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1. Introduction

A natural number 7 is called a congruent number if it is the area of a right triangle
with rational sides. It is well known that n is congruent if and only if the Mordell-Weil
rank of the following elliptic curve E, is positive ([5]):

E,,:y2=x(x+n)(x—n).

Tunnell’s theorem ([9]) gives a criterion to tell whether a given n is congruent or not. This
criterion is complete if the weak form of the Birch and Swinnerton-Dyer conjecture is true.

Fujiwara [3] defined the generalized concept, a 6-congruent number by considering
triangles with rational sides and an angle 6. For such a triangle, cos 0 is necessarily rational,
thus we write cos§ = s/r with ged(r, s) = 1 and r > 0. Then sin® = ~/r2 — s2/r.

DEFINITION. A natural number 7 is 6-congruent if n/r?2 — s2 is the area of a tri-
angle with rational sides and an angle 6.

For = m/2, we have r = 1 and s = 0. Hence 7 /2-congruent numbers are noth-
ing but the classical congruent numbers. Since n is §-congruent if and only if c2n is
6-congruent for some integer ¢, we may assume without loss of generality that n is a
squarefree natural number. The 6-congruent numbers are also connected with the follow-
ing elliptic curves:

Enp:y*=x(x+ @ +s)n)(x — (@ —s)n). (1.1

THEOREM 1.1 (Fujiwara, [3]). Let n be any squarefree natural number. Then
(1) nis O-congruent if and only if E, g has a rational point of order greater than 2.
(2) Forn #1,2,3,6, nis 0-congruent if and only if E, 9(Q) has a positive rank.

The 0-congruent number problem is to find a simple criterion to determine whether a
given integer is a 6-congruent number or not. In view of Fujiwara’s theorem, this problem
is equivalent to determining whether the Q-rank of Ej, g is positive or not. Clearly Ep g
has rational 2-torsions. Conversely, it can be shown that an elliptic curve with rational
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2-torsions is isomorphic to some E,, ¢ over Q. In this paper, we study the Selmer group of
the following elliptic curve:

Ea,ﬂiy2=X(X—0l)(X—,3) (a’ﬁeQ’a#ﬂ’a¢0’ ﬂ?—éO)

The Selmer group gives a bound of the rank. We recall the definition and some basic facts
of the Selmer group in §2. Our main result in vague form is as follows.

MAIN THEOREM. We have the complete formula for the Selmer group of E, g
associated to 2-isogeny. The order of the group is also explicitly given.

The precise statements of this theorem are given in Theorem 4.2 and Theorem 4.4.

Aoki [1] calculated the Selmer groups of the elliptic curves connected with the clas-
sical congruent number problem. Most ideas in this paper owe those origin to Aoki [1].
One of the methods is to study how local points at bad primes appear. The results of the
investigations and some examples are described in §3. The proofs are in §6. We derive the
formula for the dimension of Selmer group in §4. It is applied to a part of the #-congruent
number problem in §5, where the following corollary is proved.

COROLLARY 1.2. Letp be a prime. Then

(1) p=7or13 (mod24) = 2p is NOT 7 /3-congruent.

(2) p=5,11,17 or 19 (mod 24) = 3p is NOT r /3-congruent.
(3) p=130r19 (mod24) = 2p is NOT 27 /3-congruent.

(4) p=17(mod24) = 3p is NOT 27 /3-congruent.

The main result applied, we can obtain analogous facts with the other angles 6 or the
other numbers n. This corollary is an analogy of the following theorem in [3].

THEOREM 1.3. Let p be a prime. Then
(1) p=5,70r19 (mod24) = p is NOT i /3-congruent.
(2) p=Torll (mod24) = p is NOT 27 /3-congruent.

Fujiwara [3] also says
p =13 (mod24) = p is NOT 25t /3-congruent .

But the computation of Selmer group is not enough to deduce this fact. The proof is in Kan

[4].

2. Preliminaries

In this section, we recall some basic facts on the Selmer groups of elliptic curves with
at least one 2-torsion rational point. For details, we refer [7, Chapter 3] and [6, Chapter
10]. There are isogenies ¢ : E — E’ and ¢’ : E' — E of degree 2, dual to each other,
between the following two elliptic curves:

E;y2=x3+Ax2+Bx (A,BGQ),
E':y? =x>—24x* + (A’ —4B)x = x> + A'x* + B'x.

These maps are given by the following formulae:
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2 ——B
(p(P)_ (_':_2’ y(x )), 1fP=(x’y);é(0’O),O,
0, if P=1(0,0),0,
2 —B
¢'(P) = (4y7 (x ))’ if P=(x,y)#(0,0),0,
if P =(0,0), 0,

where we denote by (’) the origin (the point at infinity) of each elliptic curve. We note that
@ o ¢’ and ¢’ o ¢ are the duplication maps. Let k be a field containing Q, and consider the
following exact sequence of Gal(k/k)-modules

0—>E[(p]—>E—¢>E’—>O,

where E[¢] := Ker(p) = {(0,0), O}. Taking Galois cohomology, we obtain an exact
sequence

8
0 — E'(K)/@(E(k)) —> H'(k, Elp]) — H'(k, E)[¢] — 0.
The map &y is called the connecting homomorphism. When k = Q (resp. k = Qp, k = R),

we simply write & (resp. 8,, 80) for ;. Interchanging the role of E and E’, we obtain
another exact sequence

8’
0 — Ek)/¢'(E'(k)) —> H'(k, E'l¢')) — H'(k, E")[¢'] — 0.
Since we have the formula (cf. [7, Chapter 3])

rank E(Q) = log, |E(Q)/¢'(E'(Q)| + log, |E'(Q)/¢(EQ)| -2, 2.1

our goal is to calculate the order of | E(Q)/¢'(E'(Q))| and |E'(Q) /¢ (E(Q))|. This amounts
to calculatlng the images Im(8) and Im(8’) because of the injectivity of § and 8’. Since
Hl(k, E[¢)) is isomorphic to k*/k*?, we can regard § as a map E'(Q) — Q*/Q*2.
Similarly &' is a map E(Q) — Q* /Q*2. Then & and 8’ can be described explicitly as
“follows:
x, ifP=(xy)#(00),0,
8(P)=1{B', if P=(0,0),

: 1, ifP=0.

x, ifP=(x,y)#(0,0),0,
§(P)=1{B, if P=(0,0),
1, if P=0.

‘Therefore, in order to determine Im(8) (resp. Im(8’)), we must check what numbers (mod-
ulo square) appear in the x-coordinates of the rational points on E’ (resp. E). The coordi-
nates of a rational point of order greater then 2 on E are written as

dMm? dMN
X = _e2 , y=

k)

e3
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where MNe # 0, (M,e) = (N,e) = 1 and d is a divisor of B. These numbers must
satisfy the equation (coming from the equation of E)

B
N? =dM* + AM?e* + (E)e4 ) (2.2)

Hence d (# 1, B) is in Im(8’) if and only if (2.2) has a non-trivial integral solution. But in
general, to determine whether or not (2.2) has such a solution is an unsolved problem. So
we call d the element of the Selmer group S @)(E' /Q) when (2.2) has a solution in R and
in Q,, for every prime p. In this paper, we write Sel(¢") for S @)(E /Q). In other words,

Sel(¢) := () Im(8)), Sel(p):= () m,).

