = y* + Cw)y' ™.
0

We denote by P (resp. P2+ ) the set of half-integral positive semi-definite (resp. defi-
nite) symmetric matrices of size 2:

P2={T=(b‘;2 bﬁz) eMz(Q),Tzo, a,b,ceZ},

+ _ a b/2
Pz—{T"(b/z c)eMz(Q)‘T>0,a,b,ceZ].
We also put

Py={Y € Symy®)|Y >0}, SPr={WeP,|detW =1},

Syms(R) denoting the set of real symmetric matrices of size two. The space SP» has a
parametrization

—~1 -1 -1
|y O\[l —x|_( v —xy
where we have employed Siegel’s notation T[V] = ‘VTV, and, via the mapping W' >
z = x + iy, one can identify SP, with §). The correspondence can also be written as

SPyoW=DhlgNeoz=g-v/-1€9H (g€SLR).

In the following, the variables z and W are always assumed to be related to each other by
this correspondence.

From the identity Imz = 1/ Wy (Wyy is the (1, 1)-entry of the matrix W), it follows
that

— -1 —u __ 1 m -
14 Eew= Y WU =rgs (w[n])

Ueleo\I" (m,n)eZ2\{(0,0)}

(Reu > 1).

It is known that the ring of SL,(R)-invariant differential operators on §) is generated

by the Laplacian
&
A=y—+—).
’ <3x2 " 3y2>
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For I'-invariant functions f, g on §), we define the inner product ( f, g) by setting

(f. 9) =/ f(@9@du(z)
"%

dxd :
where we put du(z) = —zy, a usual invariant measure on §). Here I'\$) denotes the

fundamental domain of § with respect to I' and we can take

(1.5) f:{zgﬁ <5

1 1
lz] > 1, —ESRCZ<—

as a fundamental domain.
Consider the L2-space

LXI\S) ={f:9—>C|f(y-2)=f@ ¥y € ), {f, f) < 0} .
We say that £ € L2(I"\$) is cuspidal if it satisfies

1
/ f(x +iy)dx =0 (almost everywhere),
0

and denote by L%(F\.V)) the subspace of cuspidal functions. The space L%(I" \H) is a
closed subspace of the Hilbert space L2(I"\$).
For ¢ € C(° (R%), the pseudo-Eisenstein series 0y is defined by

(1.6) b= ) y(m(y-2).

yeloo\I
Then 6y is in L2(I"\$). Denote by © the closed subspace of L2(I"\§) spanned by
{0y | ¥ e Cy° (]Ri)}. Then it is known that @ is the orthogonal complement of L(Z)(I" \9)
([Ku], Theorem 5.1.1):

(1.7) LAI\$H) =0 & LAI\H).

Following Maass, we mean by a Grossencharacter on §) any function U on §) satis-

fying the three conditions
D Uy -2) =U@) Yy € SLa(Z))

(i) U is a C*-function on §) with respect to x, y which verifies a differential equa-
tion AU = —AU with some A € C.

(iii) U has a moderate growth condition; namely there exists a certain o > 0 with
Ux +iy) = 0% (y — 00).

A Grossencharacter on §j is also called a Maass wave form. It is known that any
cuspidal function satisfying the conditions (i), (ii) becomes necessarily bounded and is a
Maass wave form. We put

‘ 3
(1.8) v(z) =,/ —,
b4

which is a constant function in L%(F \$) normalized so that (vg, vp) = 1. Obviously, vy is
a Maass wave form.
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We extend a Grossencharacter I/(z) to a function on P, by setting
(1.9) UT)=UGE) (o W= (etT) V2T, T e Py).

1.2. Siegel modular forms of degree 2
Let $); be the Siegel upper half space of degree 2:
Hr ={Z=X+iY € Symy(C)|Y > 0}.
The real symplectic group Sp2(R) acts on )5 via
M(Z)=(AZ+B)CZ+ D), Ze$, M= (2 IB)) e Sp(®).
We put
; A B
JM,Z)=det(CZ+ D), Ze$, M= (C D) € Spp(R) .

A function f : £, — C is called a Siegel modular form of degree 2 and weight £, if it
satisfies the conditions

i. f is holomorphic on ;.

ii. f(M(Z))=jM,2)*f(Z) (YM € I := Spy(Z)).
We denote by zmg(rz) the space of Siegel modular forms of degree 2 and weight k.

A Siegel modular form f € ‘)Jt’z‘(l"z) has a Fourier series expansion of the form

f2)= ) AT)expQrio(TZ)),
TeP,

where o (Y) denotes the trace of a matrix Y.
We define the Siegel operator @, which maps a Siegel modular form f € 9)‘(’5(1’2) to
an elliptic modular form @ f of the same weight k, by

. z 0
The modular form @ f satisfies
f(y -2 =(z+d'f@ <V= (Z Z) el“).
In terms of the Fourier expansion, @ f is given by

S 2nmiz n 0
Of@) =) ATe™, Ti=(y )
n=0

For further properties of Siegel modular forms, we refer to [K1], [MaZ2].
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§2. The Koecher-Maass type Dirichlet series

2.1. Convergence

Let us consider a function A : P, — C satisfying the following conditions:

(A-0) (i) AU =AT) (VT € Pz‘", Uel),

(ii) There exists a positive @ such that A(T) = O((detT)%) (equivalently =

O((ac)*)) for T = (ij béz) € Pf,

(iii) There exists a positive 8 such that A(T,) = O (nP) for T,, n > 0.
For such an A and a Grossencharacter U/, we define a Dirichlet series
A(T
DaA U ) = 3 2Dyt 1)
T &M
where {T'} is a complete set of representatives of r \P;r ,and e(T) = {U € r [ TIU] =
T}. We introduce another Dirichlet series obtained from the values of A for matrices T of
rank 1:

2.1 Di(A,u) = Za(n)n_” . an) = A(T,).
n=1

LEMMA 2. Leta (resp. B) be a positive constant satisfying the condition (A-0), (ii)
(resp. (A-0), (iii)).
(i) WhenReu > B + 1, the Dirichlet series D1(A, u) is absolutely convergent.
(ii) When Res > % + « and U is bounded, the Dirichlet series Dy(A,U, s) are
absolutely convergent.
(iii) WhenRes > max{% +a+1, 1—_12{—95 +a+1,0+ %} and C(u) # oo, the
Dirichlet series Dy(A, E(-, u), s) is absolutely convergent. Moreover the function
u(l —w)mr ' w)tQRu)Dr(A, E(-, u),s)
represents a holomorphic function of (s, u) in the domain Re s > max { % +a+1, #
+ao+1, a0+ %} and is invariant under (s, u) — (s, 1 — u).
For the proof of the lemma, we need the following.

LEMMA 3 (Shintani [Shn]). (i) The Dirichlet series

1
——(detT)™*

is absolutely convergent for Re s > %
(ii) The Dirichlet series

> (M) (detT)™’

TePS [T
is absolutely convergent for Res > 1 and Reu > 1.

Proofof Lemma 2. (i) The first assertion is obvious from the condition (A-0), (iii).
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(ii) The second assertion is an immediate consequence of (A-0), (ii) and Lemma

331).
(iii)) By (1.4) and the assumption (A-0), (ii), we have
A(T) _
.2 ——E(z,u)(detT)™*
) % e(T)
1
< T -1 —Reu det T —(Res—a)
=CX 5 > (Tly TR (det T)
{1} ye€lo\I"
_ _Reu _
— E Z (Tll)—Reu(detT) (Res == a)
TeP) /T

for some positive constant C. Here for each T, z € $) corresponds to —JH%T?T . Hence,
by Lemma 3(ii), the Dirichlet series Dy(A, E(-, u), s) is absolutely convergent for Re s >
% + a + 1 and Reu > 1. To prove the stronger statement given in the lemma, we use
the following integral representation of E(z, u). Fora T € P,, we put

Z(T, u) — /‘00 tu—l Z e—ﬂt(xT'X)dt ,
0 x€Z2\{(0,0)}

o0
Z,(T, u)=f ol Z e 0T gy
! xeZ2\((0,0))

Then, Z(T, u) is absolutely convergent for Re u > 1 and we have

1
_ ) u2 _ -1/2
E(z,u) = ——Zn‘“['(u)g‘(2u) detTHY“Z(T,u) (z < W =(detT) T € SP»).

