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Introduction

This paper is an appendix to the memorial talk for Tsuneo Arakawa [3]. As discussed
in the section of Hecke in [3], the Epstein zeta functions define certain Eisenstein series,
i.e., automorphic forms on SL(n,Z)\SL(n,R). The representations of SL(n,R) gener-
ated by the right translations of these Eisenstein series are very degenerate principal series
representations. Though the Epstein zeta functions themselves are quite familiar objects,
but the number of papers which discuss them as automorphic forms is not so many in the
literature. And the Fourier expansions of these Epstein-Eisenstein series as automorphic
forms on SL(n,Z)\SL(n,R) have been obtained by direct computation of integrals. In
this paper we want to discuss them in more conceptual way for n = 3.

When n = 3, there are three types of parabolic subgroups in SL(3,Q), and accord-
ingly three types of corresponding Fourier expansions. In either case, it is fundamental
to know Whittaker functions and generalized Whittaker functions. In this paper we have
multiplicity-free results on (degenerate) Whittaker functions and generalized Whittaker
functions on SL(3,R) belonging to the degenerate principal series and find an explicit
formula for them.

Our main results are Theorems 4.6, 4.7 (multiplicity-freeness of degenerate Whittaker
models), and Theorems 5.6, 5.7. At least for the non-spherical cases, these results seem to
be new. In section 6 we discuss three types of Fourier expansions of the automorphic forms
belonging to the spherical principal series representations.

Note that the meaning of the classical result by Siegel [9, Chapter 1 §5, p. 46–55]
on Epstein zeta functions with spherical harmonic polynomials becomes clear, since they
correspond to the other vectors with different K-types in the automorphic representations
generated by the original Epstein zeta function. Therefore we can know Fourier expansions
of these generalized Epstein zeta functions, too.
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zeta functions for GL3 was a strong impetus for us to consider the results of this paper.
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1. Preliminaries

1.1. Degenerate principal series
Let Z(g, s) be the Epstein zeta function onG = SL(3,R), defined by

Z(g, s) :=
∑

m∈Z3\{0}
(m g tg tm)−s (g ∈ G, Re(s) > 3/2) .

Then it is an Eisenstein series of class 1 associated with the maximal parabolic subgroup

P1 :=
⎧⎨⎩
⎛⎝∗ ∗ ∗

∗ ∗ ∗
0 0 ∗

⎞⎠ ∈ G
⎫⎬⎭

of G. Then the right translations of this with respect to G generate a degenerate princi-
pal series representation of G. We want to describe the (generalized) Whittaker functions
belonging to this representation.

To define this representation, we firstly specify a Langlands decomposition P1 =
N1M1A1 of P1 by

N1 :=
⎧⎨⎩
⎛⎝1 0 ∗

0 1 ∗
0 0 1

⎞⎠ ∈ G
⎫⎬⎭ ∼= R2 ,

M1 :=
{(
h 0
0 det(h)−1

)
∈ G

∣∣∣∣ deth = ±1

}
∼= SL(2,R)× {±1} ,

A1 := {diag(r, r, r−2) | r > 0} .
Let σ1 ∈ M̂1 be a character of M1, and ν1 ∈ HomR(a1,C) = a∗

1 ⊗R C a linear
form on a1 = Lie(A1) which is identified with a complex number by evaluation of it at
the element H1 = diag(1, 1,−2) ∈ a1. Let ρ1 be the half-sum of the positive roots in
n1 = Lie(N1). Then ρ1 = 1

2 (3 + 3) = 3. Thus for a1 = diag(r, r, r−2) ∈ A1, we have

e(ν1+ρ1)(loga1) = a
ν1+ρ1
1 = rν1+3.

DEFINITION 1.1. Put

π(σ1, ν1) := IndGP1
(σ1 ⊗ eν1+ρ1 ⊗ 1N1) .

Then the representation space of π(σ1, ν1) is given by

{f : G → C, measurable | f (m1n1a1x) = σ1(m1)a
ν1+ρ1
1 f (x) a.e.

for (x,m1, n1, a1) ∈ G×M1 × N1 × A1, f |K ∈ L2(K)} .
We call this representation the spherical degenerate principal series, if σ1 is the trivial
character 1M1 , and the non-spherical degenerate principal series if σ1 is the determinant
representation detM1 of SL(2,R)× {±1}.
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1.2. Whittaker model and generalized Whittaker model
For an irreducible admissible representation π of G, (generalized) Whittaker model

for π is a realization of π in an induced module C∞-IndGN(ψ), where

N =
⎧⎨⎩n(x12, x13, x23) =

⎛⎝ 1 x12 x13
0 1 x23
0 0 1

⎞⎠∣∣∣∣∣∣ x12, x13, x23 ∈ R

⎫⎬⎭
is a maximal unipotent subgroup of G and ψ ∈ N̂ .

SinceN is the Heisenberg group of dimension 3, the unitary dual N̂ consists of unitary
characters and infinite-dimensional representations. An infinite-dimensional irreducible
unitary representation of N is uniquely determined via its central character on the center Z
of N , by the theorem of Stone and von Neumann. We recall the construction and the basic
properties of such representations (cf. [1]).

Since Z is identified with its commutator subgroup [N,N], passing to the associated
Lie algebras, we have an equality z = Lie(Z) = [n, n]. The theory of coadjoint orbit
method (the Kirillov theory) tells that the unitary characters of N are parametrized by the
subspace (n/[n, n])∗(∼= R2) of n∗. Here ∗ means the linear dual over R. And the infinite-
dimensional representations are parametrized by nonzero elements in z∗ = [n, n]∗ ∼= R.
Thus we have to start with a nonzero linear form on z:

l : xE13 �→ cx ∈ R (c ∈ R ∼= z∗, c 	= 0) .

Here Eij is the matrix unit with 1 at (i, j)-th entry and 0 at other entries. This induces a
bilinear form on n∗:

Bl(X, Y ) = l([X,Y ]) (X, Y ∈ n∗) .
Then z is the radical of this bilinear form, and the restriction of Bl to n1 = Lie(N1) is
trivial, and the quotient n1/z is a maximally totally isotropic subspace in n/z with respect
to Bl . Namely n1 is a polarization subalgebra or a maximal subordinate subalgebra for l
(cf. [1, §§1.3, p. 27–28]). Let us define a unitary character χl,N1 : N1 → U(1) of N1 by

χl,N1(exp(Y )) := exp(2π
√−1 l̃(Y )) (Y ∈ n1) .

Here l̃ is an extension of l to n1 such that

l̃ : n1 � xE13 + yE23 �→ c(x +my) ∈ R

with m ∈ R. Then the induced representation πl,N1 = IndNN1
(χl,N1) is the Schrödinger

representation with representation space L2(N1\N) ∼= L2(R) ([1, §§2.2, Example 2.2.6]).

PROPOSITION 1.2. (i) The unitary character of N is of the form

ψ(n(x12, x13, x23)) = exp{2π√−1(c1x12 + c2x23)}
with c1, c2 ∈ R.

(ii) The infinite-dimensional unitary representation of N is realized on L2(R) as

ψ(n(x12, x13, x23))φ(s) = exp{2π√−1 c(x13 + (s +m)x23)}φ(s + x12)

for φ ∈ L2(R) with c ∈ R\{0} and m ∈ R.
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DEFINITION 1.3. Fix ψ ∈ N̂ as in Proposition 1.2. For an irreducible admissible
representation π of G, we denote by π∞ the subspace of smooth vectors in π and consider
the intertwining space

Hom(�,K)(π∞, C∞-IndGN(ψ))

between (g,K)-modules (g = Lie(G), K = SO(3)). For a nonzero intertwining operator
I and a vector f ∈ π∞, the image I (f ) is called the Whittaker function if ψ is the unitary
character and the generalized Whittaker function if ψ is the infinite-dimensional unitary
representation.

