

COMMENTARII MATHEMATICI UNIVERSITATIS SANCTI PAULI
Vol. 57. No. 1 2008 Vol. 57, No. 1

ed. RIKKYO UNIV/MATH IKEBUKURO TOKYO 171–8501 JAPAN

On Supersingular Cyclic Quotients of Fermat Curves

by

Noboru AOKI

(Received April 30, 2008)

1. Introduction

Let *C* be a projective smooth curve of genus *g* defined over \mathbb{F}_q , the finite field of *q* elements, where $q = p^f$ is a power of a prime number p. A. Weil proved that the zeta function of C/\mathbb{F}_q has the form

$$
Z(C/\mathbb{F}_q,t)=\frac{P(t)}{(1-t)(1-qt)},
$$

where $P(t)$ is a polynomial with integral coefficients of degree 2*g* such that the constant term is 1 and the leading coefficient is q^g . Moreover he showed that if $\alpha_1, \ldots, \alpha_{2g}$ are the roots of *P*(*t*) then $|a_i| = q^{-1/2}$ (thus $|a_i/\sqrt{q}| = 1$) for $i = 1, ..., 2g$. We say that *C* is
suggestingular if all the α_i/\sqrt{q} are roots of unity. This holds if and only if the zeta function *supersingular* if all the α_i/\sqrt{q} are roots of unity. This holds if and only if the zeta function of C/\mathbb{F}_{q^n} over a suitable finite extension \mathbb{F}_{q^n} of \mathbb{F}_q has the form

$$
Z(C/\mathbb{F}_{q^n}, t) = \frac{(1+q^{n/2}t)^{2g}}{(1-t)(1-q^n t)}.
$$

Although it is usually hard to obtain the explicit form of the zeta function, there is a special class of curves whose zeta functions have been deeply studied. Let $m > 1$ be an integer not divisible by *p* and consider the Fermat curve of degree *m*

$$
F_m: x^m + y^m + z^m = 0
$$

defined over \mathbb{F}_q . It follows from the Davenport and Hasse relation ([12]) that the zeta function of *Fm* can be expressed using Jacobi sums. As a result, one can easily see that *Fm* is supersingular if and only if the following condition holds:

$$
p^i \equiv -1 \pmod{m} \quad \text{for some } i \tag{1}
$$

For each triple of integers $\alpha = (a, b, c)$ such that $0 < a, b, c < m$ and $a + b + c = m$, let *F_α* denote the projective model of the curve defined over \mathbb{F}_p by the equation

$$
v^m = (-1)^c u^a (1 - u)^b.
$$

As is well known, these curves are dominated by the Fermat curve F_m . Therefore, if F_m is supersingular, then so is F_α . However, the converse is not always true. Namely, even if (1) fails to hold, F_α can be supersingular.

Given *m* and α , it is not hard to determine whether F_{α} is supersingular or not because a combinatorial criteion for F_α to be supersingular is known (see Proposition 3.3). As an example, we begin with a sufficient condition for F_α to be supersingular. To state it, for an integer *a*, we denote by $\langle a \rangle_m$ the integer such that $0 \le \langle a \rangle_m < m$ and $\langle a \rangle_m \equiv a \pmod{m}$. For two triples $\alpha = (a, b, c)$ and $\alpha = (a', b', c')$, we write $\alpha \approx \alpha'$ if there is an integer such that $(m, t) = 1$ and $\{a', b', c'\} = \{\langle ta \rangle_m, \langle tb \rangle_m, \langle tc \rangle_m\}.$

- THEOREM 1.1. *Suppose that f is even and one of the following conditions holds*:
- (i) $4|m, p^{f/2} \equiv m/2+1 \pmod{m}$, and $\alpha \approx (1, (p^i)_m, (-2p^j)_m)$ for some integers *i, j .*
- (ii) *There exist a divisor d of m and positive integers i, j such that*

 $p^i \equiv 1 \pmod{d}$, $p^j \equiv -1 \pmod{d}$,

and $\alpha \approx (1, \langle -p^j \rangle_m, \langle p^j - 1 \rangle_m)$ *.*

Then F_{α} *is supersingular.*

However, it is not so easy to determine the set of the pairs (m, α) for which F_{α} is supersingular. If $(a, b, c, m) = 1$, we say that α is *primitive*. In this paper we shall exhibit some examples of primitive elements α for which F_{α} is supersingular when condition (1) does not hold. Our results mainly concern the following two cases:

- (i) *m* is a power of a prime number.
- (ii) $m = 3l$ or 4*l*, where *l* is a prime number greater than 3.

First, we consider the case where *m* is a power of a prime number *l*. If *l* is an odd prime number, then it is known that *f* must be even. Since $(\mathbb{Z}/m\mathbb{Z})^{\times}$ is a cyclic group, this implies that $p^{f/2} \equiv -1 \pmod{m}$. Therefore (1) holds. Thus the following theorem holds.