On the other hand, Z (T, u) is absolutely convergent for any u € C and represents an
entire function of u. Moreover we have

1

(23) E(z,u) = 27 =4I (u)¢ (2u)

1
X {(det TY?Z (T, u) + (detT)™/2Z (T, 1 —u) — — — : 1 } )
u —Uu

The right hand side gives a meromorphic continuation of E(z, ) on the whole complex

plane C.
We see easily from this integral representation that

E(z,0)=1, E(z,1/2)=0.
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Hence, if u = 0 or 1/2, then the convergence of the Dirichlet series is obvius. In the
following, we assume always that u # 0, 1/2. Then the identity (2.3) implies the inequality

1
7 ReU| T () g (2u)|

E(z, <
|E@z,w)l = 5

X {(det T)Reu/27 (T, Reu) + (det T)1~ReW/2Z (T, 1 — Reu)

FRLE }
lu| 11 —ul)’

Therefore, if u # 1 and I'(1)¢ (2u) # 0, then for some positive constant C we have

Z &E(z, u)(detT)~*

77 1e(T)

C _1_ 1 - —(Res—a)
= T ReU ()7 )] {(Iul 4 —u|> Z (T)(de‘T)

L 7, (T Rew)(det Ty~ Res—52 )
+; mTa) +(T,Reu)(detT)~

— Z.(T.1—Reu)(detT)~Res—1 34— |
+{2:}, (T) +( eu)(det T)

By Lemma 3(i), the series Z{T} Fea) —L_(det T)~Res—) js convergent for Res > « + 3 31t
is easy to see that the integrand of Z (T, Reu) is an increasing function of Reu on R.
Hence, for any M > 0, we have

Lz T, Re u)(det T)~®es =55~
; 7 2T Rew)(det )"

< Z ——Z+(T Re u + M)(det T)~®Res—75*—)
Z ——Z(T Reu + M)(det T)~®es— 5"~

<7 RUP(Reu + M) (2(Reu + M))

1
(Res+ (x)
X [ET} ———«( )E(z ,Reu + M)(detT) 2

As we have already seen, the last expression is convergent if Reu + M > 1 and Res +

% —o > Re—“;'M- + 1. Since M can be taken arbitrarily large, this implies that

ZTT”)Z‘”(T Re u)(det )~ Res—"5*—e)
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converges for Res > M + o + 1. Similarly

Z—-—Z.,_(T 1 — Reu)(det T)~Res—15%4-a)

converges for Res > _1_—121ﬂ + o + 1. Thus we see that, if "'(u)¢Qu) # 0, u # 1
(equivalently, C(u) # oo) and Res > max {a + Re“ + o 4 1, 1=Rex Re“ +a+ 1},
then the right hand side of (2.2) is convergent. The holomorphy of the function
u(l —uw)a~ I W)t Ru)Dy(A, E(-, u), s) follows immediately from the expression

(2.4) u(l —w)mr I W)¢u)Dy(A, E(-, u), s)

= 3 A et 1)l — (et TYE 24 (T, w)
£ o)

+ (et T) 7 Z4 (T, 1 —w)) — 1},

since the convergence is uniform on every compact subset of the domain Re s > max {a +

g, Reu | 41, 1=Reu Rc“ +a+ 1} The invariance of the function under (s, u) — (s, 1 —u)
is obv1ous from the right hand side of the identity above. |

LEMMA 4. Let o be a sufficiently large positive number. Then, for any p with
% < p < 2(o — a — 1), there exist positive constants C and § (independent of Im's) such
that
|D2(A, E(z,u),5)| < Cllmul®  (Imu| — o0)
uniformly on {(s, u) |Res =o0, % < Reu < p}.
Proof. It is sufficient to prove the lemma under the assumption that p > 1. Fix an
s € C with Res = o. Then, there exists a positive constant M satisfying

2.5) lu(u — 1) QRu)D2(A, E(z,u),s)| < M(Imu)?,
(Imu| — c0) on Reu=p.

In fact, as M we may take any positive number greater than ¢(2p)D2(|A|, E(z, p), o).
Note that M does not depend on Ims. By the functional equation given in Lemma 2(iii),
we have

u(l —u)tRu)Dy(A, E(z,u),s)

1—2u T —w)

=u(l —u)¢ 21 —u))D2(A,E(z,1 —u),s) xm rw

Hence, by Stirling’s estimate of the gamma function and (2.5), we have
(2.6) lu(1 —u)sRu)Da(A, E(z, u), s)| ’
ra—uw
I'(u)
~ M7*~ (Imu)* - Imu)> !

= M7 '(Imu)**! (Imu| - 00) onReu=1—p

< M7x?~1(Imu)?
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The identity (2.4) implies that the function u(1 — u)¢ (2u) D2 (A, E(z, u), s) is a holomor-
phic function of u in 1 — p < Reu < p and is bounded from above by

1 L) - r/2 — climu|
IF(MN[XT}: oy et 20(0 + D@t TY?PZ4 (T, p) +1} = 0.

Hence, by the Phragmén-Lindelof theorem, we have
2.7 lu(1 — u)sQu)Da(A, E(z,u),s)| < C(Imu)>*!
((Imu| — 0o0) uniformlyon 1 —p <Reu <p.

Since the constants contained in the right hand sides of (2.5) and (2.6) are independent

of Ims, the inequality (2.7) holds uniformly for any s with Res = o. Since m =

O(log’ Imul) in 1 < Reu < p (cf. [Ti, Chapter IIL, 3.6]), this implies the lemma. [

2.2. Integral representations
Let A : P, — C be a function satisfying the condition (A-0) in §2.1. In order to give
an integral representation of D,(A, U, s), we consider the Fourier series

(2.8) fa(Z)= )" A(T)expQric(TZ)).
TeP,
LEMMA 5. The series fa(Z) is absolutely convergent for any Z € $) and defines
a holomorphic function of Z.

Proof. We decompose the Fourier series f4(Z) into 3 parts according to the rank of

T:
2.9) W@ =@+ @+ 1P @,
@= > AMexp@ric(TZ) (=0,1,2).
TeP,
rank T =i

Obviously, ff(‘o)(Z) = a(0). By [Im, Proposition 2.5], 1‘(‘2)(2) is absolutely convergent
and gives a holomorphic function on $);. Let us consider the rank 1 part. Since {U €
| T,[U] = Tp} = "(I'), we have
oo
@=3 > AT exp@ric(T,U] Z))

n=1 ye(F\I*

- Za(n) Z exprio (T,[U] - Z))

n=1 Ue! (Teo)\I

=Y am) > expQmio(T,- Z[U)).
n=1

Uel' /T

Therefore

(2.10) 0@ =Y am) Y exp@nmiZlUly).
n=1

Uel/Ty
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Hence, writing InZ = /W (t = det(ImZ), W € SP;), we have W[U];; =
Im(U~!.z)"! and

(2.11) fOGVIW) =D "am) Y exp(=2mnd/TImU ! 2)7Y).
n=1

Uel'/Ts
This implies that

fP@i<cYnf Y exp(—2nnd/imGy -2)7Y).

n=1  yelc\l'
Fix ao > B + 1. Then one can choose a positive constant C’ such that
exp(—mnv/tIm(y -2)71) < C'(n/fIm(y - 2)™H™°.

Hence

(2.12)

o0
IFP @) < 7Y nm @B N Im(y - 2)° exp(—mn/tIm(y - 2)7Y)
n=1 yelp\I"

<"t (o - ﬂ)(y" exp(— /1y 1) + exp(—mwy/7) Z Im(y -z)") .
Y€l \I’
c#0
where C” is some positive constant and the last summation indicates that y runs over all
representatives of I'o\I" with the left lower component ¢ of y being not zero. Here we
have used the estimate
y -1 a b .
Imy -z = < = er f 0.
vz (cx +d)? + (cy)? ' (y (C d) ) e
By the choice of o, the right hand of the inequality above is absolutely convergent and the
convergence is uniform on every compact subset of ;. Hence ffxl) (Z) defines a holomor-
phic function on 5. [ |

COROLLARY 6. (i) For sufficiently large o there exists positive constants c,c’
such that

170(2)] < c(detIm Z)~°/*(y" exp(—my~" (detIm 2)'/?)
+ ¢’ exp(—my(detIm Z)'/?)}

VZ € 9 such that 7 € F).