REMARK 1. Because of the Iwasawa decompositionG = NAK with

A = {diag(a1, a2, a3) ∈ G} ,
if we specify theK-type of f then I (f ) is determined by its restriction I (f )|A to A, which
is called the (A-)radial part of the (generalized) Whittaker function.

2. Representations of K

2.1. Irreducible K-modules
As is well-known the finite-dimensional irreducible representations of the maximal

compact subgroup K = SO(3) is constructed from those of SU(2). Let (τ2l , V2l) (l =
0, 1, 2, . . . ) be the (2l + 1)-dimensional irreducible representation of K corresponding to
the l-th symmetric tensor of the standard representation of SU(2) and {vk | 0 ≤ k ≤ 2l}
the standard basis of V2l . Then we have⎧⎪⎨⎪⎩

τ2l(K23)vk = √−1(−l + k)vk ,

τ2l(K13 − √−1K12)vk = (2l − k)vk+1 ,

τ2l(K13 + √−1K12)vk = −k vk−1

with Kij = Eij −Eji ∈ k = Lie(K) (1 ≤ i < j ≤ 3). See [5, §2] for the details. We note
that τ2 is equivalent to the tautological representationK → GL(3,C).

2.2. Some irreducible components of τi ⊗ τj (i, j = 2, 4)
For our later use, we want to specify the standard basis of the unique irreducible con-

stituent τ4 in the tensor product τ2 ⊗ τ2, τ2 and τ4 in τ2 ⊗ τ4, and τ4 in τ4 ⊗ τ4 by the
following 4 lemmas. The proofs are similar to that of [5, Lemma 2.1].

LEMMA 2.1. Let {vi | 0 ≤ i ≤ 2} be the standard basis of (τ2, V2). Define a set of
elements {w′

i | 0 ≤ i ≤ 4} in τ2 ⊗ τ2 by

w′
0 = v0 ⊗ v0 ,

w′
1 = 1

2 (v0 ⊗ v1 + v1 ⊗ v0) ,

w′
2 = 1

6 (v0 ⊗ v2 + 4v1 ⊗ v1 + v2 ⊗ v0) ,

w′
3 = 1

2 (v1 ⊗ v2 + v2 ⊗ v1) ,

w′
4 = v2 ⊗ v2 .
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Then it defines a set of standard basis in τ4 ↪→ τ2 ⊗ τ2, which is unique up to a common
scalar multiple.

LEMMA 2.2 ([5, Lemma 2.1]). Let {vi | 0 ≤ i ≤ 2} and {wj | 0 ≤ j ≤ 4} be the
standard basis of (τ2, V2) and (τ4, V4), respectively. Then the elements

v′
0 = v0 ⊗ w2 − 2v1 ⊗ w1 + v2 ⊗ w0 ,

v′
1 = v0 ⊗ w3 − 2v1 ⊗ w2 + v2 ⊗ w1 ,

v′
2 = v0 ⊗ w4 − 2v1 ⊗ w3 + v2 ⊗ w2

define a set of standard basis in τ2 ↪→ τ2 ⊗ τ4, which is unique up to a common scalar
multiple.

LEMMA 2.3. Let {wj | 0 ≤ j ≤ 4} be the standard basis of (τ4, V4). Then the
standard basis {Wj | 0 ≤ j ≤ 4} of the irreducible τ4-isotypic component in τ4 ⊗ τ4 is, up
to constant multiple, given by

W0 = w0 ⊗ w2 − 2w1 ⊗ w1 + w2 ⊗ w0 ,

W1 = 1
2 (w0 ⊗ w3 −w1 ⊗ w2 −w2 ⊗ w1 +w3 ⊗ w0) ,

W2 = 1
6 (w0 ⊗ w4 + 2w1 ⊗ w3 − 6w2 ⊗ w2 + 2w3 ⊗w1 +w4 ⊗ w0) ,

W3 = 1
2 (w1 ⊗ w4 −w2 ⊗ w3 −w3 ⊗ w2 +w4 ⊗ w1) ,

W4 = w2 ⊗ w4 − 2w3 ⊗ w3 + w4 ⊗ w2 .

LEMMA 2.4. Let {vi | 0 ≤ i ≤ 2} and {wj | 0 ≤ j ≤ 4} be the standard basis
of (τ2, V2) and (τ4, V4), respectively. Then the standard basis {w′

j | 0 ≤ j ≤ 4} of the
irreducible τ4-isotypic component in τ2 ⊗ τ4 is, up to constant multiple, given by

w′
0 = v0 ⊗w1 − v1 ⊗ w0 ,

w′
1 = 1

4 (3v0 ⊗w2 − 2v1 ⊗ w1 − v2 ⊗ w0) ,

w′
2 = 1

2 (v0 ⊗ w3 − v2 ⊗ w1) ,

w′
3 = 1

4 (v0 ⊗ w4 + 2v1 ⊗ w3 − 3v2 ⊗ w2) ,

w′
4 = v1 ⊗w4 − v2 ⊗ w3 .

2.3. The K-module isomorphism between pC and V4

We denote by pC the complexification of the orthogonal complement p of k with re-
spect to the Killing form, on which the groupK acts via the adjoint action Ad�C . Note that
Eii and Eij + Eji are considered as elements in p. We set Hij = Eii − Ejj for i 	= j .

LEMMA 2.5 ([5, Lemma 2.2]). Via the unique isomorphism between V4 and pC as
K-modules we have the identification

w0 = −2{H23 − √−1(E23 + E32)} =: X0 ,

w1 = √−1{(E12 + E21)− √−1(E13 + E31)} =: X1 ,

w2 = 2
3 (H12 +H13) =: X2 ,
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w3 = √−1{(E12 + E21)+ √−1(E13 + E31)} =: X3 ,

w4 = −2{H23 + √−1(E23 + E32)} =: X4 .

2.4. The elementary functions on K
Let us consider the tautological representation of K: k �→ (sij (k))1�i,j�3. Then we

have 9 functions sij (k) onK . For each fixed i, the space generated by {si1, si2, si3} defines a
representation ofK isomorphic to τ2 in L2(K). Since τ4 ↪→ τ2 ⊗τ2, we want to investigate
the quadratic polynomials in sij to obtain a natural K-monomorphism τ4 ↪→ L2((M1 ∩
K)\K).

By inspection, the left (M1 ∩K)-invariant quadratic functions in sij are generated by{
t ′ab(k) := s1a(k) · s1b(k)+ s2a(k) · s2b(k) ,
tab(k) := s3a(k) · s3b(k) .

Since t ′ab(k)+ tab(k) = δab (δab being the Kronecker delta), it suffices to consider 6 func-

tions {tab(k)}1�a,b�3. Moreover
∑3
a=1 taa(k) = 1 implies that

dimC

⎧⎨⎩ ∑
1�a,b�3

Ctab

⎫⎬⎭ /Cf0 � 5 .

Here f0 ≡ 1 on K is a natural generator of τ0. To have the standard basis, we recall that

v0 = √−1(s32 − √−1s33) := f2,0 ,

v1 = s31 := f2,1 ,

v2 = √−1(s32 + √−1s33) := f2,2

generate a K-module isomorphic to τ2 in L2(K) with standard basis {v0, v1, v2}. Notice
that there is the decomposition τ2 ⊗ τ2 ∼= τ4 ⊕ τ2 ⊕ τ0.