THEOREM 1.2. *Suppose that either* $m = 4$ *or* $m = l^e$, *where l is an odd prime number. Then* F_{α} *is supersingular if and only if condition* (1) *holds.*

In the case of $l = 2$ and $e > 2$, the situation is slightly complicated since in this case $(\mathbb{Z}/m\mathbb{Z})^{\times}$ is not cyclic.

THEOREM 1.3. Let $m = 2^e$ (e > 2) be a power of 2. Assume that $p^i \neq -1$ *(*mod *m) for any integer i and α is primitive. Then Fα is supersingular if and only if α is one of the following types.*

- $p^{f/2} \equiv m/2 + 1$ *and* $\alpha = (1, \langle p^i \rangle_m, \langle -2p^j \rangle_m)$ *for some integers i*, $j \ge 0$ *such that* $1 + p^i \equiv 2p^j \pmod{m}$ *.*
- (ii) $\alpha \approx (1, \langle -p^i \rangle_m, \langle p^i 1 \rangle_m)$ *for some integer* $i > 0$ *such that* $p^i \equiv 1 \pmod{f}$ *.*

In the case of $m = 3l$ or 4*l* with $l > 3$ being a prime, we can determine when F_α is supersingular. To state the results, let

$$
V_1(m) = \{ x \in (\mathbb{Z}/m\mathbb{Z})^{\times} \mid x^2 = 1 \}
$$

be the 2-torsion group of $(\mathbb{Z}/m\mathbb{Z})^{\times}$. Then

$$
V_1(m) = \begin{cases} \{\pm 1, \pm u\} & (m = 4l) \, , \\ \{\pm 1, \pm v\} & (m = 3l) \, , \end{cases}
$$

where
$$
u = m/2 - 1 = 2l - 1
$$
 and v denotes the element of $(\mathbb{Z}/3\mathbb{Z})^{\times}$ such that

$$
v = \begin{cases} 1 & \pmod{3}, \\ -1 & \pmod{l}. \end{cases}
$$

Let *H* be the subgroup of $(\mathbb{Z}/l\mathbb{Z})^{\times}$ generated by the class of *p*, and let \tilde{H} be the subgroup of $(\mathbb{Z}/m\mathbb{Z})^{\times}$ generated by the classes of -1 and *p*.

THEOREM 1.4. *Let* $m = 3l$ *. Let* $\alpha = (a, b, c)$ *be a primitive element. Assume that* $p^i \not\equiv -1$ *(mod m) for any integer i. Then* F_α *is supersingular if and only if one of the following conditions holds*:

- (i) *If* $p^{f/2} \equiv v \pmod{m}$, *then one of the following assertions holds.*
	- (1) $p \equiv 1 \pmod{3}$ and either $f = l 1$ or $f = (l 1)/3$ *. Moreover, if* $f = (l - 1)/3$, *then* $a \equiv b \equiv c \pmod{3}$ *and* $\{a, b, c\}$ *is a complete set of representatives of* $(\mathbb{Z}/l\mathbb{Z})^{\times}/H$ *.*
	- (2) $\alpha \approx (1, \langle -p^i \rangle_m, \langle p^i 1 \rangle_m)$, where *i* is an integer such that $p^i \equiv 1$ *(*mod 3*).*
- (ii) *If* $p^{f/2} \equiv v \pmod{m}$, *then one of the following assertions holds.*
	- (1) $a \equiv b \equiv c \pmod{3}$ *and either*
		- (a) 3 ∈ *H or*
		- (b) ${a, b, c}$ *H is the subgroup of* $(\mathbb{Z}/l\mathbb{Z})^{\times}$ *of order* 3*f and* 3 \in $\langle a, H \rangle$ *.*

$$
(2) \quad \alpha \approx (1, \langle v \rangle_m, \langle -v-1 \rangle_m).
$$

THEOREM 1.5. Let $m = 4l$ *. Let* $\alpha = (a, b, c)$ *be a primitive element. Assume that* $p^i \not\equiv -1$ (mod *m*) for any integer *i*. Then F_α is supersingular if and only if one of the *following conditions holds*:

- (i) *If* $p^{f/2} \equiv m/2 1 \pmod{m}$, *then* $p \equiv 1 \pmod{4}$, $a \equiv b \pmod{4}$ *and one of the following assertions holds*:
	- (1) $f = l 1$.
	- (2) *f* = *(l*−1*)/*2, *l* ≡ 1 *(*mod 4*) and* {*a, b*}*is a complete set of representatives of* $(\mathbb{Z}/m\mathbb{Z})^{\times}/\tilde{H}$.
	- (3) $\alpha \approx (1, \langle p^i \rangle_m, \langle -2p^i \rangle_m)$ for some integer *i*.
- (ii) *If* $p^{f/2} \equiv m/2 + 1$ (mod *m*), *then either* $2 \in H$ *or* $\alpha \approx (1, m/2 1, m/2)$ *.*
- (iii) *Either* $\alpha \approx (1, 3l 1, l)$ *or* $(1, l 1, 3l)$ *, and the following assertions hold:* (1) *If* $2||a,$ *then* $2 \in H$ *.*
	- (2) *If* 4|*a*, *then* $-2 \in H$ *.*