(ii) There exist some constants c, £, 8 > 0 such that

I£2(Z)] < c(detlm Z) " exp(—8+/detIm Z) (VZ € H such that 7 € F) .
Proof. The first estimate follows immediately from (2.12) and the estimate
Yo Imy-2° <0y (32 1/2)
y€loo\I,c5#0

with some constant C > 0. The second estimate is given in [Im, Proposition 2.5]. |



208 ' T. ARAKAWA, I. MAKINO and F. SATO

We define @ f4(z) (z € 9) as in the case of Siegel modular forms:

(2.13) Dfaz) = AETOO fa ((Z) g) = ’;)a(n)ez'””Z , a(n)‘= A(Ty) .
Set
(2.14) E&1(A,u) = 2r) "I (w)D1(A, u).

Then the following integral representation of the Dirichlet series D1(A, u) is classical.

LEMMA 7. WhenReu > 8+ 1, the integfal

[e.9]

§1(Pfa,u) = fo Y @ faliy) — a(0)dy
is absolutely convergent and we have

§1(Dfa.u) =&1(A,u).

We normalize the G Ly (R)-invariant measure dY on P, by setting

_dyidyrdy; ( Ay »
Y=—"——— (Y= .
(detY)3/2 Y2 ¥
The following is the integral representation of D>(A, U; s) given by Maass ([Ma2]):

LEMMA 8. LetU be a Grossencharacter corresponding to the eigenvalue —X of A
(namely, AU = —AU) and denote by Dy the domain of convergence of Dy(A, U, s) given
in Lemma 2:

_ {s€C|Res>a+%} if U is bounded ,
UZ s eC|Res > maxfo+ 3, Bt f a4 1, 12RU Ly 4 1)) if U = Ezu).
When s € Dy (and C(u) # 00 if U = E(z, u)), then the integral

(2.15) £(fa. U, s) = / et YYUT) P (V=1Y)dY
I'\P, ‘

is absolutely convergent and we have
82(fa.U,5) =4n'PQ0)F T U, $)D2(A U, ),
where

I

4
REMARK. IfU = E(z,u), then we have

F(E(Z’“),S)=F<s—%>1“(s— 1;“)
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§3. Functional equation and analytic continuation of the Koecher-Maass series

In this section we consider the Koecher-Maass Dirichlet series obtained from Siegel

modular forms of degree 2. Let k be an even positive integer. Let
f(2)= Y AT)expQrio(TZ))
TeP,

be the Fourier series expansion of a not necessarily cuspidal Siegel modular form f €
93‘(’5(1"2). Then it is known that A(T) = O((det )% (K1, Chapter VI, Lemma 1]) and
a(n) = A(T,) = O(n*~1*%) for any ¢ > 0 ([Mi, Chapter 4]). Using the Fourier coeffi-
cients A(T) (T € P;), we can define the Koecher-Maass Dirichlet series D2(f, U, s) :=
D,(A,U, s) and the Hecke L series D1 (@ f, u) = D1(A, u). All the results in §1 apply to
these Dirichlet series.

The analytic properties of D;(®f, u) summarized in the following lemma are well
known (cf. [Mi]).

LEMMA 9. The integral £&1(Df, u) is absolutely convergent for Reu > k and the
function

u—k u

—DF2 ]
51(¢f,u)—a(0)(( ) )

can be extended to an entire function of u in C, which is bounded in every vertical strip
Bsioy = {u € (C|01 < Reu < op}.

Moreover it satisfies the functional equation
EU(BSf k —u) = (=151 (Df,u).

Recall that the lemma is an immediate consequence of the formula

u—k u

o d —Dk2 1
(3.1) &(Pf,u) = /1 (y"+<—1>"/2y’°‘">(<1>f(z)—a<0)>—yX+a<0>(( ) )

We summarize the formulas originally due to Maass [Mal] and Roelcke [Ro] which
give the explicit determination of the principal parts of the Koecher-Maass series

&(f, U, s).
THEOREM 10. (i) If C(u) # oo, then the function

1 1

gZ(f,E(Z»u)ys)_{Sl(¢f,1_u) (s—k-{»l%u —S—-I—EE)
+C ] ! !

(u)é1( f,u)(s_k+%—s_%>

can be extended to an entire function of s and is bounded in every vertical strip By, o, .
(ii) Let us recall that vy is the constant function given by (1.8). Then the function

3 |a( 1 1 1 1
EZ(f’”"’s)_\/;{a(s')n (s—k _§>+$l(¢f’ b <s—k+l _s—%)]

2
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can be extended to an entire function of s and is bounded in every vertical strip By, o,
(iii) IfU is cuspidal, then the function & (f, U, s) can be extended to an entire func-
tion of s and is bounded in every vertical strip By, o,.
(iv) They satisfy the functional equation

SZ(f!u’k_s) =€2(f7u’s)'

REMARK. The functional equation and meromorphic continuation are proved in
[Ma2]. The determination of the principal parts of & ( f, U, s) has been studied by Maass
[Mal] (4 = vp) and by Roelcke [Ro] (/ = E(z, u)). The case of vy has been generalized
to Siegel modular forms of degree n in [Arl]. We give here an another easier proof of (i),
(ii) than those of [Mal], [Ro] along the line in [Arl]. It will be convenient to the reader to
treat the formulas all together as a whole.

Theorem 10 together with Lemma 2(iii) implies the following.

THEOREM 11. The function

L e [

x I'(u)I" (s - g) r <s - IJ) tQu)Da(f, E(z, 1), s)

2
is an entire function of (s, u) in C2.
The proof of Theorem 10 is based on the following lemma.

LEMMA 12. When Res is sufficiently large, we have

(3.2) &(f,U;s) = f ((det Y)* + (det Y)!=\t(Y) fP(V=1Y)dY + I (f, U; s),

'\P,
detY>1
where
IfU )= [ 1o, € FAW=1Y™Y = FOW/Z1Y)(det Y)*)(det Y) UY)dY .
detY>1
The integral
(3.3) o, (et Y)* + (det V)KHUY) fP(V=1Y)dY
detY>1

is absolutely convergent for any s € C, unlessU(Y) = E(z, u) (z < W = (detY)~1/2Y)
and represents an entire function of s. IfU = E(z, s), then the function

(34)  u(l —wr "I Qu) f ((detY)* + (det Y)*")UY) fP (V/=1Y)dY

I'\P,
detY>1

is a holomorphic function of (s, u) in C2.
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Proof. The identity (3.2) is an immediate consequence of the fact U(Y) = U .
The convergence and holomorphy of the integral (3.3) follow from Lemma 2 and Lemma
8. |

Now we have to calculate I(f, U, s) explicitly. For this purpose, we introduce the
following auxiliary functions ¢ and Q.
For z € $), we put

$@) = Df(2) —a©0) = Y ame™™ %, a(n) = A(T,).
n=1

We also put
() = ¢(V=1y) = (=D*?a(@)y~*.
Then, by the automorphic property of @ f, we have

0 = (=D*y* Q).
LEMMA 13. (i) IfRes <O, then

R d
fo V(W) +aO) =555,
(i) If0 <Res <k, then

/ oL = g(@f,5).
0 v

Proof. (i) IfRes < 0, then by Lemma 9 we have

/ " 01 (Qw) + aO)dy = f @ (W T) — (— D2y Ra(0)dy
0 0
-/ T D2k (VT v
0
= (-1)"”/00 v g (V=1vHdv
0

= (=12 /oo vl (V-1v)dv
0

= (=) (®f, k — 5) = £E1(Df, 5) .
(i) If0 < Res < k, then by (3.1) we have

fo ” st(v)dTU = /1 ” v (B (v —1v) — (—l)kfza(ow-")%”

+ / ” v (=D 20k (¢ (v =1v) — (—1)"/2a(0)v"‘)d7”
1

- / " oW + (@Y 2@ DO
1 " . —
=&1(Pf.s).