LEMMA 2.6. The standard basis {wk | 0 ≤ k ≤ 4} of τ4 ↪→ L2((M1 ∩ K)\K) is
given as follows:

w0 = {√−1(s32 − √−1s33)}2 = s2
33 − s2

32 + 2
√−1s32s33 =: f4,0 ,

w1 = √−1(s32 − √−1s33)s31 = s31s33 + √−1s31s32 =: f4,1 ,

w2 = − 1
3 (s

2
32 + s2

33)+ 2
3s

2
31 = 1

3 (2s
2
31 − s2

32 − s2
33) =: f4,2 ,

w3 = s31
√−1(s32 + √−1s33) = −s31s33 + √−1s31s32 =: f4,3 ,

w4 = {√−1(s32 + √−1s33)}2 = s2
33 − s2

32 − 2
√−1s32s33 =: f4,4 .

REMARK 2. The values at the unity e ∈ K of f4,k are given by

(f4,0(e), f4,1(e), f4,2(e), f4,3(e), f4,4(e)) = (1, 0,− 1
3 , 0, 1) .
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3. The (g,K)-modules structures around the minimal K-types

3.1. The K-types
The representation space of π(σ1, ν1) is isomorphic to

L2
σ1
(K) = {f ∈ L2(K) | f (mk) = σ1(m)f (k) for all m ∈ M ∩K, k ∈ K}

as K-modules and we have a Hilbert space direct sum decomposition of K-modules:

L2
σ1
(K) =

⎧⎨⎩
⊕̂∞

m=0τ4m if σ1 = 1M1 ,⊕̂∞
m=0τ4m+2 if σ1 = detM1 .

3.2. The eigenvalues on the (g,K)-modules structures around the minimal K-types
Hereafter the action of X ∈ g via the representation π on the vectors f4,k is denoted

by Xf4,k omitting the symbol π . Firstly we recall the Iwasawa decomposition of elements
in p.

LEMMA 3.1. The five elementsH12, H23, Eij +Eji (1 ≤ i < j ≤ 3) of p have the
following Iwasawa decomposition:

Hij = 0 +Hij + 0 , Eij + Eji = 2Eij + 0 + (−Kij )
with respect to g = n ⊕ a ⊕ k (a = Lie(A)).

LEMMA 3.2. The actions of the elements in k are given by

K12f2,0 = √−1f2,1 , K13f2,0 = f2,1 , K23f2,0 = −√−1f2,0 ,

K12f2,1 =
√−1

2 (f2,0 + f2,2) , K13f2,1 = 1
2 (f2,2 − f2,0) , K23f2,1 = 0 ,

K12f2,2 = √−1f2,1 , K13f2,2 = −f2,1 , K23f2,2 = √−1f2,2 ,

in τ2. Similarly in τ4 we have

K12f4,0 = 2
√−1f4,1 , K13f4,0 = 2f4,1 , K23f4,0 = 2

√−1f4,0 ,

K12f4,1 =
√−1

2 (3f4,2 + f4,0) , K13f4,1 = 1
2 (3f4,2 − f4,0) , K23f4,1 = √−1f4,1 ,

K12f4,2 = √−1(f4,3 + f4,1) , K13f4,2 = f4,3 − f4,1 , K23f4,2 = 0 ,

K12f4.3 =
√−1

2 (f4,4 + 3f4,2) , K13f4,3 = 1
2 (f4,4 − 3f4,2) , K23f4,3 = −√−1f4,3 ,

K12f4,4 = 2
√−1f4,3 , K13f4,4 = −2f4,3 , K23f4,4 = 2

√−1f4,4 .

3.2.1. The spherical case.

PROPOSITION 3.3. Define a set {f ′
4,k | 0 ≤ k ≤ 4} by

f ′
4,k = Xkf0 .

Then it is a standard basis in τ4 ↪→ Hπ , and we have

f ′
4,k = −(ν1 + ρ1)f4,k (0 ≤ k ≤ 4) .
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Proof. From Lemma 2.5, {f ′
4,k | 0 ≤ k ≤ 4} is a standard basis in τ4. In particular,

there is a common scalar λ such that f ′
4,k = λf4,k (0 ≤ k ≤ 4). To find the scalar λ, it

suffices to compute the values f ′
4,0 at the identity e ∈ K . Since K23f0 = 0 and E23f0 =

0, we have f ′
4,0(e) = −2H23f0(e). Note that H23 ∼= 1

2 diag(1, 1,−2) mod m1 to get

H23f0(e) = 1
2 (ν1 + ρ1). Hence f ′

4,0(e) = λ = −(ν1 + ρ1) as desired. �

Similarly we can prove the following:

PROPOSITION 3.4. Define a set {f ′′
4,k | 0 ≤ k ≤ 4} by

f ′′
4,0 = X2f4,0 − 2X3f4,1 +X4f4,2 ,

f ′′
4,1 = 1

2 (X3f4,0 −X2f4,1 −X1f4,2 +X0f4,3) ,

f ′′
4,2 = 1

6 (X4f4,0 + 2X3f4,1 − 6X2f4,2 + 2X1f4,3 + X0f4,4) ,

f ′′
4,3 = 1

2 (X4f4,1 −X3f4,2 −X2f4,2 +X1f4,4) ,

f ′′
4,4 = X4f4,2 − 2X3f4,3 +X2f4,4 .

Then it is a standard basis of the unique τ4-component of theK-module p · τ4, and we have

f ′′
4,k = 2

3
ν1f4,k (0 ≤ k ≤ 4) .

3.2.2. The non-spherical case. As in Proposition 3.3, we can prove the following:

PROPOSITION 3.5. Define a set {f̃2,k | 0 ≤ k ≤ 2} by

f̃2,k = Xk+2f2,0 − 2Xk+1f2,1 + Xkf2,2 .

Then we have

f̃2,k = 4

3
ν1f2,k (0 ≤ k ≤ 2) .

Since there exists no K-type τ4 in π for the non-spherical case, we obtain the follow-
ing:

PROPOSITION 3.6. We have

X1f2,0 −X0f2,1 = 0 ,

3X2f2,0 − 2X1f2,1 −X0f2,2 = 0 ,

X3f2,0 −X1f2,2 = 0 ,

X4f2,0 + 2X3f2,1 − 3X2f2,2 = 0 ,

X4f2,1 −X3f2,2 = 0 .
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4. Whittaker functions

4.1. The Whittaker realizations of the (g,K)-modules structures around minimal
K-types

The computation of Whittaker realizations of representations of G is done by using
the Iwasawa decomposition X = XN + XA + XK of an element X ∈ g with respect to
g = n ⊕ a ⊕ k. Here we recollect the formulae of A-radial parts of the actions of some
standard elements in a and n. The k-action is given in Lemma 3.2.

We use the coordinates y1 = a1/a2, and y2 = a2/a3 = a1a
2
2 for an element a =

diag(a1, a2, a3) of A, corresponding to the simple roots, and the associated Euler operators
are denoted by ∂i = yi

∂
∂yi
(i = 1, 2).

LEMMA 4.1 ([5, Lemma 4.1, 4.2]). LetΦ be an element ofC∞-IndGN(ψ), andΦA =
ΦA(y1, y2) its restriction to A. Let ρA(X) be the A-radial part of an operatorX ∈ a ⊕ n.