2. Cyclic quotients of *Fm*

In this section we recall some basic facts on the cyclic quotients of the Fermat curve F_m over a finite field. Let μ_m be the group of *m*-th roots of unity in the algebraic closure of F*p*, and put

$$
G_m = (\mu_m \times \mu_m \times \mu_m)/\Delta,
$$

where $\Delta = \{(\zeta, \zeta, \zeta) | \zeta \in \mu\}$ denotes the diagonal subgroup of $\mu_m \times \mu_m \times \mu_m$. We let *Gm* act on *Fm* by the following manner.

$$
(x:y:z)\longmapsto (\zeta x:\eta y:\xi z)\qquad ((\zeta,\eta,\xi)\in G_m,\ (x:y:z)\in F_m)\,.
$$

Then the group

$$
\mathcal{Z}_m := \{ (a, b, c) \in (\mathbb{Z}/m\mathbb{Z})^3 \mid a + b + c = 0 \}
$$

can be naturally regarded as the character group of G_m by putting

$$
\alpha(g) = \zeta^a \eta^b \xi^c \in \mu_m \qquad (\alpha = (a, b, c) \in \mathcal{Z}_m, \ g = (\zeta, \eta, \xi) \in G_m).
$$

If α is primitive, then the homomorphism α : $G_m \to \mu_m$ is surjective and Ker(α) is a cyclic group of order *m*.

Now for each *α* ∈ \mathcal{Z}_m , we define F_α to be the quotient curve $F_m/\text{Ker}(\alpha)$. If *α* = $(a, b, c) \in \mathcal{Z}_m$, $(a, b, c, m) = d$ and $a + b + c = m$, then F_α is the projective curve in \mathbb{P}^3 defined by

$$
T^{m'} = X^{a'} Y^{b'} Z^{c'}, \quad X + Y + Z = 0,
$$

where $m' = m/d$, $a' = a/d$, $b' = b/d$, $c' = c/d$, and the natural surjection $F_m \to F_\alpha$ is given by

 $(x, y, z) \longmapsto (X, Y, Z, T) = (x^{m'}, y^{m'}, z^{m'}, x^{a'} y^{b'} z^{c'})$.

If we put $\alpha' = (a', b', c') \in \mathcal{Z}_{m'}$, then F_{α} is isomorphic to $F_{\alpha'}$. Therefore, we have only to focus on primitive elements. Moreover, if two elements α , α' of \mathcal{Z}_m are identical after a permutation of the components, we write $\alpha \approx \alpha'$. It is then clear from the definition that *F_α* is isomorphic to *F_{α'}* whenever $\alpha \approx \alpha'$.

Let $\alpha \in \mathcal{Z}_m$ be a primitive element. Considering the affine plane $Z \neq 0$ in \mathbb{P}^2 and letting $u = -X/Z$, $v = -Y/Z$, we find that F_α is birational to the affine curve defined by $v^m = (-1)^c u^a (1 - u)^b$.

Applying the Riemann-Hurwitz formula for the covering
$$
F_{\alpha} \to \mathbb{P}^1
$$
 associated to the rational function u on F_{α} , one can easily calculate the genus of F_{α} :

$$
g(F_{\alpha}) = \frac{m - (m, a) - (m, b) - (m, c)}{2} + 1.
$$

One of easy consequences of this formula is the following.

PROPOSITION 2.1. *The genus* $g(F_\alpha)$ *is positive if and only if none of a, b, c is zero.*

This naturally leads us to consider the subset of \mathcal{Z}_m defined by

$$
\mathfrak{A}_m:=\{(a,b,c)\in\mathcal{Z}_m\mid a,b,c\neq 0\}\,.
$$

In order to calculate the zeta function of F_m or F_α , we recall the definition of Jacobi sums. Fix a multiplicative complex valued character $\chi : \mathbb{F}_q^{\times} \to \mu_m(\mathbb{C})$ of order *m*. For $\alpha = (a, b, c) \in \mathcal{Z}_m$, we define the Jacobi sum J_α by

$$
J_{\alpha} = J_{\alpha}(\chi) = \frac{1}{q-1} \sum_{x+y+z=0} \chi(x)^{a} \chi(y)^{b} \chi(z)^{c}
$$

where the sum is over the triples $(x, y, z) \in (\mathbb{F}_q^{\times})^3$ satisfying $x + y + z = 0$. It is clear from the definition that if $\alpha \approx \alpha'$, then $J_{\alpha} = J_{\alpha'}$.