This proves the lemma. |
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Proof of Theorem 10.  Since f(Z) satisfies
f(=Z27") = et 2)" f(2),
we have
fOW-1Y1 = @et )k £ (V/=1Y)
= a(0){(detY)* — 1} + (et V)* f O (V/=1Y) — FOW/=1Y7}).
By (2.10), we have
fOW-1r)= ) (@fW=1Y[Ul) - a(0)}.

Uel'/Tx

Since the mapping U +— U~} (_01 (1)) yields a bijection of I"/ I, onto itself, we have
fON=TrH= Y (of/=1¥""[UL1) — a0}

Uel /T
= Y (2f W1V ) —aO)}.
Uel/Ts
Therefore we have

det V) D (/=17) - fO/=Tr7")
= Y {detV) QI [UIn) +a@) D (¥ [UI11)™)

Uel'/Tw
— (QUYTUT H2) 4+ a@) (=2 (Y U1 H22) )}
= Y {(det))*Q¥[Ul1) — QYU )}

Uel /T
Thus we obtain

(3.5)
1AW = | g [a(O){(detY)k—l}
det¥Y>1
+ > {(detY)kQ(Y[U]u)-Q((Y[U]"l)zz)}](detY)'SU(Y)dY-
Uel' /T

CASE 1. U is cuspidal. In this case we have

d

- a(0){(det Y)* —1}(det Y)~SUY)dY = a(0) / oot_s(tk—l)—t / UQ)dp(z) .
\P, 1 r\s

detY>1
Since any cusp form is orthogonal to constant functions, we have

t

U()du(z) =0,
9

which implies
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k —s _
dr\lea(O){(detY) — 1}(detY)SUY)dY =0.
etY >

Hence

1GU) = [ 3 (@D QI ~ QU UI )Gt UMY

dety>1 Uel/ I

= ﬁr o, (@EDF QY IUTD) — QU] )2)) et V) UMY
dc(onzl2

A fundamental domain  (I'n0)\ P is given by

(3.6) F={(8 g)[nx] v>0 w>0, |x|§%}, nx=((l) ’;)

Therefore the cuspidal condition

1/2
/ Ux +iy)dx =0

-1/2
implies that, if Re s > k, then
3.7
I(f,U,s)
= [ towrow - ow e u((; °)[nx])v‘/2w-1/2d—” W
F,ow>1 vV ow
= / {w)* Q@) — Qw ™ H}ww) v w -‘/zd“ dw f Ux + iv/w/v)dx
vw>1 1/2
=0 s

where we note that the integral on the right hand side of the first equality is absolutely
convergent.

CASE 2. U=y = 3 In this case, if Res > k, then we have
m

o0
a(0){(det Y)¥ — 1}(detY)SUY)dY =a(0)/ £k — 1)—/ \/‘du(z)
1
T 1 1
=a(0)\/;(s—-k _;) )

The remaining term of I (f, vo, s) is equal to
[ f o, @D D (@t)FQIUIN) = QA VI Ha)dY
detY>1 Uel' /T

s ' 1
[f(p WP, (detY)™*{(detY)* Q(Y11) — Q((Y ™ ")22)}dY.

detY>1

'\ P,
detY>1
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If Res > k — — , then by a calculation similar to that in Case 1 and Lemma 13, we can
rewrite the 1ntegral above as follows:

f / ww) 02w 2 (w) Q(v) — O(w -1»"” du‘)“
vw>1

=3 / yrH 2yl 2 g ) BY 20
b/ w>1 vow

_/ v~s+1/2w—s-1/2Q(w-1)ﬂ d_w}
vw>1 v

w

_ /3 1 * dv_ 1 % 10w

_[{s—k+1/2/ ve) s—1/2/0 W QW )w}
1

'51(¢f1)[( —k+1/2 s—1/2)'

Summing up these calculations, we obtain for Res > k

11 3 1 L
(3.8) I(f,vo,s)=a(0)\/§<m—;)+sl(¢f, 1)\/;<s_k+1/2—s_1/2).

CASE 3. U = E(z, u). In this case we have

I(f,U;s) = P Z [{(et Y)Y Q(Y[UT11) — QY TUT Ha2)}(det Y) ~SU(Y)
dethzl Uel'/Tw
+ a(0){(det Y)* — 1}(det ¥) " H*/2(Y [U111) "“1dY
= ﬁ Fw)\%[{(det Y)* QY1) — Q¥ ~Ha2)}(det Y) ~U(Y)
detY>1
+ a(0){(det Y)* — 1}(det Y)~5t*/2y,,~*]ay
= / [{(vw)kQ(w—Q(w-‘>}<vw)—su((g g)[nx])
Fow>1
k —stu/2, —u | 172, ~124dV dw
+ a(O){(vw)" — 1}(vw) v v/ cw . 7dx
1/2
=/ [{(vw)"Q(v)— Q(w“l)}(vw)‘sf Ux + iyJw/v)dx
vw>1 —-1/2
+ a(0){(vw)* — 1}(vw)*s+u/2v—“]v1/2w—1/2dv—” Zwﬂ )
Since

1/2

LUET iv/w/v)dx = (Z)“/ +cw (2 )<l—u>/2
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forUd = E(z, u) (see (1.2)), we have for Res > max {k + &3—3‘-_—1, l;g—e—"-}

I(f, E(z,u),s)

- / () QW +a0) — (Qw™) +aO))vw) ™ (/w2 250 T2
vw>1

+ C() {w) Q) - Q(w‘h}(vw)‘s(w/v)“-">/2v1/2w-‘/2d—” dw

vw>1 v ow

1 *° d 1 o d
- f o' (Q) +aO) LY - — f w1 (Qw ™) +a0) =L
s —k+ Tu 0 v s+ Ez_ 0 w
o0 1 o0
+Cw) {—1—/ o - L / w'"Q(w“‘)ﬂ}
s—k+35Jo v s—35Jo w

1 1 o d
_ ) [ o ew +ao T
s—k+5t s+i ) Jo v

1 1 > dv
+C(u)(s_k+%—s_%>f0 v Q(U)T'

Hence, if we further assume that 1 < Reu < k, then by Lemma 13 we obtain

1 1
3.9 I(f, E(z,u),s) =&(®f,1— -
(39) (f E@ w),s) = £1(2f u)(s_k+l%, s+%)

1
+ CuEI (@ F. 1) ( . ) .

s—k+5 s-—3

Now the theorem follows immediately from (3.7), (3.8), (3.9) and Lemma 12. [ |

§4. Converse theorem

4.1. Statement of the converse theorem
Let A : P, — C be a mapping satisfying the condition (A-0) in §2.1; namely
(A-0) () AT[UD =A(T) (T € P2+, Uel),
(ii) A(T) = O((det T)%) for some a > 0.
(iii) There exists a positive 8 such that A(T,,) = O nP) for T,, n > 0.
Let U be a Grossencharacter in the sense of §0.1. Then, by Lemma 2, the Koecher-
Maass series
A(T)

Dy(A, U3 s) = —~U(T)(detT)™*
{ZT,: e(T)

is absolutely convergent for sufficiently large Re(s). In particular, if (z) = E(z, u) and ¢
is a sufficiently large positive real number, then the function

u(l —w)a “I'(w)sRu)Dr(A, E(x, u); s)
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is absolutely convergent in the domain

2’ 2
and defines a holomorphic function invariant under (s, u) — (s, 1 — u).
Consider the integral representation

4.1) D= {(s, u) € C?

Re(s) > max {Re(u) 1- Re(u)} + c]

£2(A,U; s) = f et V) UT) fP(V=1Y)dY

P,
= 4/mQr)"EI'U; s)D2(A, U 5)
given in Lemma 8.
We assume the following conditions:

(A-1) For any Grossencharacter U, the function &, (A, U; s) has an analytic contin-
uation to a meromorphic function of s in C and satisfies the functional equation

4.2) (A, Uk —s)=85(A,Uss).