(i) ρA(H12 +H13)ΦA = 3∂1ΦA and ρA(H23)ΦA = (−∂1 + 2∂2)ΦA.

(ii) ρA(E12)ΦA = 2π
√−1c1y1ΦA, ρA(E23)ΦA = 2π

√−1c2y2ΦA, and
ρA(E13)ΦA = 0.

4.1.1. The spherical case. Let I be a nonzero Whittaker functional from the spherical
degenerate principal series π(1M1, ν1) to C∞-IndGN(ψ), i.e., let

0 	= I ∈ Hom(�,K)(π(1M1, ν1), C
∞-IndGN(ψ)) .

For theK-fixed vector f0 and the functions f4,k (0 ≤ k ≤ 4) defined in Lemma 2.6, we set

ϕ0(a) := I (f0)|A(a) , ϕ4,k(a) := I (f4,k)|A(a) (a ∈ A) .
Then we have

PROPOSITION 4.2. If we denote by ϕ4 := (ϕ4,0, ϕ4,1, ϕ4,2, ϕ4,3, ϕ4,4), the func-
tions ϕ0 and ϕ4 satisfy the system of the following partial differential equations:

−1

2
(ν1 + ρ1) ϕ4 = t (Δ−, −2πc1y1, ∂1, −2πc1y1, Δ+) ϕ0 ,(W1)

M ϕ4 = 2

3
ν1 ϕ4 ,(W2)

where the matrix differential operator M is⎛⎜⎜⎜⎜⎝
2(∂1 − 1) 8πc1y1 2Δ− 0 0
−2πc1y1 −(∂1 − 1) 2πc1y1 Δ− + 1 0

1
3 (Δ+ + 2) − 4

3πc1y1 −2(∂1 − 1) − 4
3πc1y1

1
3 (Δ− + 2)

0 Δ+ + 1 2πc1y1 −(∂1 − 1) −2πc1y1
0 0 2Δ+ 8πc1y1 2(∂1 − 1)

⎞⎟⎟⎟⎟⎠
and

Δ± = ∂1 − 2∂2±4πc2y2 .

Proof. We apply Lemmas 3.1, 3.2 and 4.1 to Propositions 3.3 and 3.4 to get (W1)
and (W2), respectively. �
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4.1.2. The non-spherical case. For nonzero element I in Hom(�,K)(π(detM1, ν1), C
∞-IndGN(ψ))

and the functions f2,k (0 ≤ k ≤ 2), put

ϕ2,k(a) := I (f2,k)|A(a) (a ∈ A) .
Then the Whittaker realizations of Propositions 3.5 and 3.6 are given as follows:

PROPOSITION 4.3. Under the same symbol Δ± as in Proposition 4.2, we have⎛⎝∂1 − 1 − 2
3ν1 4πc1y1 Δ− + 1

−2πc1y1 −2(∂1 − 1)− 2
3ν1 −2πc1y1

Δ+ + 1 4πc1y1 ∂1 − 1 − 2
3ν1

⎞⎠⎛⎝ϕ2,0
ϕ2,1
ϕ2,2

⎞⎠ =
⎛⎝0

0
0

⎞⎠ ,(W3)

⎛⎜⎜⎜⎜⎝
2πc1y1 Δ− 0
3∂1 − 1 4πc1y1 −(Δ− + 1)
2πc1y1 0 −2πc1y1

−(Δ+ + 1) 4πc1y1 3∂1 − 1
0 Δ+ 2πc1y1

⎞⎟⎟⎟⎟⎠
⎛⎝ϕ2,0
ϕ2,1
ϕ2,2

⎞⎠ =
⎛⎝0

0
0

⎞⎠ .(W4)

4.2. The determination of the solutions ϕ0 and {ϕ2,k}(k=0,1,2)

From now on we assume that ν1 + ρ1 	= 0.

4.2.1. The spherical case.

PROPOSITION 4.4. Modulo the equation (W1), the system (W2) is equivalent to
the following equations:

(4πc2y2)(∂1 − 1
6ν1 − 1

2 )ϕ0 = 0 ,(A)

{(∂1 − 1
6ν1 − 1

2 )(−∂1 + 2∂2)+ (2πc1y1)
2}ϕ0 = 0 ,(B)

(2πc1y1)(2∂2 − 1 + 1
3ν1 ± 4πc2y2)ϕ0 = 0 ,(C±)

{−∂1(3∂1 − 3 + ν1)+ (−∂1 + 2∂2)
2 − 2(−∂1 + 2∂2)(D)

+ 2(2πc1y1)
2 − (4πc2y2)

2}ϕ0 = 0 .

Proof. Replace the vector ϕ4 in (W2) by using (W1). �

LEMMA 4.5. If c1c2 	= 0 (the non-degenerate case), the solution ϕ0 of the equa-
tions in Proposition 4.4 is trivial, i.e., ϕ0 = 0.

Proof. It is immediate from (A) and (B). �

Thus we have to consider only “degenerate cases”: (I) c1 	= 0, c2 = 0, (II) c1 =
0, c2 	= 0, and (III) c1 = c2 = 0.

The case (I): The equation (C) implies ϕ0(y1, y2) = C0(y1) · y−ν1/6+1/2
2 with some

function C0(y1) in y1. Then the equation (D) leads{(
y1

d

dy1
− ν1

6
− 1

2

)(
y1

d

dy1
+ ν1

3
− 1

)
− (2πc1y1)

2
}
C0(y1) = 0 .
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If we put C0(y1) = y
−ν1/12+3/4
1 C̃0(y1), the above equation is reduced to Bessel’s differen-

tial equation and therefore we get

C̃0(y1) = CK 1
4 (ν1−1)(2π |c1|y1)+ C′I 1

4 (ν1−1)(2π |c1|y1) .

The case (II) can be similarly done.
The case (III): The equations (A) and (C) tell nothing. By (B) and (D), we have a

system of partial differential equations with constant coefficients:{
(∂1 − 1

6ν1 − 1
2 )(−∂1 + 2∂2)ϕ0 = 0 ,

{−∂1(3∂1 − 3 + ν1)+ (−∂1 + 2∂2)
2 − 2(−∂1 + 2∂2)}ϕ0 = 0 .

We can readily find that this is a holonomic system of rank 4 with regular singularities along
the divisors y1 = 0 and y2 = 0 of normal crossing at the origin (0, 0) and the fundamental
solutions are

1, y
− 1

3 ν1+1
1 y

− 1
6 ν1+ 1

2
2 , y

1
6 ν1+ 1

2
1 y

1
3 ν1+1
2 , y

1
6 ν1+ 1

2
1 y

− 1
6 ν1+ 1

2
2 .

Summing up the computations above, we have the following main result for the spher-
ical case.

THEOREM 4.6 (Multiplicity-free theorem). We have the following A-radial part
ϕ0(y1, y2) for Whittaker function belonging to the spherical degenerate principal series:

(i) If the character ψ ∈ N̂ is non-degenerate, i.e., c1c2 	= 0, then ϕ0(y1, y2) is
identically zero.

(ii) If c1 	= 0, c2 = 0, we have

ϕ0(y1, y2) = y
− 1

12 ν1+ 3
4

1 y
− 1

6 ν1+ 1
2

2 (CK 1
4 (ν1−1)(2π |c1|y1)+ C′I 1

4 (ν1−1)(2π |c1|y1)) .

In particular, the unique solution of moderate growth at infinity is given byC′ =
0 in the above.