We define an action of $\mathbb{Z}/m\mathbb{Z}$ on \mathcal{Z}_m : For $u \in \mathbb{Z}/m\mathbb{Z}$ and $\alpha = (a, b, c) \in \mathcal{Z}_m$, put

$$
u \cdot \alpha = (ta, tb, tc).
$$

Clearly for $\alpha = (a, b, c) \in \mathfrak{A}_m$ we have $u \cdot \alpha \in \mathfrak{A}_m$ if and only if $ua, ub, uc \neq 0 \pmod{m}$. Let

$$
[\alpha] = \{u \cdot \alpha \mid u \in \mathbb{Z}/m\mathbb{Z}, u \cdot \alpha \in \mathfrak{A}_m\}.
$$

Then the cardinality of $[\alpha]$ is $m - (m, a) - (m, b) - (m, c) + 2$. Note that $\#[\alpha]$ equals $2q(F_\alpha)$.

THEOREM 2.2. *The zeta functions of* F_m/\mathbb{F}_q *and* F_α/\mathbb{F}_q *are calculated as follows:* (i) *Let* $P(t) = Z(F_m/\mathbb{F}_q, t)(1-t)(1-qt)$ *. Then* $P(t)$ *is a polynomial given by*

$$
P(t) = \prod_{\alpha \in \mathfrak{A}_m} (1 + J_\alpha t).
$$

(ii) *For* $\alpha \in \mathfrak{A}_m$ *with* $a + b + c = m$, let $P_\alpha(t) = Z(F_\alpha/\mathbb{F}_q, t)(1-t)(1 - qt)$. Then *Pα(t) is a polynomial given by*

$$
P_{\alpha}(t) = \prod_{\beta \in [\alpha]} (1 + J_{\beta}t).
$$

Jacobi sums satisfy the following properties.

PROPOSITION 2.3. *If* $\alpha \in \mathfrak{A}_m$, *then* $|J_\alpha| = \sqrt{q}$.

Proof. See [16]. \Box

We say that J_{α} is pure if J_{α}^{k} is real for some positive integer *k*. In other words, J_{α} is pure if and only if $J_\alpha = \varepsilon \sqrt{q}$ for some root of unity ε . Theorem 2.2 then shows that F_α is supersingular if and only if J_α is pure and that F_m is supersingular if and only if J_α is pure for all $\alpha \in \mathfrak{A}_m$.

PROPOSITION 2.4. *If* $p^i \equiv -1 \pmod{m}$, *then* $J_\alpha = \pm \sqrt{q}$ *and in particular it is pure.*

Proof. For $t \in (\mathbb{Z}/m\mathbb{Z})^{\times}$, we denote by σ_t the element of the Galois group Gal($\mathbb{Q}(\zeta_m)/\mathbb{Q}$) such that $\zeta_m^{\sigma_t} = \zeta_m^t$. Then $J_{\alpha}^{\sigma_t} = J_t \cdot \alpha$ for any $t \in (\mathbb{Z}/m\mathbb{Z})^{\times}$ and $J_{\alpha}^{\sigma_p} = J_{\alpha}$. It follows that J_α belongs to $\mathbb{Q}(\zeta_m)^{\langle \sigma_p \rangle}$, the fixed subfield of the subgroup $\langle \sigma_p \rangle$ generated by σ_p . Therefore, if $p^i \equiv -1 \pmod{m}$, then $J_\alpha^{\sigma-1} = J_\alpha$. Since σ_{-1} is the complex conjugate, this shows that J_{α} is real. But, since $|J_{\alpha}|^2 = q$, it follows that $J_{\alpha} = \pm \sqrt{q}$.

Conversely, it is known that if J_α is pure for any $\alpha \in \mathfrak{A}_m$ then $p^i \equiv -1 \pmod{m}$ for some integer *i*. Therefore we obtain the following

COROLLARY 2.5. *Fm is supersingular if and only if Condition (*1*) holds.*

3. Preliminaries

In this section we define a commutative ring R_m and submodules A_m , B_m , D_m of R_m .

First, we define R_m to be the free abelian group over $\mathbb{Z}/m\mathbb{Z}\setminus\{0\}$. We write an element of *Rm* as

$$
\alpha = \sum_{a \in \mathbb{Z}/m\mathbb{Z}\setminus\{0\}} c_a(a) \qquad (c_a \in \mathbb{Z}).
$$

For simplicity we write (a_1, \dots, a_r) for $\sum_{i=1}^r (a_i)$. Next, for $a, b \in \mathbb{Z}/m\mathbb{Z} \setminus \{0\}$, define the product of (a) , $(b) \in R_m$ by the rule

$$
(a)(b) = \begin{cases} (ab) & \text{if } ab \neq 0, \\ 0 & \text{if } ab = 0. \end{cases}
$$