(A-2) IfU is acusp form, then £,(A, U; s) is an entire function.
(A-3) IfU = E(z, u), there exists a sufficiently large number ¢ such that

( —g)(s—-—Ig—u)<s—k+—g)(s—k+1%u)§2(A,u;s)

is a holomorphic function of finite order in
D* = {(s,u) € C? | Re(u) > c}.
The assumptions (A-0) and (A-3) imply that the function

1— 1—
<s——;—)<s— 2u)<s—k+%)(s—k+ 2”)u(l—u)n-"r(u);(zu)sz(A,E(z,u);s)

can be extended to a holomorphic function in C2.
We define a Dirichlet series of rank one part by (2.1):

Di(A,u) =) amn™, a(®n):=A(T).
n=1

Moreover attaching the gamma factor we define a function &1 (A, u) by (2.14).

Our final assumption is the following:

(A-4) The function & (A, u) can be continued to a meromorphic function of u in the
whole u plane and

u—k u

-2 1
51<A,u>—a(0>(( ) )

is an entire function of u in C of finite order. In view of (A-3) we moreover assume that
ford = E(z,u)

4.3) £&1(A,1—uw)= lim (s —k+ I—-TM)GZ(A, E(z,u);s).

s—>k—1—§—"
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By (4.2) and the functional equation for £&,(A, E(z, u); s) under (s, u) — (s, 1 — u),
we see that

1 1
(4.4) £2(A, E(x,u); s) — {&(A 1—u) ( l—u)

1—
= S—7

+
+C<u)sl<A,u)( — T _)]
2 2

is holomorphic in D* = {(s, u) € C*|Re(u) > c}.

THEOREM 14. Let A : P, — C be a mapping satisfying (A-0)—(A-4). Then the
series

fa(Z) = Z A(T)expRnio(TZ)) (Z € $2)

TeP,
is a Siegel modular form of weight k of degree 2 (namely fa € sm’;(r ).

4.2. Strategy to prove the converse theorem and preparatory lemmas
For simplicity we write f(Z) instead of f4(Z) and put f;(W) = f(/—tW). By the
principle of analytic continuation, it is enough to prove that

(4.5) Wy =t7%f_(W).

By Corollary 6 the function f;(W) is of moderate growth as a function of W on
I'\'PS,, namely on SLy(Z)\SL2(R)/SO(2). Therefore, by (1.7), the identity (4.5) is a
consequence of the following:

(C-1) IfU is a cuspform, then (f;, U) = (¢t 7% f,-1,U).

(C-2) For ¢y € Cg° (Rj(_), let 6y be the pseudo-Eisenstein series defined by (1.6).
Then (f;, 8y) = (t ™ f,-1, 6y).

To be more precise, the function f; — ¢~ —k fi—1 is of moderate growth on I"\PS», and
moreover by the condition (C-2), cuspidal. Then the condition (C-1) implies (4.5).

REMARK. This kind of procedure of proving (4.5) was first emplyed by Weissauer
in [We]. He generalized Imai’s converse theorem to the one for arbitrary degree, though it
was restricted to only cusp forms.

Accordingly we have only to prove (C-1), (C-2).

First note the following estimates, which are consequences of the assumptions (A-0)—
(A-4) in Theorem 14, Stirling’s estimate of the gamma function and the Phragmén-Lindelof
theorem.

LEMMA 15. (i) Forany y > 0 and for any a1, o with a1 < o2, there exists a
constant ¢ = Cy,ay 0y, SUch that

|E2(A, U, 5)| < clIms|™Y  (|Ims| — 00) uniformlyon oy <Res <ay.

(i) For any y > 0 and for any o1, az with oy < oy, there exists a constant ¢ =
Cy,ay,a, Such that

|E1(A, 5)| < c|lms|™Y (]Ims| — 00) uniformlyon a; <Res <a3.
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Let fD(Z) (0 <i <2)bethesameasin (2.9)for f = fa. For F = f@ (0 <i <2)
we put

Fy(W) = F(v/—=tW) (W € S8P,, t > 0)

andfori =1, 2,
- o0
E,(W) =f F. (W)t~ ldz .
0

By Corollary 6, the integral above (i = 1,2) is~absolutely convergent when Re s is suffi-
ciently large. Since F;(W[U]) = F;(W) (U € I'), it is obvious that

Fy(W[UY) = Fs(W) (YU el).
Hence, if we consider 17} as a function on $) through the correspondence (1.3), then
Fi(y-2)=F@ (Vyel).
LEMMA 16. We have

FD (1) = 261(4, 25) E(z, 25) (R” = ; 1) ’

Proof. By (2.11), we have
—~ 0o .
70,0 = [ O awar
0

o0 o0
=2 am@Qrn)™> Y Im(y-2)* / 15 e~ dt
n=1 0

yeleo\I'
=2Q2n) B I'(25)D1(A, 25)E(z, 25)
= 2£1(A,25)E(z,2s).
This proves the lemma. |

4.3. Proof of the converse theorem
First we prove (C-1). Since cusp forms are orthogonal to constant functions (cf. [Ku]),
we have

(.U) = (a ), U) =0.
Recall the identity (2.11)
Pwy = ia(n) > exp(=2mny/tIm(y -2)7").
n=1 yeloo\I'
Since a(n) = O(nP),
exp(—2mn/ty™!) = 0((nv/1y™H ™)
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for sufficiently large o > 0, and U is rapidly decreasing, the Fubini theorem can apply to
the calculation of ( f,(l), U) and we obtain

4.7) Uy = Za(n)< Y exp(—2mn/tIm(y -z)‘l),u>
velo\I’

= Za(n)/ exp(—2mn/ty”
n=1 To\H
o0 o) _ -1 1 _

=Za(”)f exp( 271121«/;}’ )dyf x4 iy)de
n=1 0 y 0

=0.

For the calculation of ( ft(z), U), we use the expression

1 e ~ o
__/ ¢ st(2)(W)ds , fs(Z)(W) — / S lf,(z)(W)dt ,
Re(s)=so 0

2mi

Pw

where sq is a sufficiently large real number. By the integration by part, we can prove easily
that, for any o > 0, one can choose 8 > 0 such that

fOWw) = 0PIIms)|I™) (ze F).

Therefore the function ¢—5 fs(z)(W)L_{(z) is integrable as a function of (Im(s),z) on
(so +iR) x (I'\'H) and we have

(4.8) P uy = / {L f s f}<2>(W)ds}L'1(z)dz
r\H 270 JRe(s)=so

1 . -
= t_s{ f fs(z)(W)le(z)dz}ds
Re(s)=so '\H

1 _
= — t5& (A, U; s)ds .
270 JRe(s)=s0

By (A-1), (A-2) and Lemma 15, we further obtain

1

— / 1756 (A, U k — s)ds
27 JRe(s)=so

1 i}
— t57%&, (A, U; s)ds
= 2mi Re(s)=k—so

1 N
= 157% & (A, U; s)ds
270 JRe(s)=s0

< —kft(zl)’ ) .
Summing up (4.6), (4.7) and (4.9), we obtain
(fo, Uty = (TF fa, U

4.9) (fP,uy =
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Let us prove (C-2). For ¢ € C§°(R}), we put
o0
_ d
Lyw = [y w?.
0 y
The function L (1) is an entire function of u in C. Since 9:/, = 91,,-,, we have
(4.10) (£, 6y) = a(0) Y POW D)

- dxd
—a0) [ G0ZF =a0L50).
H y

‘We have
(0, 0,) = /

I'\H
_ / {i / 175€1 (A, 25)E(z, 2s)ds}9.;,(z)du(z)
L2708 JRe(s)=so
1

=— t—s/Zsl(A,s){ / E(z,s)@,;(z)dz}ds.
2mi Re(s)=s0/2 '\H

{i / = f;l)(W)ds}% ()du(z)
Re(s)=so

2mwi

Now we have

f E(z,9)8;@)du(2) = f E(z, )Y (y)du(2)
M

I\
0o d 1

=f w(y)—ﬁ/ E(x + iy, s)dx
0 y=Jo

*® s 1—sv.7. dy
= [0+ e G = Ly =9+ COL).