PEMg PEMg
where M = {primes}U{o0}, and the images Im(8;,) and Im(§,) are regarded as subgroups
of Q% /Q*2. So Sel(¢’) and Sel(p) are subgroups of Q* /Q*2. Clearly Sel(¢’) D Im(8'),
Sel(p) D Im(8). In general, Sel(¢’) and Sel(p) are finite groups, and thus can be regarded
as finite-dimensional vector spaces over F,. We write dim Sel(¢’) and dim Sel(¢p) for their
dimensions over F;. Namely dim Sel(¢") = log, |Sel(¢’)|, dim Sel(p) = log, |Sel(p)].
By (2.1), we have

rank E(Q) < dim Sel(¢’) + dim Sel(g) — 2. (2.3)
Let us define the Tate-Shafarevich groups by
I [¢'] := Sel(¢')/(E(Q)/¢'(E'(Q))), I[g] := Sel(p)/(E'(Q)/9(E(Q))).
Then we obtain the following exact sequences of finite groups

0 — EQ)/¢'(E'(Q) - Sel(¢) —> HI[¢/] —> 0,

0 — E'(Q)/p(E(Q) —> Sel(p) — I [g] —> 0.
Therefore by (2.1), we have
rank E(Q) = dim Sel(¢") + dim Sel(¢) — dim III [¢'] — dim ITI [p] — 2, 2.4

where dim ITI [¢'] = log, |III [¢']|, dim I1I [¢] = log, |III [¢]|.

In the next section, in order to calculate Sel(¢") and Sel(¢) for Eq, 8> we study Im((S;,)
and Im(8,). In view of the following theorem, if one of the groups Im(cS;,) and Im(5) is
given, the other group is automatically determined (see for example [2]).

THEOREM 2.1. Let p € Mq and let (, ), be the Hilbert symbol. For a subgroup
Vc Q;/Q;z, we define V- = {x € Q;,‘/Q;J<2 |(x,y)p =1forally € V}. Then

Im(8,) = Im(8),)* .

3. Images of the connecting homomorphisms

In this paper, we study the following elliptic curves:
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E=Eyp:y*=x"—(a+B)x*+apx =x>+ Ax> + Bx,
E =E,z:y =% +2 + B2+ (=B x=x3+Ax?+Bx.
Without loss of generality, we can assume that o, B are integers and ged(a, B) is squarefree.

In this section, we give the formulae for the images of the connecting homomorphisms 8;,,
8,. We give the proofs in §6. At first, a statement in the case that p = oo is given.

PROPOSITION 3.1. The images of 8, and 8~ are given as follows.

(1) Ifa > 0and B > 0, then Im(8},) = {1}, Im(8c0) = {£1}.

(2) Ifa <0or B <0, then Im(8,,) = {£1}, Im(80) = {1}.

Next, we have the case that p is an odd and good prime. In general, if p is an odd
prime, Q;,‘ /Q;2 = {1, u, p, pu}, where u € Z; is non-square element modulo p. In this
paper, u represents such an element.

PROPOSITION 3.2. Let p be a prime not dividing 2A, then Im(8;,) = {1, u}, Im(Sp)
= {1, u}.

The most important case is when p is a bad prime. The discriminant of Eq,g is

' A= 16a28% — B)>.

So bad primes are classified into

e odd primes which divide both o and 8,

e odd primes which divide either « or 8,

e odd primes which divide not « but & — 8,

e even prime 2.
Note that the prime 2 may be a good prime, since the above discriminant may not neces-
sarily be minimal at 2. But it is not a serious matter.

First, we have the statement for odd primes which divide both @ and 8. Forcy, - -+ , ¢n
€ Q, we denote by {ci, - - - , ¢,) the subgroup of Q*/Q*% or Q;,‘/Q;;2 for some p € Mg
generated by c1, -+ -, Cp.

PROPOSITION 3.3. Let p be an odd prime, and suppose that ord,(a) > 1, ordp(8)
= 1. Then
Im(8,) = (o, B) .
The other group Im(8,) can be obtained by Theorem 2.1.
Secondly, we describe the proposition for odd primes which divide either o or 8. We
denote by (/) the Legendre symbol.

PROPOSITION 3.4. Let p be an odd prime, and suppose that ordp(a) = a > 1,
ord,(B) = 0. Then the following holds.

(1) Ifaisevenand (—B/p) = —1, then Im(8;,) = {1, u}, Im(@,) = {1, u}.

(2) In the other case, Im(8;,) ={1,u, p, pu}, Im(8,) = {1}.

Thirdly, in the case of odd primes which divide not & but o — B, we have the following
proposition.

PROPOSITION 3.5. Let p be an odd prime, and suppose that ord () = 0, ordp (o —
B) = a > 1. Then the following holds.
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(1) ¥ (@/p) = 1, thenIm(8,) = {1}, Im(5,) = (1, u, p, pu}.
@) If(@/p) = —1, thenIm(8,,) = (1, u}, Im(3,) = {1, u}.

Lastly, we consider the case that p = 2. In this case, Q; / Q;z = {£1, £5, +£2, £10}.
For a while, in order to simplify the problem, we assume that & and B satisfy one of the
following conditions.

(A) ordx () = ordy(B) =0,

(B) ordy(a) =ordy(B) = 1.
Even in the case that « and 8 satisfy neither condition, some translation of the curve will
give E, g satisfying either condition. But we note that the images Im(S;,) and Im(8,) may
change by a translation.

PROPOSITION 3.6. Suppose that ordy(a) = ordy(8) = 0. Then Im(8§) = (a, B)
except the following three cases.

(1) Ifordy(x — B) =2 and a + B = 14 (mod 16), then Im(8) = (-1, 5).

() Ifordy(a — B) =3 and o« = 3 (mod 4), then Im(8)) = (1, 5).

(3) Ifordy(x — B) =4 and a = 1 (mod 8), then Im(8)) = (5).

PROPOSITION 3.7. Suppose that ordy(«) = ordy(8) = 1. Then the following
holds.

(1) Ifordy(a — B) = 2, then Im(8)) = Q5 /Q>.

(2) Ifordy(a — B) = 3, then Im(8)) = («, 5).

(3) Ifordy(a — B) > 4, then Im(8)) = (a).

We have prepared to calculate Selmer groups Sel(¢’) and Sel(p).
EXAMPLE 3.8. Consider the elliptic curve
E:y* = x(x +483)(x — 483).

If the Q-rank of E were positive, 483 would be 7 /2-congruent. By the propositions in this
section, the images of &/, 8 p for the bad primes p = 2, 3, 7 and 23, are determined as in
the following table: ‘

Table 1.
Im(8;,) Im(5p)
{£1) {1
(~1,5) (5)
Q2| 1
Q Q2| 1
23| Q/Q% |

S|w |8 |

}
}
}

Recall that Selmer group Sel(¢’) is an intersection of all Im(3;,) considered sub-
groups of Q* /Q*2. Therefore by the above table it is clear that Sel (¢ = (—1,3,7,23)
and Sel(p) = {1}. This gives rank E(Q) < 2 (cf. (2.3)). See Example 3.12 for further
discussion of this example.
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The following propositions are useful when one computes directly the images Im(85)
and Im(é,) for an elliptic curve not satisfying either conditions (A) or (B).

PROPOSITION 3.9. Suppose that ordy () = a > 2, orda(B) = 1. Then the follow-
ing holds.

(1) Ifa+ B =2 (mod8), then Im(8)) = (e, B, —5).

) Ifa+ B =6 (mod8), then Im(8§) = (a, B, —1).

PROPOSITION 3.10. Suppose that ordy(«) = 1, ord2(B) = 0. Then
Im@3) = (@, B.5).