(iii) If c1 = 0, c2 	= 0, we have

ϕ0(y1, y2) = y
1
6 ν1+ 1

2
1 y

1
12 ν1+ 3

4
2 (CK 1

4 (ν1+1)(2π |c2|y2)+ C′I 1
4 (ν1+1)(2π |c2|y2)) .

In particular, the unique solution of moderate growth at infinity is given byC′ =
0 in the above.

(iv) If c1 = c2 = 0, we have

ϕ0(y1, y2) = C · 1 + C′(y2
1y2)

− 1
6 ν1+ 1

2 + C′′(y1y
2
2)

1
6 ν1+ 1

2 + C(3)y
1
6 ν1+ 1

2
1 y

− 1
6 ν1+ 1

2
2 .

4.2.2. The non-spherical case. We can determine the vector of Whittaker functions
{ϕ2,0, ϕ2,1, ϕ2,2} by solving (W3) and (W4). The precise is left to the reader.

THEOREM 4.7 (Multiplicity-free theorem). We have the following A-radial part
ϕ2,k = ϕ2,k(y1, y2) (k = 0, 1, 2) for the Whittaker function with the minimal K-type τ2

belonging to the non-spherical degenerate principal series:
(i) If the character ψ ∈ N̂ is non-degenerate, i.e., c1c2 	= 0, the vector of functions

(ϕ2,0, ϕ2,1, ϕ2,2) is identically zero.
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(ii) If c 	= 0, c2 = 0, we have ϕ2,0 = ϕ2,2 and(
ϕ2,0(y1, y2)

ϕ2,1(y1, y2)

)
= y

− 1
12 ν1+ 4

3
1 y

− 1
6 ν1+ 1

2
2

×
{
C

(
K 1

4 ν1− 2
3
(2π |c1|y1)

−sgn(c1)K 1
4 ν1+ 1

3
(2π |c1|y1)

)
+ C′

(
I 1

4 ν1− 2
3
(2π |c1|y1)

−sgn(c1)I 1
4 ν1+ 1

3
(2π |c1|y1)

)}
.

In particular, the unique solution of moderate growth at infinity is given byC′ =
0 in the above.

(iii) If c1 = 0, c2 	= 0, we have ϕ2,1 = 0 identically and ϕ2,0 = 1
2 (ϕ+ +ϕ−), ϕ2,2 =

1
2 (ϕ+ − ϕ−) with(

ϕ+(y1, y2)

ϕ−(y1, y2)

)
= y

1
6 ν1+ 1

2
1 y

1
12 ν1+ 5

4
2

×
{
C

(
K 1

4 (ν1+3)(2π |c2|y2)

sgn(c2)K 1
4 (ν1−1)(2π |c2|y2)

)
+ C′

(
I 1

4 (ν1+3)(2π |c2|y2)

sgn(c2)I 1
4 (ν1−1)(2π |c2|y2)

)}
.

In particular, the unique solution of moderate growth at infinity is given byC′ =
0 in the above.

(iv) If c1 = c2 = 0, we have⎛⎝ϕ2,0(y1, y2)

ϕ2,1(y1, y2)

ϕ2,2(y1, y2)

⎞⎠ = Cy
1
6 ν1+ 1

2
1 y

− 1
6 ν1+ 1

2
2

⎛⎝1
0
1

⎞⎠+ C′y
1
6 ν1+ 1

2
1 y

1
3 ν1+1
2

⎛⎝ 1
0

−1

⎞⎠
+ C′′y− 1

3 ν1+1
1 y

− 1
6 ν1+ 1

2
2

⎛⎝0
1
0

⎞⎠ .

5. Generalized Whittaker functions

5.1. The generalized Whittaker realizations of the (g,K)-modules structures
The action of n on the space of C∞-vectors, i.e., on the Schwartz space S is described

as follows:

LEMMA 5.1. Via the Schrödinger representation, the operators E12, E23 and E13

in n act on S(R) ⊂ L2(R) as follows:
E13f (s) = 2π

√−1 cf (s) , E12f (s) = d

ds
f (s) ,

E23f (s) = 2π
√−1 c(s +m)f (s)

for f ∈ S(R).
By the parameter shift s �→ s −m the case of generalm is reduced to the case m = 0.

From now on we assume that m = 0.
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5.1.1. The spherical case.

PROPOSITION 5.2. We use the same symbol ϕ0 and ϕ4 for the radial part of the
generalized Whittaker functions as §4.1.1. Set

L± = ∂1 − 2∂2 ± 4πcy2s , Λ± = y1
∂

∂s
± 2πcy1y2 .

Then we have

−1

2
(ν1 + ρ1) ϕ4 = t (L−,

√−1Λ+, ∂1,
√−1Λ−, L+) ϕ0 ,(GW1)

M ϕ4 = 2

3
ν1 ϕ4 ,(GW2)

with

M =

⎛⎜⎜⎜⎜⎝
2(∂1 − 1) −4

√−1Λ+ 2L− 0 0√−1Λ− −(∂1 − 1) −√−1Λ+ (L− + 1) 0
1
3 (L+ + 2) 2

3

√−1Λ− −2(∂1 − 1) 2
3

√−1Λ+ 1
3 (L− + 2)

0 L+ + 1 −√−1Λ− −(∂1 − 1)
√−1Λ+

0 0 2L+ −4
√−1Λ− 2(∂1 − 1)

⎞⎟⎟⎟⎟⎠ .

5.1.2. The non-spherical case. Here are generalized Whittaker realization of the formulae
in Propositions 3.3 and 3.4.

PROPOSITION 5.3. Let I be a nonzero generalized Whittaker functional. Then, un-
der the same symbols L± and Λ± as in Proposition 5.2, we have the following system of
differential equations for three functions ϕk = I (f2,k)|A (k = 0, 1, 2):⎛⎝∂1 − 2

3ν1 − 1 −2
√−1Λ+ L− + 1√−1Λ− −2(∂1 + 1

3ν1 − 1)
√−1Λ+

L+ + 1 −2
√−1Λ− ∂1 − 2

3ν1 − 1

⎞⎠⎛⎝ϕ2,0
ϕ2,1
ϕ2,2

⎞⎠ =
⎛⎝0

0
0

⎞⎠ ,(GW3)

⎛⎜⎜⎜⎜⎝
√−1Λ+ −L− 0
3∂1 − 1 −2

√−1Λ+ −(L− + 1)
Λ− 0 −Λ+

−(L+ + 1) −2
√−1Λ− 3∂1 − 1

0 −L+
√−1Λ−

⎞⎟⎟⎟⎟⎠
⎛⎝ϕ2,0
ϕ2,1
ϕ2,2

⎞⎠ =
⎛⎝0

0
0

⎞⎠ .(GW4)

5.2. Explicit formula for the generalized Whittaker functions

5.2.1. The spherical case. By Proposition 5.2, we have the following:

PROPOSITION 5.4. Modulo the equation (GW1), the system (GW2) is equivalent
to the following equations:

[(2∂1 − 1 − 1
3ν1)(∂1 − 2∂2)+ 2y2

1{( ∂
∂s
)2 + (2πcy2)

2}]ϕ0 = 0 ,(A)

(4πcy2){(2∂1 − 1 − 1
3ν1)s − 2y2

1
∂
∂s

}ϕ0 = 0 ,(B)

y1(2πcy2)(∂1 − ∂2 + 1
2 + 1

6ν1 + s ∂
∂s
)ϕ0 = 0 ,(C)

y1{(∂2 − 1
2 + 1

6ν1)
∂
∂s

− (2πcy2)
2s}ϕ0 = 0 ,(D)
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[2y2
1{( ∂

∂s
)2 − (2πcy2)

2} + 3(∂1 − 1 + 1
3ν1)∂1(E)

− (∂1 − 2∂2)
2 − 2(∂1 − 2∂2)+ (4πcy2s)

2]ϕ0 = 0 .