Hence

1
(f0,0y) = — 1757261 (A, ){L 5 (1 — ) + C(s)Ly (s)}ds
£ T o Re(s)=s0/2 4 v
1
=-— 172€1(A, $)C(s) L (s)ds
271 JRe(s)=s0/2
1
+— 7521 (A, )Ly (1 — s)ds .
278 JRe(s)=s0/2

By the assumption (A-4), the second term in the final expression is equal to

1
P 160281 (A, 1 = 5)Ly ()ds
271 JRe(s)=1-s0/2
1
== 1670281 (4, 1~ $)Ly()ds — a(O)L; (1)
27 JRe(s)=s0/2

+1t7*2aO) (- DL (1 - k).
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Therefore we obtain

@1 (P + £9,0y)
1
= — Ly 6){t™2£1(A, )C(s) +1¢7DP2E1(A, 1 = 5))ds
2mi Re(s)=s0/2

+ 172 O) (DL (1 - k).

For the calculation of ( f,(z), 6y ), we need the following expression of 6y, (see [Ku],
§3.1):
) .
Oy (2) = Ly(W)E(z,u)du .
v 27” Re(u)=uq v
Since fs(z)(W) is bounded with respect to W and rapidly decreasing with respect to Im(s),
we have

(ft(Z)v 01/!)
1

= f {_ / = Ji(?)(W)ds}e,,—,(z)du(z)
r\H 27 JRe(s)=so

- t-S{ f ﬁ@)(W)e,,-,(z)du(z)}ds

27 JRe(s)=s0

1 1
[f (2) { / LJ,(M)E(Z, u)du}du(z)}ds.
27{ L JRe(s)=so '\H 2wi Re(u)=uq

Since L,/-,(u) is a rapidly decreasing function of Im(u) on Re(#) = uo, we have for suffi-
ciently large so and ug

(f2, 6y)
1

t~s {
27T L JRe(s)=s9
1

L [ LW){ / FPWEG, u)du(z)}du}ds
270 JRe(u)=uo K
: t—s{i/ Ly w)é(A, E(x, u);s)du}ds
27i JRe(s)=so 271 JRe(w)=ug

1

2mi Re(u):uo [27T i JRe(s)=s0

1758 (A, E(*, u); s)ds}du

By (A-1), (A-3) and the holomorphy of (4.4), we have

-—1—— t5E2(A, E(*,u); s)ds

2710 JRe(s)=so

L t7°E(A, E(x, u); k — s)ds

27 JRe(s)=s0
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1
=— t7KEy (A, E(x, u); 5)ds
2mi Re(s)=k—sg

1
= —— %6 (A, E(x, u); s)ds
2mi Re(s)=sg

— {E1(A, 1 =) (772 — 702y 4 CQug (A, w) (TP - TR

where we used the residue calculation to get the final equality. Hence the identity just
obtained together with (4.11) implies that

(2. 0p) = 7% £2, 6y)

1
- — Lywi{éi(A, 1 - w)(r~ (=072 _ p=kt(1-u)/2y
2”! Re(u):uo B

+ CWEI(A, w) (¢ — 7+ %))y
= £2, 000 — (0 + £ 0p) — D + 7900

This proves the identity (f;, 6y) = 7k fi-1, 0y ), which completes the proof of Theorem
14.

§5. Saito-Kurokawa lifting (Improvement of Duke-Imamoglu’s method)

In this section we improve the method of [DI] by using our converse theorem (The-
orem 14) so that it can be applied to not necessarily cuspidal Siegel modular forms of
degree two. In [DI] they used three real analytic Eisenstein series on I(4) with level 4 to
deal with modular forms on the full modular groups SL;(Z) and Sp,(Z). Here we shall
prove the modularity of lifted forms by using the unique real analytic Eisenstein series for
SL,(Z). This will enable us to treat not necessarily cuspidal Siegel modular forms together
with the help of Zagier’s trick in [Za].

5.1. Shimura correspondence for Maass wave forms.

We use the symbol e(w) (w € C) as an abbreviation for exp(27iw). Throughout the
rest of this paper we assume that & is a non-negative even integer. Let Ji 1 denote the space
of Jacobi forms of weight & and index 1 on the full modular group SL,(Z), for the precise
definition of which we refer to Eichler-Zagier [EZ]. Each ¢ € Ji 1 has an expression as a
linear combination of two theta series:

(5.1 ¢ (7, 2) = ho(v)b0(z, 2) + h1(D)01(z, 2),

where 6;(t,2) =Y,z e((n +i/2)*t+ 2n+1i)z) (i =0, 1).

For w € C — {0} the function w!/? := exp((1/2)logw) denotes a holomorphic
function of w with the branch —7w < argw < 7. As usual let [H(4) be the congruence
subgroup of I' = SL,(Z) consisting elements (€ I') whose lower left components are
congruent to one mod4. Set 8(z) = 6p(z,0) =),z e(n?t). As is well-known this theta
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function is non-zero on §) and verifies the the transformation formula
O(M -2)/6(z) = j(M,z) forany M = (Z z> € N4,
where j(M, z) is characterized by
(5.2) i, = (5)eg' ez ).

Here (-;—) is Shimura’s residue symbol on whose precise definition we refer the reader
to [Shml1] and ¢4 = 1 (resp. &4 = i) according to d = 1 mod4 (resp. d = 3 mod4).
With the help of this factor of automorphy the space Mj_1,2(I5(4)) of modular forms of
half-integral weight k — 1/2 on I'y(4) has been defined. Namely, My_1,2(I5(4)) consists
of holomorphic functions f on § satisfying the conditions

i) fM-1)=jM,1)* 1 f(z) forall M € IH(4).

(i) f is holomorphic at all cusps of I'p(4).
By (i), (ii), each f has a Fourier expansion of the form

o0

f@) =) cmenr).

n=0
Moreover M,j'_l P denotes the subspace of My_1,2(I0(4)) so called the plus space
consisting of f € My_1/2(I'0(4)) whose Fourier coefficients c(n) satisfy the condition

(5.3) c(n)=0 if (~1)*n=1,2mod4.

Let f(z) = Y popc(n)e(nz) € M,j +1/2> Mot necessarily cuspidal. Then f corresponds to
a Jacobi form ¢ € Ji 1 in such a manner that f(t) = ho(4t) 4 h1(4t), where ho(t) and
hi(z) are given by (5.1). Furthermore hg and 1 have the Fourier expansions:

(2]

(5.4) ho() = Y clmlenr), hi(m= Y. cle (%)
n=0 négrzn;?i4
and that
1 k=172
(5:5) f (‘E) =v2(z) " D).
ho(=1/0)\ _ 1 12, k21 1 (ho(®)
G0 (m(—l/r)) =R e (1 —1> (hl(r)) '

This correspondence f +—> ¢ gives an isomorphism from M,j'_l /2(1"0(4)) onto Ji,1 (see
[EZ)).

We now recall the Shimura correspondence for Maass wave forms. For the defini-
tion of Maass wave forms (GroBencharacters) we refer to 1.1.

A Maass wave form I/ on $) (or on Py) is called even, if it satisfies

U(-Z) =UR) (or UT) =UT)),
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1

where ¥ = "IyY I with Iy = (0

odd, if U(—z) = —U(z2).

Moreover we have to introduce Maass wave forms of weight 1/2. For r € C let T,*
denote the C-linear space consisting of functions g : §) — C satisfying the following three
conditions:

(i) Each gis a C*®°-function of x and y verifying the transformation formula

9(M -2) = 9(2)j (M, D)lez +d| /2
for all M € Ip(4) and it has a moderate growth condition at any cusps of I'p(4); namely
there exists > 0 such that for all M € SLy(Z)
lg(M -2)| = 0(y%) (y —> 00).

(i) g has a Fourier expansion of the form

_01). On the contrary a Maass wave form U is called

(5.7) 9() =) B(n, y)e(nx),

nez
where the Fourier coefficients B(n, y) for n # 0 are given by
(5.8) B(n, y) = b(n) Wsigon/a,irj2(4my|nl) .

Here W, g is the usual Whittaker function.

(iii) Ifn = 2,3 mod4, then necessarily B(n, y) = 0.

The Shimura correspondence from the space of Maass wave forms to the space of
Maass wave forms of weight 1/2 has been obtained by Katok-Sarnak [KS]. They treated the
case of cusp forms, while Duke-Imamoglu [DI] improved it to cover the case of Eisenstein
series. Kojima in [Ko] also discussed such a correspondence in the case with levels.