PROPOSITION 3.11. Suppose that ordy (o) = a > 2, ordy(8) = O and put & = 2%a’
(o' € ZY). Then images Im(8}) and Tm(82) are determined as the following table:

Table 2.
pmod8 | ordy(e) | o' mod4 | Im(8)) Im(8;)
1 2 1 (5) (-1, 5)
—1 (—1,5) (5)
3 1 Q /2|
-1 (-2.5 | (-5)
>4 1 (2,5) (—1)
-1 Q|
-1 2 1 (—1,5) (5)
-1 | Q| W
3 — /P
4 — (—1,5) (5)
>5 — /7|
5 2 1 (5) (-1,5)
-1 (-1,5) (5)
3 1 (2,5) (—-1)
-1 Q2| w
even > 4 1 (—2,5) (=5)
-1 | Q|
odd> 5 1 Q/Q% |
-1 (=2,5) (—5)
-5 2 1 Q|
-1 (-1,5) (5)
odd > 3 — |2 W
even > 4 — (—1,5) (5)
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EXAMPLE 3.12. Consider the curve E : y? = x(x +483)(x —483) in Example 3.8
once more. By some translation, we have the curve

F y = x(x —483)(x — 966) .

Note that rank E(Q) = rank F(Q). By the above propositions, the images of the connect-
ing homomorphisms are clear.

Table 3.
p Im(3 ») Im(3p)
o] {1} {£1}
2 | Q|
31Q5/Q7% |
7| (=7 (7)
23 (—23) (23)

By this table, it is clear that Sel(¢’) C (2,3,7,23) and Sel(p) C (—1,7,23). In fact,
Sel(¢’) = (2,483) and Sel(p) = {1}. The detail is described in Examples 4.3, 4.5. This
gives rank F(Q) = 0, so 483 is not 7 /2-congruent.

REMARK 3.13. The curve E in Example 3.8 and the curve F in Example 3.12 are
essentially the same. But 2-isogenies given in §2 are different. As we have seen, the bound
of the rank can change by a change of the 2-isogenies. So we can take the smallest bound
of the three.

4. Formula for the Selmer group

In this section, the formula for the dimensions of Sel(¢") and Sel(p) is given. Recall
that & and B are integers such that gcd(w, B) is squarefree.

DEFINITION. For fixed @ and B as above, we introduce the following notations.
ord,(a) > 1, ord,(B) > 1,
p : odd primes | o ;é 1 (monx2) B # 1 (mod Q>
o # p (mod Q)
ord,(a) =0, ord,(B) > 1, }
ord,(B) is odd or (—a/p) = 1"

ord, () > 1, ordp(B8) =0,
ordp(er) isodd or (=B/p) = 1]°

1) S

2) Si12:= {p : odd primes

3) Si3:= {p : odd primes

@ S1:=81,1U812U83.

(5) S2:={p:oddprimes|ord,(x) =0, ordy(ax — B) > 1, (a/p) = 1}.

(6) S3:={p:oddprimes|ord,(a) > 1, ordp(8) > 1, a =8 (mon;,‘z)}.
(7) S = {p : odd primes |ord,(a) =1, ord,(B) =2, =1 (mon;Z)}.
(8) S :={p:oddprimes|ord,(a) =2, ordp(B) =1, a =1 (mon;Z)}.
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PROPOSITION 4.1. Let p be an odd prime. Then the following holds.

(1) pe S & Im@,) ={1,u, p, pu}, Im(5,) = {1}.

2 peSH & Im(8;,) = {1}, Im(8p) = {1, u, p, pu}.

3 peSs= Im(cS;,) ={l,a} = {1, B}, Im(S,) = {1, —a}.

@) peSe =Im@),) ={1,a} # {1, 8}, Im@p) = {1, —a}.

(5) peSp =Im@),) ={1,p}#{1,a}, Im(p) = {1, —B}.

(6) the other cases = Im(8;,) = {1, u}, Im(6,) = {1, u}.

In (3), (4), and (5), the groups Im(8,) and Im(8,) are either (p) or (pu).

Proof. This is an immediate consequence of Propositions 3.2~3.5 and Theorem 2.1.

a

DEFINITION. Let S, T be the following sets.
S=81US3U S8 USp UAs,
T=SUS3US@u USp UAT,
where Ag, At C {—1, 2} are determined as follows:
e —1lisineither Agor Ar. If@ > Oand 8 > 0, then —1 € Ar, otherwise —1 € Ag.
e If Im(8)) C {£1,£5}, then 2 ¢ Ag, otherwise 2 € Ag. If Im(8) C {£1, £5},
then 2 ¢ Ar, otherwise 2 € Ar.

Let Vx be the subgroup of Q*/Q*? generated by the elements of the set X. By
Propositions 4.1 and 3.1,

Sel(¢)) C Vs, Sel(p) C Vr.
Let (, ), be the Hilbert symbol. For x € Vg,
x€Sel(y) <<= xelm@,) forVpeM
(x,p)p=1 for Vpe S;,
(x,—a)p =1 for Vp e S3U S,
Prop.41) | (x,—B)p =1 for Vp € S,
x € Im(8) .
Similarly for x € Vr,
x € Sel(p) <= xelm(,) forVpeM
(x,p)p=1 forVpeS,
, =1 forVpeSU ,
(x,a)p or Vp 3 U S
(Prop. 4.1) (x,B)p=1 forVpe Sy,
x € Im(8) .
This prompts the following definition.
DEFINITION. Let (a, b), be the Hilbert symbol, and we let

0, if (a,b),=1,

{a.b)p i= {1, if (a,b), = —1.
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Next, we define the map A’ : Vg — (Z/2Z)™ and A : V¢ — (Z/2Z)™ (m’ and m are
natural numbers which depend on «, ) as follows:

M) = (x, {x,p}p (p€S), {x,—a}, (p €S3USw), {x,—B}p (P Sp),

A'(x) = (**7 {xv P}p (P € 51)7 {x’ a}p (P € S3 U S(Ol))’ {x7 ﬂ}p (P € S(ﬂ)))a
4.1)

where for example {x, p}, (p € §2) represents the numbers {x, p}, forall p € S; arranged
horizontally. And *, ** represent the numbers described in the following table.

Table 4.
Im(8%) Im(8;) * *k

1 | Q/Q% | (x.—1h.{x. 2
(1) (2.5) {x.2) {x, ~1}

(5) (-1,5) {x,~1}

(=5 | (2.5 {x, ~2} {x, =5}

2) (-1.2) | {x—ln (x.2) {x.2)

-2 | @-5 | x2hx.~5h {x, =2}

(10) (-1, 10) {x, —1}2, {x, 10}, {x, 10},
(—10) (=2, =5) | {x, =2}, {x, =5} {x, =10},
(-1,5) (5) fx. ~1}
(-1,2) 2) (x. 2} {x, ~ 1}, (. 2h

(-1, 10) (10) {x, 10}, {x, —1}2, {x, 10},

2.5) (1) {x,~1) {x. 2
(-2,5 | (=5 {x, =5) {x,~2)
2.-5 | (-2 {x, —2) {x,2h. (x, =5}

(-2,-5) | (-10) {x, —10}, {x, =2}, {x, —5h
Q/Q| ) fx, =1}, {x, 2},

THEOREM 4.2. The Selmer groups Sel(¢') and Sel(p) are given by the following
formulae:
Sel(¢'y =Kerd', Sel(p) =Kerh.

Proof. We see only Sel(¢’), since Sel(gp) is computed similarly. Let x € KerA'.
Then x satisfies
x,p)p=1 for Vp € S,
(x,—a)p =1 for Vpe S3U Sy,
(x, —-ﬂ)p =1 for Vp € S(ﬁ) .