Extending linearly this product, we define the ring structure on *Rm*. Let

$$
A_m = \left\{ \sum_a c_a(a) \in R_m \mid \sum_a c_a a = 0 \right\}.
$$

For any $a \in \mathbb{Z}/m\mathbb{Z} \setminus \{0\}$, let $\langle \frac{a}{m} \rangle$ denote the rational number such that $0 < \langle \frac{a}{m} \rangle$ 1 and $m\left\{\frac{a}{m}\right\} \equiv a \pmod{m}$. Let B_m be the submodule of R_m generated by elements $(a_1, \dots, a_r) \in R_m$ such that

$$
\sum_{i=1}^r \left\langle \frac{ta_i}{m} \right\rangle = \frac{r}{2} \quad (\forall t \in (\mathbb{Z}/m\mathbb{Z})^\times).
$$

We define D_m to be the $\mathbb{Z}/m\mathbb{Z}$ -submodule of R_m generated by $(1, -1)$. Thus, D_m consists of elements of *Rm* of the form

$$
(a_1, -a_1, \cdots, a_r, -a_r) \qquad (r \in \mathbb{N}).
$$

It is then easy to see that D_m is contained in B_m . Indeed this follows from the relation

$$
\left\langle \frac{a}{m} \right\rangle + \left\langle \frac{-a}{m} \right\rangle = 1 \quad (a \in \mathbb{Z}/m\mathbb{Z} \setminus \{0\}).
$$

Let $v_p = (1, p, \dots, p^{f-1}) \in R_m$. The following two subsets of R_m will be fundamental in the study of purity problem of Jacobi sums.

$$
B_m(p) = \{ \alpha \in R_m \mid \nu_p \alpha \in B_m \}.
$$

Thus an element (a_1, \dots, a_r) of R_m belongs to $B_m(p)$ if and only if

$$
\sum_{i=1}^{r} \sum_{j=0}^{f-1} \left\langle \frac{tp^{j} a_i}{m} \right\rangle = \frac{rf}{2} \quad (\forall t \in (\mathbb{Z}/m\mathbb{Z})^{\times}).
$$
 (2)

In order to investigate the structure we define a map $\tau_d : R_m \to R_{m/d}$ for each divisor *d*|*m*.

$$
\tau_d(a) = \begin{cases} \frac{\varphi(m)}{\varphi(m')} \left(\prod_{\substack{l \mid d/(m,a) \\ p \nmid m/d}} (1, -l^{-1}) \right) (a') & (\text{if } (m, a) \mid d), \\ 0 & (\text{if } (m, a) \nmid d), \end{cases}
$$

where $m' = m/(m, a), a' = a/(m, a).$

Let *C*(*m*) be the character group of $(\mathbb{Z}/m\mathbb{Z}) \times$ and let $C^-(m)$ be the set of $\chi \in C(m)$ such that $\chi(-1) = -1$. Then the following proposition characterize the set B_m in terms of characters in $C^-(m)$. If $\chi \in C(m)$ and $\alpha = \sum c_a(a) \in R_m$, we put

$$
\chi(\alpha) = \sum c_a \chi(a) .
$$

Let $PC^{-}(m)$ be the set of primitive odd characters of $(\mathbb{Z}/\mathbb{Z})^{\times}$.

PROPOSITION 3.1. *For* $\alpha \in R_m$, *we have* $\alpha \in B_m$ *if and only if* $\chi(\tau_d(\alpha)) = 0$ *for* $any \, \chi \in PC^{-}(m/d)$ *and for any* $d|m$ *.*

If *l* is a prime divisor of *m* and $la \neq 0 \pmod{m}$, we define the standard element element $\sigma_{l,a}$ by

$$
\sigma_{l,a} = \begin{cases} \left(a, \ a + \frac{m}{d}, \ a + \frac{2m}{d}, \ \dots, \ a + \frac{(l-1)m}{l}, -la \right) & (l > 2), \\ \left(a, \ a + \frac{m}{2}, \ -2a, \ \frac{m}{2} \right) & (l = 2) \end{cases}
$$

If $4a \neq 0 \pmod{m}$, we put

$$
\sigma'_{2,a} = \left(a, \ a + \frac{m}{2}, \ 2a + \frac{m}{2}, \ -4a \right).
$$

Moreover, for $\mathbf{x} = (x_1, \dots, x_r) \in R_m$, we put

$$
\sigma_{l,\mathbf{x}} = \sum_{i=1}^r \sigma_{l,x_i} , \qquad \sigma'_{2,\mathbf{x}} = \sum_{i=1}^r \sigma'_{2,x_i} .
$$

r

PROPOSITION 3.2. *If* $la \neq 0$ (mod *m*), *then* $\sigma_{l,a} \in B_m$. Moreover, *if* $4a \neq 0$ $(\text{mod } m), \text{ then } \sigma'_{2,a} \in B_m.$

Proof. See [2].
$$
\Box
$$

PROPOSITION 3.3. Let $\alpha = (a, b, c)$ be a primitive element. Then the Jacobi sum *J_α is pure if and only if* $\alpha \in B_m(p)$, *that is*, $\nu_p \alpha \in B_m$.