PROPOSITION 5.5. If we put ϕ0(y1, y2; s) = y
ν1/6+1/2
1 y

−ν1/6+1/2
2 ψ0(y1, y2; s), then

the system in Proposition 5.4 is reduced to the following:{
∂

∂(y2
1)

− ∂

∂(s2)

}
ψ0 = 0 ,(B’) {

y2
1
∂

∂(y2
1)

+ s2 ∂

∂(s2)
− y2

2
∂

∂(y2
2)

+ ν1 + 1

4

}
ψ0 = 0 ,(C’) {

∂

∂(s2)

∂

∂(y2
2)

− (πc)2
}
ψ0 = 0 ,(D’) {

∂

∂(y2
1)

∂

∂(y2
2)

− (πc)2
}
ψ0 = 0 .(F’)

Let us solve the above system. Apply the Euler operator ∂(y2
2 )

= y2
2
∂

∂(y2
2 )

to (C’) and

utilize (D’) and (F’) to get{
∂2
(y2

2 )
−
(
ν1 + 1

4

)
∂(y2

2 )
− (πcy2)

2(y2
1 + s2)

}
ψ0 = 0 .

Set ψ0 = (y2
2)

1
8 (ν1+1)ψ̃0 . Then we have[

∂2
2 −

{(
ν1 + 1

4

)2

+
(

2πcy2

√
y2

1 + s2

)2}]
ψ̃0 = 0 .

Here we used ∂(y2
2 )

= 1
2∂2. Thus the solution ψ̃0(y2; y1, s) can be written as

C1(y1, s)K 1
4 (ν1+1)

(
2π |c|y2

√
y2

1 + s2

)
+ C2(y1, s) I 1

4 (ν1+1)

(
2π |c|y2

√
y2

1 + s2

)
.

Here Ci(y1, s) (i = 1, 2) are functions in y1, s. In view of (B’), Ci(y1, s) should be of the
form Ci(y

2
1 + s2) with one variable function Ci(t). From (C’) we have

d

dt
Ci(t) = −1

8
(ν1 + 1)t Ci(t)

and therefore we obtain the following:

THEOREM 5.6 (Multiplicity-free theorem). We have the following A-radial part
ϕ0(y1, y2; s) for the generalized Whittaker function belonging to the spherical degenerate
principal series:

ϕ0(y1, y2; s) = y
1
6 ν1+ 1

2
1 y

− 1
6 ν1+ 1

2
2

(
y2√
y2

1 + s2

) 1
4 (ν1+1)

×
{
CK 1

4 (ν1+1)

(
2π |c|y2

√
y2

1 + s2

)
+ C′I 1

4 (ν1+1)

(
2π |c|y2

√
y2

1 + s2

)}
.
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In particular, the unique solution of moderate growth at infinity is given by C′ = 0 in the
above, up to constant multiple.

5.2.2. The non-spherical case. In the same way as in the spherical case, we can show the
following from (GW3) and (GW4):

THEOREM 5.7 (Multiplicity-free theorem). We have⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ϕ2,0(y1, y2; s) = 1

2

(
1

2πcy2

∂

∂s
+ 1

)
ϕ(y1, y2; s) ,

ϕ2,1(y1, y2; s) = 1

4πc
√−1

y1

y2s

∂

∂s
ϕ(y1, y2; s) ,

ϕ2,2(y1, y2; s) = 1

2

(
1

2πcy2

∂

∂s
− 1

)
ϕ(y1, y2; s) ,

with

ϕ(y1, y2; s) = y
1
6 ν1+ 1

2
1 y

− 1
6 ν1+ 3

2
2

(
y2√
y2

1 + s2

)1
4 (ν1−1)

×
{
CK 1

4 (ν1−1)

(
2π |c|y2

√
y2

1 + s2

)
+ C′I 1

4 (ν1−1)

(
2π |c|y2

√
y2

1 + s2

)}
.

In particular, the solution with moderate growth condition when y1, y2 → ∞ is given
unique up to scalar multiple by C′ = 0 in the above.

5.3. Another realization of Schrödinger representation and generalized Whittaker
functions

The change of polarization algebra from n1 to

n2 :=
⎧⎨⎩
⎛⎝0 ∗ ∗

0 0 0
0 0 0

⎞⎠⎫⎬⎭
induces an intertwining isomorphism which is realized by the following Fourier transfor-
mation.

DEFINITION 5.8. For f ∈ L2(R), set

f ∗(t) = Fc(f )(t) :=
∫

R
f (s) exp(2π

√−1 cst) ds (ds the Lebesgue measure) .

The integration by part, and the change of the order of differentiation and integration
imply that

Fc
(
d

ds
f

)
= −(2π√−1 ct)Fc(f ) , d

dt
Fc(f ) = Fc(2π

√−1 cs · f ) .

Passing to the differential vectors in the dual L2(R), we have the following:
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LEMMA 5.9. Under the above realization of the Schrödinger representation with
respect to n2, the action of an element in n is given by

E13f
∗(t) = 2π

√−1 cf ∗(t) , E12f
∗(t) = −2π

√−1 ctf ∗(t) ,

E23f
∗(t) = d

dt
f ∗(t)

for f ∗ ∈ S(R).
PROPOSITION 5.10. For theA-radial part ϕ0 of the generalized Whittaker function

given in §5.1.1 and §5.2.1, set ϕ∗(t) = Fc(ϕ0). Then the system of partial differential
equations for ϕ∗ is obtained from that of ϕ0 by the replacement of the symbols:

y1 ↔ y2 , ν1 ↔ −ν1 , s �→ t , L+ ↔ L− .
Therefore ϕ∗(t) = ϕ∗(y1, y2; t) with moderate growth property is

C y
1
6 ν1+ 1

2
1 y

− 1
6 ν1+ 1

2
2

⎛⎝ y1√
y2

2 + t2

⎞⎠
1
4 (−ν1+1)

K 1
4 (−ν1+1)

(
2π |c|y1

√
y2

2 + t2

)
with some constant C.

To determine the constant C we utilize the following formula ([2, 6.726.4, p. 730]):∫
R
α±ν (x2 + β2)∓

1
2 νKν

(
α

√
x2 + β2

)
exp(

√−1 xy) dx

= √
2πβ

1
2 ∓ν(y2 + α2)±

1
2 ν− 1

4K 1
2 ∓ν

(
β

√
y2 + α2

)
for Re(α), Re(β) > 0. Take the upper sign in the above formula. Then, by the change of
variables

x = √
2πc s , y = √

2πc t , α = √
2πc y2 , β = √

2πc y1 , ν = 1

4
(ν1 + 1) ,

we have C = |c|− 1
2 , i.e.,∫

R

⎛⎝ y2√
y2

1 + s2

⎞⎠1
4 (ν1+1)

K 1
4 (ν1+1)

(
2π |c|y2

√
y2

1 + s2

)
exp(2π

√−1 cst) ds

= |c|− 1
2

⎛⎝ y1√
y2

2 + t2

⎞⎠1
4 (−ν1+1)

K 1
4 (−ν1+1)

(
2π |c|y1

√
y2

2 + t2
)
.