Moreover x € Im(8}). Indeed, x € Im(8)) if and only if the values * in Table 4 are all 0.
Conversely, if x € Sel(¢’), then clearly x € Ker A’. This proves the theorem. t
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EXAMPLE 4.3. For the curve y2 = x(x — 483)(x — 966) in Example 3.12,
Si={3), S2=9¢, $={1.23}, Sw=¢, Sp=9¢.
And S =1{2,3,7,23}, T ={-1,7, 23}. Then

2(2) = ({2, 7, {2,23)23) = (0,0),
A (3) = ({3,717, {3,23}23) = (1,0),
N =77, {7,23}3) = (1, 1),
A (23) = ({23, 7}7, {23,23}23) = (0, 1)..
By Theorem 4.2, we have 2 € Sel(¢’), 3,7,23 ¢ Sel(¢’). Since A’ is additive, A'(483) =
N @3) + A (T) + M (23) = (0,0), so 483 € Sel(¢’). But it is trivial because &§'((483, 0)) =

483. Since 8'((966, 0)) = 2, it is also trivial that 2 € Sel(¢’). In this example, there is not
a non-trivial element in either Sel(¢’) or Sel(g), so the rank is 0.

DEFINITION. Let us define the matrices A’, A as follows:
A=A () (pes), A=0p) (peT),

where A/(p) and A(p) are row vectors defined in (4.1).
THEOREM 4.4. The dimensions of the Selmer groups Sel(¢") and Sel(p) are given
by the following formulae:
dim Sel(¢') = |S| —rank A", dim Sel(¢) = |T| — rank A.

Proof. This is an immediate consequence of Theorem 4.2. |

Theorem 4.2 and Theorem 4.4 are extensions of the theorems stated in [1] for the
elliptic curves connected with a classical congruent number problem. But Aoki [1] calcu-
lated not only the Selmer groups associated to 2-isogeny but also the 2-Selmer groups.

EXAMPLE 4.5. Let us see what Theorem 4.4 means by considering the curve in
Example 4.3 again. For this curve

7 23
2 0 0
, 3 1 0
4=5 11
23\ 0 1

The meaning of the numbers outside the matrix is an obvious one. For example, that (1, 1)-
entry is 0 means 2 € Im(8}), and that (2, 1)-entry is 1 means 3 ¢ Im(§7) (however A’, A
were defined by the Hilbert symbol, one can also compute the entries by checking whether
ornot2 € Im(8§) and so on). Therefore that the entries in the first row are all 0 means
2 € Sel(¢).
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Let us do the elementary transformation in order to compute the rank of the matrix.
First, add the second row to the third row. Then we have

7 23
2 0 o0
3 1 0
3.7 0 1
23 0 1

Note that the meaning of the third row has changed. Next, add the third row to the fourth
row. Then we have

7 23
2 0 0
3 1 0
21 0 1
483 0 O

Hence we have rank A’ = 2 and Sel(¢’) = (2, 483).

EXAMPLE 4.6. Consider the curve E : y? = x(x — 8)(x — 14). The bad primes are
2,3 and 7. But the bad prime 3 behaves like a good prime by Proposition 3.5. We have

2

, (222)_2 (o
A‘({w}z)w(o)’
2 2

A= ( {(-1,-1} {-1,2h ) -1 ({1 0
S\ 22— 2,2 ) 5 o o/
In this A, there are two steps in order to determine whether — 1 and 2 belong to Im(4;) since
Im(83) = (2) (see Table 4). We have Sel(¢p’) = (2,7), Sel(¢p) = (2) and rank E(Q) < 1.
A well-known conjecture says that the parity of the bound of rank obtained by the Selmer
groups equals the parity of the true rank, so it is expected that rank £(Q) = 1. The non-

trivial element of the Selmer groups is essentially only 2. Hence rank E(Q) = 1 if and
only if 2 € Im(§), which amounts to that the equation

N? = 2M* 4 44M?e? + 18¢*
has an integer solution with M Ne # 0 (see (2.2) in §2). In fact, the equation has a solution
(M,N,e) =(1,8,1),sorank E(Q) = 1.
5. Application to the w/3-congruent problem

In this section, we apply the result in §4 to the 7 /3-congruent number problem, and
describe corollaries which contain Corollary 1.2 and Theorem 1.3.
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Recall that E, ¢ represents the curve defined by (1.1). When 6 = n/3 or 6 = 27/3,
we must consider the elliptic curves

Epx:y’ =x(x+3m)x —n),
En,%’l : y2 =x(x +n)(x —3n).

Suppose that p is a prime greater than 3, and n = p, 2p, or 3p. The following corollaries
give the Selmer groups of our elliptic curves and contain Corollary 1.2 and Theorem 1.3.

COROLLARY 5.1. For E = Ep,% (n=p,0 =m/3),

p =1 (mod24) = Sel(¢') = (-1, 3, p), Sel(p) = (p),

p=5,7,19 (mod 24) = Sel(¢") = (-3, p), Sel(p) = {1},

p =11,17,23 (mod24) = Sel(¢’) = (-1, 3, p), Sel(p) = {1},

p = 13 (mod24) = Sel(¢') = (-3, p), Sel(p) = (p).

Therefore, by (2.4) in §2

2, if p=1 (mod24),

rank E(Q) +dim Il [¢/] + dimIII [¢] = {1, if p=11,13,17,23 (mod24),
0, if p=5,7,19 (mod24).

COROLLARY 5.2. ForE = Ezp‘;’rr (n=2p,0 =n/3),
p =1 (mod24) = Sel(¢") = (2, =3, p), Sel(p) = (p),
p =5,17 (mod24) = Sel(¢") = (2, =3, p), Sel(p) = {1},
p =17,13 (mod24) = Sel(¢’) = (—3,2p), Sel(p) = {1},
p = 11,23 (mod 24) = Sel(¢) = (=2, =3, —p), Sel(p) = {1},
p =19 (mod24) = Sel(¢’) = (=2, =3, —p), Sel(p) = (p).
Therefore
2, if p=1,19 (mod24),
rank E(Q) + dim Il [¢'] + dim T[] = {1, if p=5,11,17,23 (mod24),
0, if p=7,13 ( mod 24).
COROLLARY 5.3. For E = E3, x (n=3p,0 =m/3),
p = 1,13 (mod24) = Sel(¢’) = (—1,3, p), Sel(p) = (p),
p =5,11,17,19 (mod 24) = Sel(¢’) = (=3, —p), Sel(p) = {1},
p =7 (mod24) = Sel(¢’) = (=3, —p), Sel(p) = (p),
p =23 (mod 24) = Sel(¢’) = (=3, —p), Sel(p) = (3).
Therefore
2, if p=1,13 (mod24),
rank E(Q) +dim Il [¢/] + dim I [p] = {1, if p =7,23 (mod24),
0, if p=5,11,17,19 (mod?24).
COROLLARY 54. ForE = Ep’%,r, (n=p,0 =21/3),
p =1,13 (mod24) = Sel(¢’) = (—1,3, p), Sel(p) = (p),
p =5,17,23 (mod24) = Sel(¢’) = (—1,3, p), Sel(p) = {1},
p=17,11(mod24) = Sel(¢') = (=3, —p), Sel(p) = {1},
p =19 (mod24) = Sel(¢’) = (=3, —p), Sel(p) = (p).
Therefore



160 ; T. GoTo

: ~ 2, if p=1,13 (mod24),
rank E(Q) + dimITI [¢/] + dim I [p] = {1, if p =5,17,19,23 (mod24),
0, if p=7,11 (mod24).