Proof. See [16]. \Box

Let

$$
U(m) = \{ t \in (\mathbb{Z}/m\mathbb{Z})^{\times} \mid \chi(t) = 1 \left(\forall \chi \in PC^-(m) \right) \}.
$$

If $4|m$, we put $u = m/2 - 1$ and if ord₃ $(m) = 1$, we denote by *v* the element of $(\mathbb{Z}/m\mathbb{Z})^{\times}$ such that

$$
v \equiv \begin{cases} 1 \pmod{3} \\ -1 \pmod{m/3} \end{cases}
$$

Then for an integer *m* with ord₂ $(m) \neq 1$ we have

$$
U(m) = \begin{cases} \{1\} & \text{if } 4 \nmid m \text{ and } \text{ord}_3(m) \neq 1, \\ \{1, u\} & \text{if } 4 \mid m \text{ and } \text{ord}_3(m) \neq 1, \\ \{1, v\} & \text{if } 4 \nmid m \text{ and } \text{ord}_3(m) = 1, \\ \{1, uv\} & \text{if } 4 \mid m \text{ and } \text{ord}_3(m) = 1. \end{cases}
$$

From the relation (2) one can easily see that if J_α is pure then *f* must be even. As for the simplest case $f = 2$, the following theorem is proved in [5, Theorem 3.5].

THEOREM 3.4. *Suppose* $f = 2$, $p \not\equiv -1 \pmod{m}$ and

m ∈ {12*,* 15*,* 20*,* 21*,* 24*,* 30*,* 39*,* 40*,* 42*,* 48*,* 60*,* 66*,* 78*,* 84*,* 120}*.*

For a primitive element α, *the Jacobi sum Jα is pure if and only if one of the following conditions holds*:

- (i) $\alpha \sim (1, w, -(1+w))$ and $p \equiv -w \pmod{m}$, where $w^2 \equiv 1, w \not\equiv \pm 1$ $p \mod{m}$ *and*, *in addition*, $w \not\equiv \frac{m}{2} + 1 \pmod{m}$ *if* 8|*m*.
- (ii) $4|m \text{ and } \alpha \sim (1, 1, -2) \text{ and } p \equiv \frac{m}{2} + 1 \pmod{m}$.
- (iii) $16|m$ *and* $\alpha \sim (1, \frac{m}{2} + 1, \frac{m}{2} 2)$ *and* $p \equiv \frac{m}{2} 1$ (mod *m*)*.*

(iii') 8 $\|m \text{ and } \alpha \sim (1, \frac{m}{2} + 1, \frac{m}{2} - 2) \text{ and } p \equiv \frac{m}{4} + 1, \frac{m}{2} - 1, \frac{3m}{4} + 1 \pmod{m}$. *In these four cases*, *we have*

$$
J_{\alpha} = \begin{cases} \pm p & \text{in the case of (i) and (iii)} \\ \pm \chi(2)^{-a} p & \text{in the case of (ii),} \\ \pm \chi(2)^{\frac{m}{4}-2a} p & \text{in the case of (iii').} \end{cases}
$$

4. Proofs of Theorem 1.1 and Theorem 1.3

In this section we prove Theorem 1.1 and Theorem 1.3.

THEOREM 4.1. *Suppose that f is even and one of the following conditions holds*: (i) $4|m, p^{f/2} \equiv m/2 + 1 \pmod{m}$, and $\alpha = (1, p^i, -2p^j)$ for some integers *i*, *j*. (ii) *There exist a divisor d of m and positive integers i, j such that*

$$
p^i \equiv 1 \pmod{d}, \qquad p^j \equiv -1 \pmod{m/d},
$$

and $\alpha = (1, -p^j, p^j - 1)$ *.*

Then F_{α} *is supersingular.*

Proof. (i) In this case, we have

$$
\nu_p \alpha = \nu_p(1, 1, -2).
$$

Since $p^{f/2} \equiv m/2 + 1 \pmod{m}$, it follows that

$$
(1, 1, -2)v_p = (1, m/2 + 1, m/2 - 2)v_p
$$

= (1, m/2 + 1, m/2 - 2)(1, m/2 + 1)v'_p
= 2(1, m/2 + 1, -2, m/2)v'_p - 2(m/2, m/2)v'_p \in B_m.

Therefore $\alpha \in B_m(p)$.

(ii) In this case, we have

$$
(1, -pi, pi - 1)vp = (1, -1)vp + (pi - 1)vp.
$$

Since $p^i - 1 \equiv 0 \pmod{d}$ and $p^j \equiv -1 \pmod{m/d}$, we see that $(p^i - 1)v_p \in D_m$. Therefore $\alpha \in D_m(p)$. This completes the proof.