For Y € P, we denote by zy the point in $ corresponding to «/dLT - Y via the

correspondence (1.3).

THEOREM 17 (Katok-Sarnak, Duke-Imamoglu). Let U be an even Maass wave

form and assume that AU = —-(% + r2)u with some r € C. Then there exists g =
Y nez B(n, y)e(nx) € T;" which satisfies the relation
b(=n) =n~ > UDIAWT|™ (1 € Zs0).

TeP) /SLy(Z),det2T=n

where b(n)’s are given by (5.8). Here T runs through all the SL,(Z)-equivalence classes of
elements of P2+ with det2T = n and |AutT | denotes the order of the unit group AutT =
(U € SLy(Z) |'UTU =T} of T.

Letg =Y,z B(n, y)e(nx) € T,;". Set

_ Ltz (1N L
QO(Z)‘ﬁ(i) g( 42)Izl

z
4

and

g1(z) = g( ) — g0(z) .
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Then it is immediate to see that

go(=1/D)\ _ 1 i —1p2 (1 1 ) (go(f))

9 (gl(—l/r)) =ZOTEETG 2 )
It is known by [DI] and [Ib] that
(5.10) 0@ =) B (4n, i—) e(nx),

neZ

y nx
91(2) = B(n,=)e(—).
PREre

To avoid the use of real analytic Eisenstein series on I(4) we consider the following
function:

(5.11) H(z) = ho(2)g90(2) + h1(2)91(2) -
LEMMA 18. The function H (z) satifies the transformation formula
HM -2) = (cz+d)lez +d|7?H(2)
forany M = (‘C’ Z) € SLy(2).
Proof. We have only to checkitfor M = J := ((1) _01) and T := <(1) i), which
is easily seen from (5.4), (5.6), (5.9), and (5.10).

A real analytic Eisenstein series Eqo(z, s) of weight k with respect to I = SLy(Z) is
given by

k
Exo(z,8) = Z ( cztd ) Im(Mz)*,

METoATr lcz + d|
which is absolutely convergent for Re(s) > 1. If k = 0, then, Ex(z,5) = E(z,s). Itis
well-known that this function can be analytically continued to a meromorphic function in
the whole s-plane and moreover that it satisfies the functional equation

Eoo(z,5) = Eco(z, 1 — ),

where we put
Eco(z,8) = y(5)Exo(z,8) with y(s) =n~"T (s + g) $(2s).

It is known that Eo(z, s) has a Fourier expansion of the form

(5.12) Ew(z,5) =e(y, )+ ) en(y,s)e(nx)
neZ,n#0

with e(y,5) = y($)y* +y (1 —)y'™
and that the function } 7, , .0 €n(, s)e(nx) is of rapid decay for any s € C.
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5.2. Rankin-Selberg convolution

To include the case of not necessarily cuspidal modular forms we employ the method
of Zagier [Za] which enables us to deal with the Rankin-Selberg convolution of not cuspi-
dal automorphic forms.

Denote by F the usual fundamental domain of SL,(Z) in § given by (1.5). Choose
T > 0 sufficiently large and set

Fr={z=x+iyeFly<T}.
Take f e M ,:r_l /2(F0(4)) and let H(z) be the same as in (5.11). Let us consider the integral

(5.13) In(s) = /f Y H@ Eoo(z, )dn ().
T

Here note that the integrand yé‘% H (2) Exo(z, §) is invariant under the action of SL;(Z).
Unfolding the integral (5.13) faithfully as in [Za], (22), we see that

Ir(s) = / fyf YH@y du(z) — fs YV HGY du).,
a/c

c—l amodc

(a,0)=1
where Sy is the disc in §) of radius 1/ (2¢2T) tangent to the real axis at a/c. If we choose
some My € SLo(7Z) of the form My = ch ), then, MO_1 “Saje ={z€H|y =T} With

the use of this expression of S,/ and replacing z with M - z we have

Al

T 1
(5.14) Ir(s) = f f YT H(2)y du(z)— / VAT H(2) (Eoo(z, $)— y*)du(2) -
0o Jo F-Fr
Let '
1
Ao(y) = fo H(x +iy)dx

denote the constant term of the Fourier expansion of H(z). We immediately have

o0
_ Y _ —2mny )
(5.15)  Ao(y) = c(0)B (0, 4) + ;c@n)b( Am)e Wy o (drny)
+ Y emb(—ne T W_y i (Tny).
17
n=3mod 4
n>0
We attach the gamma factor y (s) to It (s). Set
It (s) =/ yg‘%H(z)Eoo(z, $)du(z) .
Fr
Immediately from (5.14),
- T s+k_1_o k_1 s
IT(s) = V(S)/ Y T2TAT Ag(y)dy -—f Y2 i H(2)(Eso(z, 5) — v (5)y*)du(z) .
0 .7:—-.7:7
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Then with the use of e(y, s) (see (5.12)),
7. ! s+i-i-2
Ir(s) = y(s) LY 2747 Ao(y)dy
k_1 ~
—/ Y2 4H(2)(Exo(z, s) — e(y, 5))du(z)
F-Fr

-y - s)f yl‘s*‘%‘%H(z)du(z),
F-Fr

or rearranging,
T o0
(5.16) y(s) /0 Y2 A0(n)dy — y(1 =) fT Y T2 Ag(y)dy
= / Y H(2)Eoo(z, )du(2)
Fr

+f Y H(2)(Eoo(z, 5) — e(y, 5))du(z),
F-Fr

where we put « = (k — 1/2)/2. This identity has been proved only for Re(s) sufficiently
large.
Write
Ao(y) = ao(y) + Ag(»)
with ag(y) = ¢(0)B(0, y/4). Here the function Aj(y) is rapidly decreasing with respect
to y. We note that if either f or U/ is a cusp form, then ao(y) = 0.
Set

Aoo(f, 9.5) = 1(5) /0 Y2 AL () dy

Then the congruence condition for c(n), b(n) (i.e., c(n) = b(—n) = 0if n = 1, 2 mod4)
in the expression (5.15) being taken into account, this function A (f, g, s) can be written
as

Aoo(f’ g’ S)

A 1o DA (s +x+ ir _ 1) r (s +x— ir _ 1) i c(n)b(—n) ,
n=1

2 2 nS+K—1‘

where we have used the integral formula

o0 d
f Yl iw (2 =
0 y

Lir
47
Set
! y
hr(s) = c(0) / y*2B(0,3)dy.
0
In the case of U being Eisenstein series we have to compute k7 (s). Now let

UR)=E@uw= Y Im(Mz)"
Melu\I"
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with Re(u) > 1. We write {*(s) for the function 7 ~/2I" (£) £ (s). It is known by [DI],
Lemma 5 and [Ib], p. 159 that the automorphic form g¢(z, u) which corresponds to U =
E(z, u) by the Katok-Sarnak correspondence (Theorem 17) is given by

1
g(z,u) = 5(4n>—‘/4y‘/42";*<u)F<—1, u,7),
where

F(—1,u,z) = E(—1,u,2)+ 2_“_%(e(1/8) +e(—1/8)E*(—1,u,z)

and for each [ € Z the Eisenstein series E(l, u, z) and E*(l, u, z) are giifen by

EQu= Y  jM 2 ImM)""*
Melo\To4)
#2305 (5 )eather+ ) Plac + .
=1 ceZ

E*(l,u,z)=E (l, u, _ZZ) (—2ig)!?.

Moreover it is known that F(—1, u, z) has a Fourier expansion of the form

o 10 8MQu=1) 1

5.17 Pl u,z) = y% 4ot v D

(5.17) (-lu,z2)=yz+ )
+ Y Cd, wedx)y™""*Wiigna)/a,ur2-1/4@xdly)
%

(see for instance [Ib], p. 158 and also [Shm2]) and moreover that via this expression it can
be analytically continued to a meromorphic function verifying the functional equation

2*Qu)F(—1,u,2) = 2]‘“§*(2(1 —u)F(-1,1-u,z).
In this case (g = ¢(z, u)) by the above (5.17),

( ut1/2 g Qu—1) 1—u;~1{2)
£*(2u) .