Note. Kan [4] has showed that the Tate-Shafarevich groups are non-trivial in the
case that p = 13 (mod 24). ‘

COROLLARY 5.5. ForE = Ezpygg (n=2p,0 =2m/3),

. p=1(mod24) = Sel(¢') = (-2, =3, p), Sel(p) = (p),
p =5,17 (mod 24) = Sel(¢’) = (=2, =3, p), Sel(p) = {1},
p =7 (mod24) = Sel(¢’) = (2, =3, —p), Sel(p) = (p),
p = 11,23 (mod24) = Sel(¢’) = (2, =3, —p), Sel(p) = {1},
p = 13,19 (mod 24) = Sel(¢’) = (=3, —2p), Sel(p) = {1}.

Therefore
2, if p=1,7 (mod24),
rank E(Q) + dim I [¢'] + dimIIT[p] = {1, if p=35,11,17,23 (mod24),
0, if p=13,19 (mod24).
COROLLARY 5.6. For E = E3pyg§£ (n=3p,0 =2n/3),
p =1 (mod24) = Sel(¢") = (-3, p), Sel(p) = (3, p),
p =5,11,23 (mod24) = Sel(¢’) = (—1, 3, p), Sel(p) = {1},
p=7,19 (mod24) = Sel(¢’) = (-3, p), Sel(p) = (3p),
p = 13 (mod24) = Sel(¢’) = (=3, p), Sel(p) = (p),
p =17 (mod24) = Sel(¢’) = (=3, p), Sel(p) = {1}.
Therefore
2, if p=1 (mod24),
rank E(Q)+dim II [¢']+dim I [p] = {1, if p=5,7,11,13,19,23 (mod24),
: 0, if p=17 (mod24).

These corollaries follow immediately from Theorem 4.2. The following lemmas are
useful to calculate the images Im(B;,) and Im(6,).

LEMMA 5.7. For E, 1, the images of the connecting homomorphisms 8;, are given
as follows.
(1) Let p (# 2, 3) be a prime which divides n, then

N KO if p=1 (mod3),
fm(®p) = {Q;/sz, if p=—1 (mod3).
' o J =3 if n =6 (mod9),
@I =10Q5/Q32  if n # 6 (mod9).
(s), if n =5 (mod8),
(=15, ifn==%1,-5mod8),
3 M) =105 i#n=2mods),
(=2,5), if n=—2(mod8).

Proof. This is an immediate consequence of Propositions 3.3,3.4,3.6 and 3.7. O




Calculation of Selmer Groups of Elliptic Curves 161

LEMMA 58. ForE, 1, the images of the connecting homomorphisms 8, are given
as follows.
(1) Let p (# 2, 3) be a prime which divides n, then

_ [{=n), if p=1(mod3),
Im(p) = {{1}, if p=—1 (mod3).
(3), if n =6 (mod9),
{1}, if n # 6 (mod9).
’(_1?5)’ Efn—=—-5(m0d8),

)5, if n==%£1, -5 (mod8),
@) ImB2) =1 "1 i#n=2mod8),
(—5).  if n=—2 (mod8).

Proof. This is an immediate consequence of Lemma 5.7 and Theorem 2.1. ]

(2) Im(83) =

Using the notations stated in §4, we have

S1 = {odd primes which divide n and congruent to — 1 modulo 3}
(U{3}ifn £ 6 (mod9)) ,
SH=¢,
S3 = {odd primes which divide » and congruent to 1 modulo 3},
Sy =¢ (U{3}ifn =6 (mod9)),
S(-3n) = ¢,
S = {primes which divide n} U {—1, 3},
T = {odd primes which divide » and congruent to 1 modulo 3}
(U{3}if n = 6 (mod9)) .
REMARK 5.9. We have two remarks. First, since E_,,‘;rjr

E_n9 = Enyn—p), we can regard the /3 and 27/3-congruent number problems as the
same, admitting » to be negative. Lemmas 5.8 and 5.9 are also valid for negative n. Sec-
ondly, for E, z, the row of —1 is equal to the row of 3in A’ since —3 € Sel(¢’).

= En’% (in general,

Since Corollary 5.1 is contained in [3], we prove only Corollary 5.2.

Proof of Corollary 5.2.
In the case that p = 1 (mod 24),

p | m@,) | Im@p) 2p

oo | ) | 2_1 (1) g 2 3 p
2 | @5 (1) A= 7 Lol 4=p (0 0 0)
30Q/Q% | W p \0 0O

P (2p) (=2p)

Therefore Sel(¢') = (2, =3, p), Sel(p) = (p).
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In the case that p = 5, 17 (mod 24),

p | Im(y) | Im(5p) 2
oo | (%1} {1} 2_1 (1)
2 (2,5) (-1 A= 3 .k A = empty.
31Q5/Q%| » \o
r | Q|
Therefore Sel(¢’) = (2, =3, p), Sel(p) = {1}.
In the case that p = 7 (mod 24),
p | Im@) | ImGsp) z2p
) {1} 1} ;1 i (1) 2 3 p
2| (=25 | (-9 A= 3 L 1| Aa=p (1 0 1)
30 Q7/Q% | » \1 0
p (2p) (~2p)
Therefore Sel(¢) = (=3, 2p), Sel(p) = {1}.
In the case that p = 13 (mod 24),
p | Im@) | @y 2p
o0 {£1} {1} 2_1 (1) (1) 2 3
2l es [ =y | A=5 | o] 4a=p (10 1)
30 Q7 Q% | » \o 1
14 (2p) (=2p)
Therefore Sel(¢’) = (-3, 2p), Sel(p) = {1}.
In the case that p = 19 (mod 24),
p | Im@,) | Im@p) 2p
o0 {£1} n ;1 i i 2 3 p
2| (=2,5) | (-5) A’=3 L 1| A=p (0 0 0)
31Q Q| m p \1 1
14 (2p) (=2p)

Therefore Sel(¢') = (—2, =3, —p), Sel(p) = (p).
In the case that p = 11, 23 (mod 24),
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p | Im@,) | Im@p) 2
oo | {£1) {1} -1 /1
o2 |1
2 | (-2,5) (-5) A= 3 NE A = empty .
31Q5 Q2| » \1
p|Q/Q2|
Therefore Sel(¢") = (=2, -3, —p), Sel(p) = {1}. ‘ O

6. Proofs of the propositions

In this section, we prove the propositions in §3. Recall that our elliptic curve is
E=Eyg :y2=x(x—oe)(x—ﬂ) =x3 4+ Ax%* + Bx,
where «, B are non-zero different integers, and gcd(a, B) is squarefree. We write E for
Eq,p when there is no fear of confusion.

Proof of Proposition 3.1.. The statement for Im(8,,) is clear from the locus E(R).
By Theorem 2.1, Im(8) is also clear. O

Proof of Proposition 3.2. We give a simple proof using Theorem 2.1. Let (x, y) €

EQp),andx = pw withe € Z, w € Z;. Then
y2 — p3ew3 +p2eAw2 + peBw

= pw (1 + pAw™ ! + p~2Bw™?) (6.1)

= p*w(p®w? + p°Aw + B). (6.2)

If e < 0, then e must be even and w = 1 (mod Q;z) by (6.1), so x = 1 (mod Q;z). Recall

that p does not divide B since p is a good prime. If e > 0, then e mustbe evenand w = B

(mod Q?) by (6.2), s0 x = B (mod Q2). We have shown Im(8,) C {1, u}, and similarly

Im(8,) C {1, u} (note that p does not divide B’). Hence the proposition holds by Theorem
2.1. O

In this proof, we have shown that x = 1 (mod Q;Z), if ord,(x) < 0. The generalized
fact is useful, so we have the following lemma.

LEMMA 6.1. Letp be an odd prime and consider the elliptic curve y2 = x34+Ax%+
Bx with ord,(A) = a, ord,(B) = b. Suppose that (x, y) is a Qp-point on the curve and
x = p°w with e = ordp(x), w € Z;. Then

b—1
esmjn{a—l,T}=>X‘=“l (mon;Z).