THEOREM 4.2. *Let* $m = 2^e$ ($e > 1$) *be a power of* 2 *and suppose that* α *is primitive. Then* F_{α} *is supersingular if and only if* α *is one of the following types.*

- (i) $\alpha = (1, p^i, -2p^j)$ for some integers $i, j \ge 0$ such that $1 + p^i \equiv 2p^j \pmod{m}$.
- (ii) $\alpha = (1, -p^i, p^i 1)$ *for some integer* $i > 0$ *such that* $p^i \equiv 1 \pmod{f}$ *.*

Proof. Since the assertion is true for $m = 4$, we assume that $m > 4$. For simplicity suppose that $\alpha = (1, a, b)$ with $(m, a) = 1$ and $(m, b) > 1$. Note that *f* is even and $p^{f/2} \not\equiv -1 \pmod{m}$. Hence $p^{f/2} \equiv m/2 + 1 \text{ or } m/2 - 1 \pmod{m}$.

Case 1. First, suppose that $p^{f/2} \equiv m/2 - 1 \pmod{m}$. Then $p^{f/2} \equiv -1 \pmod{4}$. If $f > 2$, then $f/2$ is even and $p^{f/2} \equiv 1 \pmod{4}$, which is a contradiction. Thus $f = 2$ and so $p \equiv -1 \pmod{4}$. In this case, we have $\chi(p) = 1$ for any $\chi \in PC^{-}(m)$. Since $\nu_p \alpha \in B_m$, it follows that $1 + \chi(a) = 0$ for any $\chi \in PC^-(m)$. Therefore $a \equiv m/2 + 1$ $(mod \, m)$, and $\alpha = (1, m/2 + 1, m/2 - 2)$.

Case 2. Next, suppose that $p^{f/2} \equiv m/2 + 1 \pmod{m}$.

Case 2-1. If $p \equiv 1 \pmod{4}$, then $p \equiv m/f + 1 \pmod{2m/f}$ and we have

$$
\langle p \rangle = \{ t \in (\mathbb{Z}/m\mathbb{Z})^{\times} \mid t \equiv 1 \pmod{m/f} \}.
$$

It follows that $\chi(v_p) = 0$ for any $\chi \in C(m)$ such that cond $(\chi) > m/f$, where cond (χ) denotes the conductor of *χ*. Let $d = (m, b)$ and $b' = b/d$. Then

$$
\tau_f(\nu_p \alpha) = \begin{cases} f\{(1, a) + d(b')\} & \text{ (if } d \le f), \\ f(1, a) & \text{ (if } d > f). \end{cases}
$$

In the first case, we have $1 + \chi(a) + d\chi(b') = 0$ for any $\chi \in PC^{-}(m/f)$. This holds only when $d = 2$, $a \equiv 1$, $b' \equiv -1 \pmod{m/f}$. It follows that $a \in \langle p \rangle$ and $b \in -2\langle p \rangle$. Hence α is of type (i).

In the second case, we have $1 + \chi(a) = 0$ for any $\chi \in PC^{-}(m/f)$. Therefore $a \equiv -1$ or $m/2f + 1$ (mod m/f). But if $a \equiv m/2f + 1$ (mod m/f), then

$$
b \equiv -1 - a \equiv m/2f - 2 \pmod{m/f},
$$

and so $d = 2$, which is a contradiction. Therefore $a \equiv -1 \pmod{m/f}$. It follows that $a \in -\langle p \rangle$, say $a \equiv -p^i \pmod{m}$, then $b \equiv p^i - 1 \pmod{m}$. Hence α is of type (ii).

Case 2-2. On the other hand, if $p \equiv -1 \pmod{4}$, then $p \equiv m/f - 1 \pmod{2m/f}$ since $m/f \geq 4$, and we have

$$
\langle p^2 \rangle = \{ t \in (\mathbb{Z}/m\mathbb{Z})^\times \mid t \equiv 1 \pmod{2m/f} \}.
$$

Note that

$$
v_p = (1, p)(1, p^2, \ldots, p^{f-2}).
$$

It follows that $\chi(v_p) = 0$ for any $\chi \in C(m)$ such that cond $(\chi) > 2m/f$. We have

$$
\tau_f(v_p\alpha) = \begin{cases} \frac{f}{2}(1, m/f - 1)\{(1, a) + d(b')\} & \text{ (if } d < f), \\ f(1, a) & \text{ (if } d \ge f). \end{cases}
$$

In the first case, since $m/f - 1 \in U(2m/f)$, we have $1 + \chi(a) + d\chi(b') = 0$ for any $\chi \in PC^{-}(2m/f)$. This holds only when $d = 2$, $a \equiv 1$, $b' \equiv -1 \pmod{2m/f}$. It follows that $a \in \langle p \rangle$ and $b \in -2\langle p \rangle$. Hence α is of type (i).