By integrating the function on the right hand side of (5.18) from 0 to T we have

(5.18) B (o, %)

(5.19)
C(O)”_m T”%’L%"‘ FrQu—1) TR
hr(s) = ———*(u) - ) MM .
s+HE+E—1 e stke e

Therefore in this case if Re(s) is sufficiently large,

T o0
y(s) /0 Y2 A0(»)dy = Acs(f, 9, 8) — ¥ (s) fT Y2 A (»)dy + y ()hr (s)
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and moreover:

(5.20) y(1—s) /T Yy T2 A0 (y)dy
—y(—s) fT Y24 dy — y (1 — s)hr(l - s).

To derive (5.20) we used the identity (5.18) and the integration of y' ~***~2B(0, y/4) from
T to oo. ‘
By (5.19), (5.20) and (5.16) we obtain the following key identity.

THEOREM 19. Let f € M,j'_l P and U an even Maass wave form, to which g corre-
sponds via the Katok-Sarnak correspondence. Let T be a sufficiently large positive number.
We have

Aco(fs 9,8) + v (©hr(s) +y (1 —s)hr(1 —5)

o0 o0
— () /T Y2 ARy + (1 —s) /T Y242 () dy

+ f YH(2)Eoo(z, 9)du(@) + / YH@) (Eoo(z, $) = e(y, $)dpu(2) .
Fr , F-Fr

The function on the right hand side is an entire function of s and bounded in any vertical

strip of s. Moreover this expression gives meromorphic continuation of Aco(f, g, s), and

the functional equation

Aoo(f’ g,s) = Aoo(f, g, 1 '—S).

follows.

5.3. Application of the converse theorem

We continue the assumption that k is a positive even integer. Let f(z) =
o oc(ne(nz) € M,;"_,l 2 We define a mapping A : P, — C from f as follows:
m

Set, for T = (r/2

’ff) € P T #0,

(5.21) AD= Y d"‘lc(detZT),

2
0<d | (m,r,n) d
(m, r, n) denoting the greatest common integer of m, r, n,and for T = 0,

¢ (k)I" (k)

AQ) = Qri)k

1
c(0) = 5;(1 —k)c(0).
Since c(n) = O(n), it is easy to see that this mapping A satisfeis the condition (A-0) in
§2.1.
We now define a holomorphic function [(f)(Z) on $); by putting

(5.22) I(F)Z) =Y ADe(o(TZ)).

TeP,
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We write simply F(Z) instead of I(f)(Z) (F(Z) = fa(Z) with the notation of (2.8)). Let
F®(Z) denote the rank two part of F(Z) given in the same manner as in (2.9). By the
action of the @ operator given in (2.13) on F, we easily have, from (5.21),

(5.23) (@F)(z) = Z A (g 8) e(nz)

{ §(l—k)+}:( Z dk"l)e(nz)}c(O)

0<d|n

- {%g(l -k > (e +d)"‘}c(0).

Mel,\I'

We consider the Mellin transform of F®(i¥) on a fundamental domain of I' =
SLy(Z) in P;:

&(F,U,s) := f (det Y)Y UY)FP (V/=1Y)dY
'\P,

where U is a Grossencharacter on P, (see (2.15)). This integral is absolutely convergent
for Re(s) sufficiently large. We note that if ¢{ is an odd Maass wave form, then trivially,
&(F,U,s) = 0. Therefore we may assume that { is even. Let g € T"‘ denote a Maass
wave form of weight 1/2 corresponding to I/ via Theorem 17.

A key identity connecting Koecher-Maass series & (F, U, s) with some integral of
Rankin-Selberg type is the following:

(5.24) &E(F,U,s) = cr Ao (f, g,8 — ’—C—E—l—)
with ¢ = 27, A proof of this identity which uses Theorem 17 of Katok-Sarnak is given
in [DI], [Ib] if f is a cusp form. That proof is available also in the non-cuspidal case (see
also [Ar2]).

To apply our converse theorem (Theorem 14) we have to compute the residues of
the function at poles. First we note that if either f or I/ is a cusp form, then (5.24) and
Theorem 19 implies that & (F, U, s) is an entire function of s.

So let U(z) = E(z,u). Here we assume that Re(u) > k. Denote by & (@ F, u) the
Mellin transform of @ F:

EL(OF, u) = fo (@F)(iy)y“~\dy.
Then, by (5.23)
(5.25) E(DF,u) = (27t)“"1“(u)§'(u){(u —k+1)-¢(0)

=2 lg-@th/2p (” + 1) X —k+1)-c0).
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We see from Theorem 19, (5.19) and (5.24) that the function & (F, U, s) can be writ-
ten as in the form

(526) SQ(F, U, s) = —ck{y(s - %)hT(S — ].(_T_l)

L ]

+ (some entire function of s) ,

where

k—1\ cOn-1/4 TS *Qu-1) T3
hT (s B ) - ( ) g*(u) 1—u + ; (* ) ! u .
2 4 S — 5 f (Zu) s — 5
Let C(u) be the same function as in (1.1). Then we have

_rQu—1)
€=

If we write

L | IR
[S1ES =~
)

2

with some function H7(s) of s, then we observe that Hr(s) is holomorphic except for
s = k/2, since Isi - % is an entire function of 5. The principal part of Hr(s) ats = k/2 is
given by

i ()i (1)

(5.27) Hr(s) = -
:

4+
s_

To continue the computation furthermore we need

1 =L k_;_l) =t —wr (1-2) 5@ - u = ke

c(0)¢* (w)y (
=23 (DF, 1 — u)

and

c(O)¢* )y (g - k—;—l) =TS wr (” ;“ 1) £ — k + 1)e(0)

= 2w i (BF, u),
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where we have used (2.5). Therefore

k—1 k—1
(5.28) ”(S‘T) - (S_T)

L [AORLZ0  8@R0)
2 s — 5% )

Though Hr (s) itself has a simple pole only at s = k/2 as in (5.27), the function
Hr(s) + Hr(k —s)

is entire and bounded in any vertical strip of s.
Thus we obtain the following theorem which enables us to apply our converse theorem
to the function F.

THEOREM 20. Let the notation be the same as before. The Koecher-Maass series
& (F,U, s) can be continued analytically to a meromorphic function of s verifying the
functional equation
EF,U,s) =&(F, U, k—s).
If either f or U is a cusp form, then &(F,U, s) is an entire function and bounded in any
vertical strip. IfU(z) = E(z, u) with Re(u) > k, then &,(F, E(z, u), s) has the following
expression

(5.29) &(F, E(z,u),s)

1 1
=&(DPF,1 —u) —
o <s~k+l-7" ——)

+ C(w)é1(PF, u) (

- F,E(z,u),5),
s—k+ % s_%)'i'nz( (z,u), s)

where 1,(F, E(z, u), s) is an entire function of s. Moreover n2(F, E(z, u), s) is bounded
in any vertical strip of s.

REMARK. If either f or U is a cusp form, then the assertion has been proved by
Duke-Imamoglu [DI].

Proof. We have only discuss the case of U(z) = E(z, u) with Re(u) > k. In this
case the assertion is easily seen from (5.26) and (5.28). [ |

Let 90tay (1) denote the subspace of 9)?’2‘(1’2) consisting of F whose Fourier coeffi-
cients a(T) satisfy the Maass relation:

a(’:l ;)= 3 dk—1a<r/1d m;//‘fﬂ) ((m, r,n) # (0,0,0)).
0<d | (m,r,n)

Finally we apply Theorem 15 to prove the modularity of F = [(f).

THEOREM 21. Let f € M, and F = I(f) be the function on §y, defined by

(5.22). Then the function F is a Siegel modular form of 9)?’5(1" %) and moreover it belongs
to the Maass space May (17).
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Proof. Let A : P, — C be the same as in (5.21). If A is restricted to P, then
the condition (A-0) is obvious. The conditions (A-1), (A-2) are immediately checked from
Theorem 20. We see easily from (5.29) that the conditions (A-3), (A-4) hold true. There-
fore Theorem 14 implies that F € EUI’;(FZ). The latter assertion is derived from the defini-

tion (5.22) and (5.21). |
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