Proof. Put A= p®A’, B = p’B’, then

y2 — p3ew3 + p2e+aA/w2 + pe+bBlw — p3ew3(1 + p—e+aA/w—1 + p—2e+bB/w—2) )
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If —e+a >1and —2e¢ + b > 1, then e must be even and w = 1 (mod Q;z), so we have
x =1 (modQ}?). O
For our elliptic curve E, g, since «, § are integers, we have
ordy(x) < —2=>x =1 (mod Q}?).
Moreoverifa > 1,5 > 1, then |
ordy(x) =0= x =1 (modQ}?).
We have one more lemma.

LEMMA 6.2. Let (x,y) be a point on E(Q)\E[2]. Then the following formulae

hold.
1 x»)+0,0) = (%, _@)
X X
@ (6, +(@,0) = (“0‘ =B _al- ﬂ)y)'
x—a (x —a)?

_ Blx —a) _ﬁ(ﬂ—()l)y
3) (x,y)-f-(ﬂ»o)—( x—B  (x-p? )

Proof. This follows immediately from the addition formula. (]
We define subsets of E(Q),) as follows ([8]):

Ey(Qp) == {(x,y) € E(Qp) lordp(x) < =20} U{O} (v=1,2,---),

Eo(Qp) = {(x,y) € EQp) | (%, ) € Ens(Fp)} U{O}.
The following is a key lemma of Proposition 3.3.

LEMMA 6.3. Letp be an odd prime, and suppose that ord,(a) = a > 1, 0rd,(B) =
1. And let (x, y) € E(Qp). If a = 1, the following holds.

(1) Ifordy(x) = 2, then P = (0,0) (mod Eo(Qp)).

(2) Ifordy(x) =1, then P = (,0) or (B,0) (mod Eg(Q)p)).
If a > 2, the following holds.

(1) Ifordy(x) > a+ 1, then P = (0,0) (mod Eo(Qp)).

(2) Iford,(x) =a, then P = (, 0) (mod Ep(Qp)).

(3) There does not exist a point with 2 < ord,(x) < a — 1.

4) Iford,(x) =1, then P = (B, 0) (mod Eo(Qp)).
In both cases, we have E(Qp)/Eo(Qp) = E[2].

Proof. 1In this case, the equation of E is y> = x3. Since the singular point of this
curve is (0, 0), we have

Eo(Qp) = {(x,y) € E(Qp) |ord,(x) =0} U{O}.

The formulae in Lemma 6.2 are used many times. The y-coordinates are not important, so
they are represented by [J. First, we see the case thata = 1.
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(1) PutP’ :=P+(0,0) = %,
have P’ € Eo(Qp). Hence P = (0, 0) (mod Eo(Qp)).

(2) Since ord,(x) = 1, we have ord,(x — o) # ord,(x — B). Indeed, if ord,(x —
«) = ord,(x — B), then ord, (x(x — a)(x — B)) is odd, a contradiction. For example, if
ord,(x —a) > ordp(x — a), then

0. Since ord, () = 2 and ord,(x) > 2, we

P+ (a0 = (“—?—__T?) D) € Eo(Qp).

Hence P = (a, 0) (mod Eo(Qp)). Similarly, if ordp(x — @) < ord,(x — a), then we have

P = (B,0) (mod Eo(Qp)).
Next, we see the case that a > 2.
(1) PutP’:= P+(0,0) = (%, I:l). Since ord,(aB) = a+1and ordp(x) > a+1,
X
we have P’ € Eo(Qp). Hence P = (0, 0) (mod Eo(Qp)).
(2) Since ord,(x) = a, we have ord,(x — B) = 1, ordp(x — @) > a. But since

ord, (x(x —a)(x — B)) is even, we have ord,(x —a) > a + 1. Then

P+ (a,0) = (% El) € Eo(Qy).

Hence P = («, 0) (mod Eo(Q)p)).

(3) Assume that ord,(x) = b with1 <b <a—1. Then ord,(x — @) = b and
ord,(x — B) = 1,s0 ordp(x(x —a)(x — B)) is odd, a contradiction.

(4) Since ord,(x) = 1, we have ordp(x — «) = 1, ord,(x — B) > 1. But since
ord, (x(x — a)(x — B)) is even, we have ord,(x — B) > 2. Then

X —« \
o= (2 0) € Eo@p.
Hence P = (B, 0) (mod Eo(Qp)). O
Proof of Proposition 3.3. By Lemma 6.1, 8;,(E0(Qp)) = {1}. So the proposition
~ holds by Lemma 6.3. O

Lemma 6.3 says that in the case that p divides both « and 8, representatives of E/Eo
can be selected as these are only trivial points (we call the points of order 2 trivial). So
this case is easy, but the other cases are more difficult. The following lemma describes this
situation.

LEMMA 6.4. Let E be an elliptic curve defined by y: = x>+ Ax? + Bx with
A, B € Z. Suppose that p is an odd prime and ord,(A) = 0, ordp(B) =a > 1, P =
(x,y) € E(Qp). Then the following holds.

(1) Ifordp(x) <0, then P = O (mod Eo(Qp))-

(2) Ifordp(x) = a, then P = (0, 0) (mod Eo(Qp)).

(3) If(A/p) = —1, then there does not exist a point with 1 < ord,(x) < a — L. If
(A/p) = 1, then there exist points with ordp(x) = 1,2, .-+ ,a — 1, and any elements of
Z; appear in p-free part of x.
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Proof. (1) In this case, the equation of E is y2 =x3 4+ Ax? = x2(x + A). Since
the singular point of this curve is (0, 0), we have
Eo(Qp) = {(x,y) € E(Qp) |ord,(x) <0} U{O}.

So the statement is clear.
(2) ByLemma6.2,

P’:=P+(0,0)=<—§, D).

Since ordp(B) = a and ord,(x) > a, we have P’ € Eo(Qp). Hence P = (0,0)
(mod Eo(Qp))-
(3) Letx =pwwithl <e<a—-1,we Z; and suppose that B = p?B’, then
y2 — p3ew3 + Ap2ew2 + Bpew
— p2ew2(Pew +A +pa—eB/w——1).
Note thate > 1,a — e > 1. The number y € Q p exists if and only if A is square modulo
p. Conversely if A is square, then ¢ and w may be arbitrary. (]
The following lemma is used in the proof of Proposition 3.4.
LEMMA 6.5. Let p be an odd prime. Suppose that ord, () —a > landord,(B) =
0. Then
u € 8,(Eo(Qp)\E1(Qp)) .
(Recall that u represents a non-square element modulo p.)
Proof.  Suppose that (x, y) € Eo(Qp)\E1(Q,), namely ord,(x) = 0. Since x(x —
) = x? (mod p), x — B is square modulo p. Assume that such x must be square modulo p.
Then g must be square modulo p since (8,0) € E and ord,(8) = 0. Next, consider that

x = 2, then x — B is square modulo p, so 28 must be also square modulo p. Repeating
this step, we have squares

,3’2,3,,(17_1)/3
Since B € (Z/pZ)*, this is a rearrangement of 1,2, --- , p — 1. It is a contradiction that
1,2,.--, p— 1 are all squares modulo p. O

Proof of Proposition 3.4. 1In view of Theorem 2.1, we may consider only Im(ag,).
By Lemma 6.5, Im((S;,) D {1, u}. First, suppose that a is odd. Since 8;,((0, 0)) = af,
p or pu is in Im((S;,), consequently Im(8;) = {1, u, p, pu}. Next, suppose that a is even
and (—8/p) = 1. Since there exists a point of order 1 by Lemma 6.4, we have Im(s;,) =
{1, u, p, pu}.