5.4. Generalized Whittaker functions with respect to maximal parabolic subgroups
The unitary characters of the abelian unipotent radicalN1 = {n(0, x13, x23) | x13, x23 ∈

R} of the maximal parabolic subgroup P1 of G are exhausted by

χc,d : n(0, x13, x23) �→ exp{2π√−1(cx13 + dx23)} (c, d ∈ R) .
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The unitary induction IndNN1
(χc,d ) from N1 to N gives a Schrödinger representation ψ of

N . Then by the transitivity of the induction, we have

Hom(�,K)(π, IndGN(ψ)) ∼= Hom(�,K)(π, IndGN1
(χc,d)) .

Therefore we have a result analogous to Theorems 5.6 and 5.7. More precisely we can
show the following:

THEOREM 5.11. Fix the double coset decomposition

G = N1B1K

with
B1 = {n(s, 0, 0) | s ∈ R} ·A .

Then for a non-zero intertwining operator Ĩ ∈ Hom(�,K)(π, IndGN1
(χc,d)) the B1-‘radial’

parts Φ(y1, y2; s) of Ĩ (f0) or Ĩ (f∗,k) (f0 ∈ π(1M1, ν1) or f∗,k ∈ π(detM1, ν1)) are given
by the functions in Theorems 5.6 and 5.7 with the replacement s �→ s + d/c.

6. Fourier expansions

Let us review some of the immediate implications of the local multiplicity-free the-
orems 4.6, 4.7, 5.6, 5.7 and 5.11 in the previous sections for the Fourier expansions of
automprphic forms on Γ \G (Γ = SL(3,Z)) belonging to the spherical degenerate princi-
pal series representation of G = SL(3,R).

6.1. General forms of Fourier expansions
Analogous situation was, probably firstly in the literature, legitimately investigated by

Ishikawa [4], and later extended to some important and fundamental cases by Narita [6].

6.1.1. Fourier expansion along the maximal parabolic subgroup P1. Let F be a right K-
invariant automorphic form on Γ \G whose right G-translations generate a (g,K)-module
isomorphic to the spherical degenerate principal series π(1M1, ν1). For⎧⎨⎩

n1 = n(0, x13, x23) ∈ N1 ,

a = (y1y
2
2)

−1/3diag(y1y2, y2, 1) ∈ A ,
b1 = n(x12, 0, 0) · a ∈ B1 ,

the function F(n1b1) in the variable n1 is periodic under the lattice Γ ∩ N1 in N1. Hence
by Theorem 5.11, we have the Fourier expansion:

F(n1b1) =
∑

(m2,m3)∈Z2

F(m2,m3)(b1)χ(m2,m3)(n1) ,

where F(m2,m3) are functions independent of the variables x13, x23. The nature of each term
F(m2,m3) is different depending on the value of the parameter c of the central character.

If m3 = 0, then F(m2,0)(b1) is periodic in x12 modulo Z, hence
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F(m2,0)(b1) =
∑
m1∈Z

F(m1,m2,0)(a) exp(2π
√−1m1x12) ,

with functions F(m1,m2,0) depending only on a ∈ A. By the equivariance property of
F(m1,m2,0) with respect to N , we have

F(m1,m2,0)(a) = c(m1,m2,0)(F )W(m1,m2)(a) (c(m1,m2,0)(F ) ∈ C) ,

where W(m1,m2)(a) is the radial part of the degenerate Whittaker function associated with
the character:

n(x12, x13, x23) �→ exp{2π√−1(m1x12 +m2x23)} ,
which is specified by Theorem 4.6.

If m3 	= 0, by Theorem 5.11 we have

F(m2,m3)(b1) = c(m2,m3)(F )GWm3(y1, y2; x12 +m2/m3) (c(m2,m3)(F ) ∈ C) .

Here the functionGWm3 is the radial part of the generalized Whittaker function in Theorem
5.6. Summing up, we obtain the following:

PROPOSITION 6.1. The Fourier expansion along P1 is of the form

F(n1b1) =
4∑
i=1

c(0,0,0),i(F )Wi(y1, y2)

+
∑

(m1,m2)∈Z2\{(0,0)}
m1m2=0

c(m1,m2,0)(F )W(m1,m2)(y1, y2)

× exp{2π√−1(m1x12 +m2x23)}
+

∑
m3∈Z\{0}

∑
m2∈Z

c(m2,m3)(F )GWm3(y1, y2; x12 +m2/m3)

× exp{2π√−1(m2x23 +m3x13)} ,
with Fourier coefficients c(0,0,0),i(F ), c(m1,m2,0)(F ) and c(m2,m3)(F ). Here Wi(y1, y2)

and W(m1,m2)(y1, y2) are the radial parts of the moderate growth (degenerate) Whittaker
functions;

W1(y1, y2) = 1 , W2(y1, y2) = (y2
1y2)

− 1
6 ν1+ 1

2 ,

W3(y1, y2) = (y1y
2
2)

1
6 ν1+ 1

2 , W4(y1, y2) = y
1
6 ν1+ 1

2
1 y

− 1
6 ν1+ 1

2
2 ,

W(m1,m2)(y1, y2) =

⎧⎪⎨⎪⎩
y

− 1
12 ν1+ 3

4
1 y

− 1
6 ν1+ 1

2
2 K 1

4 (ν1−1)(2π |m1|y1) if m1 	= 0 and m2 = 0 ,

y
1
6 ν1+ 1

2
1 y

1
12 ν1+ 3

4
2 K 1

4 (ν1+1)(2π |m2|y2) if m1 = 0 and m2 	= 0 ,

and GWm3(y1, y2; s) = GWm3(y1, y2; s; ν1) is the generalized Whittaker function
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GWm3(y1, y2; s; ν1)

= y
1
6 ν1+ 1

2
1 y

− 1
6 ν1+ 1

2
2

⎛⎝ y2√
y2

1 + s2

⎞⎠1
4 (ν1+1)

K 1
4 (ν1+1)

(
2π |m3|y2

√
y2

1 + s2

)
.

Note that the function F(n1b1) in the variable n1 is invariant under N ∩ Γ . Then we have

LEMMA 6.2. If m3 	= 0, then we have c(m2,m3)(F ) = c(m′
2,m3)

(F ) if m2 ≡ m′
2

(mod m3).

6.1.2. Fourier expansion along the minimal parabolic subgroup P0. Now we can regard
our Fourier expansion along P1 as that along the standard minimal parabolic subgroup P0

of G. Similarly as [6, Theorem 9.2, p. 575], we introduce Whittaker-theta series:

DEFINITION 6.3. For c 	= 0 and m ∈ Z, set

Θm
c
(n1b1) = Θm

c
(y1, y2; x12, x23; ν1)

:=
∑
k∈Z

GWc(y1, y2; x12 +m/c + k; ν1) exp{2π√−1(m+ ck)x23} .

Then the Fourier expansion of F(n1b1) along P0 is written as follows (cf. [6, Theorem
9.6]):

PROPOSITION 6.4.

F(n1b1) =
4∑
i=1

c(0,0,0),i(F )Wi(y1, y2)

+
∑

(m1,m2)∈Z2\{(0,0)}
m1m2=0

c(m1,m2,0)(F )W(m1,m2)(y1, y2)

× exp{2π√−1(m1x12 +m2x23)}
+

∑
m3∈Z\{0}

∑
m2∈Z/m3Z

c(m2,m3)(F )Θm2
m3
(y1, y2; x12, x23; ν1)

× exp(2π
√−1m3x13) .