Lastly, suppose that a is even and (—f/p) = —1. Let P = (x,y) € E(Q,). By
Lemma 6.1, if ord,(x) < 0, then x = 1 (mod Q*?). If ord,(x) = 0, then x = 1 or u
(mod Q*?). By Lemma 6.4, there does not exist a point of order which is from 1 toa — 1.
If ord, (x) = a, then P = (0, 0) (mod Eo(Qp)),sox =1loru (monXZ). We have found
that p and pu do not appear, hence Im(6;,) = {1, u}. O
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In the proof of Proposition 3.5, we calculate Im(8,), since the method is similar to
that of Proposition 3.4. The following lemma is used in the proof of Proposition 3.5.

LEMMA 6.6. Let p be an odd prime. Suppose that ord,(a) = 0 and ord, (e — ) >

1. Then
u € 8,(Ey(Qp\E1(Qp))-
Proof. The equation of E' is
P =242+ B)x + (@ — B)’x = x*(x + 2 + ) + (@ — p)’x.

We shall show that there exists x € Z; such that x = —2(a + B) (mod p) and the right
hand side is in Q;Z (this fact is not trivial). Let x = p®z — 2(a + B) withe € N, z € Z;
anda — B = pPy withb e N, y € ZX, then

Y2 =x2(p0) + pPyPx = R + PPy (6.3)
If there exists an even number e such that 1 < e < 2b, the right hand side can be in sz,
hence there exists x satisfying the conditions. There is not such number e if and only if
b = 1, so suppose that b = 1. Moreover if e = 2, then
the right hand side of (6.3) = p*x*z + p?y%x = p*x*(z +y*x 1),

Since z + y2x~! can be square modulo p, there exists x satisfying the conditions.
Let us come back to the proof of the proposition. If —2(« + B) is non-square modulo
p, the proposition holds by the above fact. Suppose that it is square. Putting x = —4(a+p8)
the right side hand is square, so the proposition holds if —4(«a + B) is non-square modulo
p. If we always have square elements in repeating this step, then we have squares
2@+ p), —4a+p), -, —2(p—D+8),
a contradiction. |

Proof of Proposition 3.5. By Lemma 6.6, we have Im(8,) D {1, u}.

(3)-(52)-()-6)
p p p p)’
so the proposition holds by Lemma 6.4. [

Now, we shall prove the propositions for Im(8}). The following lemma is an alanogy
of Lemma 6.1.

LEMMA 6.7. Consider the elliptic curve y? = x3 + Ax? + Bx with ordy(A) = a,

ordy(B) = b over Qy. Let (x, y) € E(Q2) and x = 2°w with e = ordy(x), w € Z;. Then
b-3
—2—} = x=1 (modQ}?).

Proof. The proof is similar to that of Lemma 6.1. |

esmin{a—i%,

For our elliptic curve Eq g, since a, B are integers,

ordy(x) < —4=x=1 (mon;Z).
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Moreover if a > 1, then
ordy(x) = 2= x =1 (modQ}?).

REMARK 6.8. The following equation appears in the proof of Lemma 6.7 (see the
proof of Lemma 6.1):” :

Y =2wd A 27wl 4 272 By
Put X :=27¢teA/y~1 4 2-2e+bp/)=2 then
y2 — 23ew3(1 + X) )

Therefore if ordy(X) > 3, then x = 1 (mod Q;‘z). It is sufficient that —e 4+ a > 3,
—2e + b > 3, then we got Lemma 6.7. Note that it is also sufficient that —e + a =
—2e + b = 2. We have one more important remark. If ord>(X) = 2, then x = 5
(mod Q).

We have lemmas in order to prove Proposition 3.6.

LEMMA 6.9. Suppose that ordy(«) = 0, orda(B) = 0, orda( — B) = 1. And let
(x,y) € E(Q2). Then the following holds.
(1) Ifordy(x) = 1, then P = (0, 0) (mod E1(Q>)).
(2) Ifordy(x) =0, then P = (a, 0) or (8, 0) (mod E{(Q)).
Therefore E(Q)/E1(Q2) = E[2].
af

Proof. (1) ByLemmaé6.2, P+ (0,0) = (— D) € E1(Q2). Hence P = (0,0)

x b
(mod E1(Q2)).

(2) Inthis case, ordy (x —or) # ordp(x — B). Indeed, if 2% || x —a, x — B witha > 1,
then 29+! | — B. This is contradictory to the hypothesis ordy (@ — B) = 1. For-example,
if ordy (x — &) > ordy(x — B), then

P+ (,0) = (M, D) € E1(Qy).
X —a
Hence P = (@, 0) (mod E1(Q>)). Similarly, if ordy(x —a) < ordy(x —B), then P = (8, 0)
(mod E1(Q2)). O

Lemma 6.9 says that in the case that ordy (o« — B) = 1, representatives of E/E; can
be selected as these are only trivial points. But in the case that ord, (o — B) > 2, the other
situation can occur. In fact, the point which is not equivalent to any trivial point modulo
E1(Q2) is in Eg(Q2)\E1(Q2). So we need the following lemma.

LEMMA 6.10. Suppose that ordy(a) = 0, ordy(8) = 0, ordy(a — B) > 2. Then
Sé(E()(QQ)\E 1(Q2)) C (a, B) except the following three cases.

(1) Ifordy(x — B) =2 and &« + B = 14 (mod 16), then 85 (Eo(Q)\E1(Qo) =
{£1, £5}. v

2). Ifordy(a — B) = 3 and o = 3 (mod 4), then 85(Eo(Q)\E1(Q2)) = {—1, £5}.

3) Ifordy(a — B) =4 and a = 1 (mod 8), then 85 (Eo(Q2)\E1(Q2)) = {1, 5}.
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Proof. Let (x,y) € E(Qy) and put x = 2°z +a withe > 1, z € Z5. We investigate
how x appears for each number e. If ¢ > 3, then x = o (mod Q2 2) In fact, there is such a
point (e, 0), so we must investigate only the points of e = 1, 2.

First, lete = 1 and x = 2z + «, then

y =Qz+a) 2z2Q2z4+a - ),
) =72z + @) (z+ —§—E>

=20 — B+ ﬂ———ZMZ (mod$8) . (6.4)

A~~~
INARS

The last expression must be congruent to 1 modulo 8.

Secondly, consider the points of e = 2. Suppose that ord; (a —pB)=2.Ife =2, then
x = B (mod Q;Z)‘ In fact, there is such a point (8, 0), so we do not have to investigate the
points of e = 2. Next, suppose that ordy (e — 8) = 3. Put x = 4z + «, then

y =@z+a) 4z(4z4+a - B),

)2 =z(A4z+ @) (z + —-—ﬂ>

=20 —fB+ ———_sz (mod 8). (6.5)

(

<

The last expression must be congruent to 1 modulo 8.

In the case that ord; (o — ) = 2, we must investigate only the points of e = 1. The
expression (6.4) is congruent to o modulo 4, so it must hold that « = 1 (mod4). For
example, suppose that @ = 1 (mod 16). Then the expression (6.4) is congruent to 1 modulo
8 if and only if 8 = 13 (mod 16). Consequently we have the following conditions.

e o =1 (mod16), 8 = 13 (mod 16),

e o =5 (mod 16), 8 =9 (mod 16),

o a =9 (mod16), B =5 (mod 16),

e a = 13 (mod 16), B8 = 1 (mod 16).

These conditions are equivalent to « + 8 = 14 (mod 16). Conversely if this condition
holds, we have 8, (Eo(Q2)\E1(Q2)) = {£1, £5}.