6.1.3. Poisson summation formula with displacement. This is a preparation for the next
subsection. Let R∗ be the Pontriagin dual of R. For ϕ ∈ S(R) and ϕ∗ ∈ S(R∗), we set

(σaϕ)(s) := ϕ(s + a) (a ∈ R) ,
(τbϕ

∗)(t) := ϕ∗(t + b) (b ∈ R) .

Then we immediately have

exp(−2π
√−1 cat)τb(Fc(ϕ)) = exp(2π

√−1 cab)Fc(σaϕ · exp(2π
√−1 cbs)) .

Apply the Poisson summation formula for the pair of the mutually dual variables (s, t).
Then we have
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exp(2π
√−1 cab)

∑
k∈Z

ϕ(a + k) exp(2π
√−1 cbk)

=
∑
l∈Z

ϕ∗
(
b + l

c

)
exp

(
−2π

√−1 ca · l
c

)
.

We may call this the Poisson summation formula with displacement. Now we change the
parameters by

a �→ x12 + m

c
, b �→ x23 .

Then the above formula yields

exp(2π
√−1 cx12x23)

∑
k∈Z

ϕ

(
x12 + m

c
+ k

)
exp{2π√−1 (ck +m)x23}

=
∑
l∈Z

ϕ∗
(
x23 + l

c

)
exp

{
−2π

√−1

(
x12 + m

c

)
l

}
.

Since we have GW∗
c (y1, y2; x12; ν1) = |c|− 1

2GWc(y2, y1; x12; −ν1) in §5.4, in terms
of Whittaker-theta function, we can write this as follows:

PROPOSITION 6.5. For c 	= 0 and m ∈ Z,

exp(2π
√−1 cx12x23)Θm

c
(y1, y2; x12, x23; ν1)

= |c|− 1
2
∑
l∈Z/cZ

exp

(
−2π

√−1
ml

c

)
Θ l

c
(y2, y1; x23,−x12; −ν1) .

This formula is applied to have a relation between the Fourier expansions with respect
to P1 and P2 in the next subsection.

6.1.4. Comparison with Fourier expansion along P2. A main result of Narita [6] is to
compare the Fourier expansions along various maximal parabolic subgroups utilizing the
most ‘rough’ Fourier expansion along the minimal parabolic subgroup. We can do similarly
in our case, to compare the Fourier expansions along P1 and P2, with

P2 :=
⎧⎨⎩
⎛⎝∗ ∗ ∗

0 ∗ ∗
0 ∗ ∗

⎞⎠ ∈ G
⎫⎬⎭ .

But there appears a new feature here, i.e., the Poisson summation formula. As in §6.1.1,
the Fourier expansion of F along P2 is given as follows:

PROPOSITION 6.6. For{
n2 = n(x12, x13, 0) ,
b2 = n(0, 0, x23) · (y1y

2
2)

−1/3diag(y1y2, y2, 1) ,



Generalized Whittaker functions 207

we have a Fourier expansion along P2:

F(n2b2) =
4∑
i=1

c̄(0,0,0),i(F )Wi(y1, y2)

+
∑

(m1,m2)∈Z2\{(0,0)}
m1m2=0

c̄(m1,m2,0)(F )W(m1,m2)(y1, y2)

× exp{2π√−1(−m1x12 +m2x23)}
+

∑
m3∈Z\{0}

∑
m1∈Z

c̄(m1,m3)(F )GWm3(y2, y1; x23 +m1/m3; −ν1)

× exp{2π√−1(−m1x12 +m3x13)} ,
with Fourier coefficients c̄(0,0,0),i(F ), c̄(m1,m2,0)(F ) and c̄(m1,m3)(F ).

By applying Proposition 6.5 to the last term in Proposition 6.1 and comparing with
Proposition 6.6, we obtain the following:

PROPOSITION 6.7. For m3 	= 0,

c̄(m1,m3)(F ) = |m3|−1/2
∑

m2∈Z/m3Z

c(m2,m3)(F ) exp

(
−2π

√−1
m1m2

m3

)
.

6.2. The case of the Epstein zeta function
In this section we discuss the Fourier expansion of Epstein zeta function in our formu-

lation of Fourier expansions. The statements themselves are nothing new, but historically
speaking this was the original problem.

Let Z(s, Y ) be the Epstein zeta function of degree 3

Z(s, Y ) = 1

2

∑
m∈Z3\{0}

(mY tm)−s .

Here Y = g tg with

g = y
−1/3
1 y

−2/3
2

⎛⎝y1y2 y2x12 x13
y2 x23

1

⎞⎠ ∈ G .

It is known that Z(s, Y ) converges absolutely for Re(s) > 3/2 and is continued to a mero-
morphic function of s and satisfies Epstein’s functional equation

π−sΓ (s)Z(s, Y ) = (detY )−1π−( 3
2 −s)Γ ( 3

2 − s)Z( 3
2 − s, Y−1) .(�)

The Fourier expansion of Z(s, Y ) is given by Terras [10]. We refer [10, Theorem 1] with
(n1, n2) = (2, 1) (resp. (1, 2)) to get the Fourier expansion along P1 (resp. P2):
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PROPOSITION 6.8. Under the notation in Proposition 6.1 with ν1 = 4s−3, Fourier
coefficients c∗(s) = c∗(Z(s, Y )) are given as follows:

c(0,0,0),1(s) = 0 , c(0,0,0),2(s) = π Γ (s − 1)

Γ (s)
ζ(2s − 2) ,

c(0,0,0),3(s) = ζ(2s) , c(0,0,0),4(s) =
√
π Γ (s − 1/2)

Γ (s)
ζ(2s − 1) ,

c(m1,0,0)(s) = 2πs

Γ (s)
|m1|1−sσ2s−2(|m1|) (m1 	= 0) , c(0,m2,0)(s) = 0 (m2 	= 0) ,

c(0,m3)(s) = 0 , c(m2,m3)(s) = πs

Γ (s)
|m3|−s+1/2σ2s−1((|m2|, |m3|)) (m2,m3 	= 0) ,

where σν(n) = ∑
d |n dν is the divisor function and (m, n) means the g.c.d of m and n.

PROPOSITION 6.9. Under the notation in Proposition 6.6 with ν1 = 4s−3, Fourier
coefficients c̄∗(s) = c̄∗(Z(s, Y )) are given as follows:

c̄(0,0,0),i(s) = c(0,0,0),i(s) (1 ≤ i ≤ 4) ,

c̄(m1,0,0)(s) = 0 (m1 	= 0) , c̄(0,m2,0)(s) = 2πs

Γ (s)
|m2|s− 1

2 σ1−2s(|m2|) (m2 	= 0) ,

c̄(0,m3)(s) = 0 , c̄(m1,m3)(s) = πs

Γ (s)
|m3|s−1σ2−2s((|m1|, |m3|)) (m1,m3 	= 0) .

REMARK 3. (i) The comparison of these two Fourier expansions along P1 and P2

is equivalent to the functional equation (�).
(ii) Fumihiro Sato [8] investigates Fourier coefficients of Eisenstein series with one

parameter with respect to SL(2n,Z) associated with the parabolic subgroup of type (n, n).
(iii) By using the result of Hiroshi Oda and Toshio Oshima [7], it seems to be possi-

ble to extend our results to degenerate principal series of SL(m,R) associated with maxi-
mal parabolic subgroup Pn,m−n (personal communication by T. Oshima).
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