In the case that ord (e — B8) = 3, we must consider the points of e = 1,2. First,
consider the points of e = 1. Since a(¢ — B) + 4 = 8 + 4 = 12 (mod 16), the expression
(6.4) is congruent to & + 6z modulo 8. So this is congruent to 1 modulo 8 if and only if
one of the following two conditions holds.

e o =3 (mod8), z =1 (mod4),

e o =7 (mod8), z =3 (mod4).

In both cases, x = 2z + « = 5 (mod8). Next, consider the points of e = 2. In order to
the expression (6.5) is congruent to 1 modulo 8, it is necessary that @ = 3 (mod 4). In this
case, we have x = o + 4z = a + 4 (mod 8). We have shown that SQ(EO(Qg)\El Q) =
{—1, £5} if ¢ = 3 (mod 4).
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Next, we see the case that ordy (o — ) = 4. First, consider the points of e = 1. Since
the expression (6.4) is congruent to o + 2z modulo 8, this is congruent to 1 modulo 8 if
and only if one of the following conditions holds.

e o =3 (mod8), z =3 (mod4),

e o =7 (mod8), z=1 (mod4).

In both cases, we have x = 2z + « = 1 (mod 8). Next, consider the points of e = 2. Since
the expression (6.5) is congruent to o modulo 8, this is congruent to 1 modulo 8 if and only
if @ = 1 (mod 8). In this case, we have x = 4z + o = 5 (mod 8). We have shown that
8(Eo(Q)\E1(Q2) = {1, 5} if « = 1 (mod 8).

In the case that ordy (¢ — 8) > 5, most situations are the same as the last case. Since
the expression (6.5) is congruent to « + 4 modulo 8, this is congruent to 1 modulo 8 if and
only if ¢ = 5 (mod 8). In this case, we have x = 4z + o = 1 (mod 8).

Proof of Proposition 3.6. By Lemma 6.7, 3§(E1(Q2)) = {1}. When ordy (0 — B) =
1, the proposition holds by Lemma 6.9. When ord; (¢ — 8) > 2, it holds that

ordy(x) = 1= P = (0,0) (mod E;(Q2))

(see the proof of Lemma 6.9). So Im(8) is generated by 8, (Eo(Q2)\ E1(Q2)) and &, (E[2]).
Hence the proposition holds by Lemma 6.10. ]

Next, we prove Proposition 3.7.

LEMMA 6.11. Suppose that ordy(«) = 1, ordy(B) = 1. And let (x,y) € E(Q2).
Then the following holds.

(1) Ifordy(x) = 2, then P = (0, 0) (mod Eo(Q2)).

(2) Ifordy(x) =1, then P = («, 0) or (8, 0) (mod Ep(Q3)).
Therefore E(Q2)/Eo(Q2) = E[2].

Proof. The proof is similar to that of Lemma 6.3. O

Proof of Proposition 3.7. First, suppose that ordy (¢ — 8) = 2, then ordy (o + 8) >
2. By Remark 6.8, we have 8}(Eo(Q2)\E1(Q2)) = {5}. Hence Im(8}) = (&, B,5) =
Q> /Q;? by Lemma 6.11.

Next, suppose that ordy (@ — 8) > 3, then orda(a + 8) = 2. By Remark 6.8, we
have 8)(Eo(Q2)\E1(Q2)) = {1}. Hence Im(8}) = (e, B) by Lemma 6.11. Moreover
when ordy (¢ — B) = 3, we have Im(8}) = (,5). When orda(a¢ — B) > 4, we have
Im(8}) = (a). O

We have lemmas to prove Proposition 3.9.

LEMMA 6.12. Suppose that ordy() = a > 2, ordp(B) = 1. And let (x,y) €
E(Qy). Then the following holds.

(1) Iforda(x) = a+ 1, then P = (0,0) (mod Eg(Q3)).

2) Ifordy(x) = a, then P = (a, 0) (mod Ep(Q3)).

(3) There does not exist a point with2 < orda(x) <a — 1.

@) Ifordy(x) =1, then P = (B, 0) (mod E¢(Q2)).
Therefore, E(Q2)/Eo(Q2) = E[2].
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Proof. The proof is similar to that of Lemma 6.3. ]

LEMMA 6.13. Suppose that ordy() = a > 2, orda(B) = 1. And let (x,y) €
E(Qy). Then the following holds.

(1) Ifa+ B =2(mod8), then §,(Eo(Q)\E1(Q2)) = {-5}.

(2) Ifa+ B =6(mod8), then 8,(Eo(Q)\E1(Q2)) = {—1}.

Proof. When ordy(x) = 0, we have

Y2 =x}—(@+B)x*+apx =x>(x — @+ ) +afx =x — (@ + p) (mod8).

Hence the lemma holds. |
Proof of Proposition 3.9. ByLemma 6.7, we have 8,(E1(Q2)) = {1}. So the propo-
sition follows immediately from Lemmas 6.12 and 6.13. O

Next, we proof the Proposition 3.10.

LEMMA 6.14. Suppose that ordy(e) = 1, orda(B) = 0. And let (x,y) € E(Q2).
Then the following holds.

(1) Ifordy(x) > 2, then P = (0, 0) (mod E1(Q2)).

(2) Ifordy(x) = 1, then P = (@, 0) (mod E1(Q2)).

(3) Ifordy(x) =0, then P = (8, 0) (mod E1(Q2)).
Therefore E(Q2)/E1(Q2) = E[2].

Proof. The proof is similar to that of Lemma 6.3. ]

- Proof of Proposition 3.10. By Lemma 6.7, we have 8§(E2 (Q2)) = {1}. By Remark
6.8, we have 8’2(E 1(Q)\E2(Qy)) = {5}. Hence the proposition holds by Lemma 6.14. [

Lastly, the proof of Proposition 3.11 is given.

LEMMA 6.15. Suppose that ordy(e) = a > 2, ordy(B) = 0. And let (x,y) €
E(Qy). Then the following holds.

(1) Ifordy(x) > a+ 1,then P = (0,0) (mod E1(Q2)).

(2) Ifordy(x) = a, then P = (, 0) (mod E1(Q2)).

3) Ifordy(x) =0, then P = (8, 0) (mod E1(Q2)).

Proof. The proof is similar to that of Lemma 6.3. O

Lemma 6.15 does not mention the points with 1 < ordy(x) < a — 1. Actually, this
part is most complicated and the cause of the big table in Proposition 3.11.

Proof of Proposition 3.11. By Remark 6.8, we have 8, (E1(Q2)\ E2(Q2)) = {5} and
(a, B,5) C Im(zSé). For this subgroup, we have

(@, 3), if =1 (mod4),

(o, B,5) = {(a’ —1,5), if B=—1 (mod4).

By Lemma 6.7, 85(E2(Q2)) = {1}. In view of Lemma 6.15, we must investigate the points
ofl <ordy(x) <a-—1.
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In the equation of E,
¥ =x(x —a)(x — B) = x> + Ax* + Bx,

where A is odd and ordy(B) = a. Put B = 2%B’, then B’ = o/f is odd. Put x = 2°w and
B = 2°B’, then
y2 — 23€w3 + A . 22ew2 + 2aB/ . 2ew — 228w2(2ew + A + 2—e+aB/w—l) .
Suppose that 1 <e <a —1,thene > 1, —e+a > 1. Put X = 2°w +2~¢t2B/w!, then
ordy(X) > 1 and we have
y' =2"w(X + A).
For example, when A = 1 (mod 8), there are points such that X = 0 (mod 8). Investigating

the condition of «, S to exist a point of e > 1, —e + a > 1, and the contribution of such
points to Im(8%), we can see that the table in Proposition 3.11 holds. ]
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