In the second case, we have $1 + \chi(a) = 0$ for any $\chi \in PC^-(2m/f)$. Therefore $a \equiv -1$ or $m/f + 1 \pmod{2m/f}$. But if $a \equiv m/f + 1 \pmod{2m/f}$, then

$$
b \equiv -1 - a \equiv m/f - 2 \pmod{2m/f},
$$

and so $d = 2$, which is a contradiction. Therefore $a \equiv -1 \pmod{2m/f}$. It follows that $a \in -\langle p \rangle$, say $a \equiv -p^i \pmod{m}$, then $b \equiv p^i - 1 \pmod{m}$. Hence α is of type (ii). This completes the proof. \Box

5. Evaluation of some character sums

For a power l^e (> 2) of a prime number *l*, we define two subgroups $V_1(l^e)$, $V_2(l^e)$ of $(\mathbb{Z}/l^e\mathbb{Z})^{\times}$ as follows. If *l* is an odd prime number, let

$$
V_1(l^e) = \{x \in (\mathbb{Z}/l^e \mathbb{Z})^\times \mid x^2 \equiv 1 \pmod{l^e}\},
$$

\n
$$
V_2(l^e) = \{x \in (\mathbb{Z}/l^e \mathbb{Z})^\times \mid x^{n(l^e)} \equiv \pm 1 \pmod{l^e}\},
$$

where

$$
n(l^{e}) = \begin{cases} (l-1)/2 & (e = 1), \\ l & (e > 1). \end{cases}
$$
 (3)

If $l = 2$, let

$$
V_1(2^e) = V_2(2^e) = \{ \pm 1, 2^{e-1} \pm 1 \}.
$$

Let $m = m_0 m_1 \cdots m_r$ be the prime power factorization of *m*, where $m_0 = 1, 3, 4$ or 12, and for $i = 1, \ldots, r$ $m_i = l_i^{e_i} > 4$ is a power of a prime number such that $(m_i, m_j) = 1$ $(i \neq j)$. Let

$$
V_1(m_0) = V_2(m_0) = (\mathbb{Z}/m_0\mathbb{Z})^{\times}
$$

and define the subgroups $V_1(m)$, $V_2(m)$ of $(\mathbb{Z}/m\mathbb{Z})^{\times}$ by

$$
V_1(m) = V_1(m_0) \times V_1(m_1) \times \cdots \times V_1(l_r^{e_r}),
$$

\n
$$
V_2(m) = V_2(m_0) \times V_2(l_1^{e_1}) \times \cdots \times V_2(l_r^{e_r}).
$$

Let

$$
E(m) = \begin{cases} \{(\varepsilon_1, \ldots, \varepsilon_r) \mid \varepsilon_i = \pm 1 \ (i = 1, \ldots, r)\} & \text{(if } m_0 = 1), \\ \{(-1, \varepsilon_1, \ldots, \varepsilon_r) \mid \varepsilon_i = \pm 1 \ (i = 1, \ldots, r)\} & \text{(if } m_0 = 3 \text{ or } 4), \\ \{(1, \varepsilon_1, \ldots, \varepsilon_r) \mid \varepsilon_i = \pm 1 \ (i = 1, \ldots, r)\} & \text{(if } m_0 = 12) \end{cases}
$$

and

$$
E^+(m) = \{ (\varepsilon_0, \varepsilon_1, \dots, \varepsilon_r) \mid \varepsilon_0 \varepsilon_1 \cdots \varepsilon_r = 1 \},
$$

$$
E^-(m) = \{ (\varepsilon_0, \varepsilon_1, \dots, \varepsilon_r) \mid \varepsilon_0 \varepsilon_1 \cdots \varepsilon_r = -1 \}.
$$

It is clear from the definition that $#E(m) = 2^r$. If $r > 0$, then

#*E*+*(m)* = #*E*−*(m)* = 2*r*−¹ *.*

If $r = 0$, then

$$
E(m_0) = E^-(m_0) = \{-1\}
$$

for $m_0 = 3$ or 4, and $E(12) = E^+(12) = \{1\}$. For example, if $l > 4$ is a prime number and $m_0 = 3$ or 4, then $E(m_0 l) = {(-1, 1)}$.

For each **e** = $(\varepsilon_0, \varepsilon_1, \ldots, \varepsilon_r) \in E(m)$ we define

 $PC^{\mathbf{e}}(m) = PC^{\varepsilon_0}(m_0) \times PC^{\varepsilon_1}(m_1) \times \cdots \times PC^{\varepsilon_r}(m_r),$

where $PC^{\varepsilon_i}(m_i)$ denotes $PC^+(m_i)$ or $PC^-(m_i)$ according as $\varepsilon_i = 1$ or -1 . Then $PC^{-}(m) \neq \emptyset$ if and only if $m \neq 12$.

In the following, we assume that $m \neq m_0$. For $a \in (\mathbb{Z}/m\mathbb{Z})^{\times}$, let

$$
\xi(a) = \frac{1}{\#E^-(m)} \sum_{\mathbf{e} \in E^-(m)} \frac{1}{\#PC^{\mathbf{e}}(m)} \sum_{\chi \in PC^{\mathbf{e}}(m)} \chi(a) .
$$

To give an explicit formula for $\xi(a)$, we define some notations. Let

$$
I_1 = \{i \in \{1, ..., r\} \mid e_i = 1\},
$$

\n
$$
I_2 = \{i \in \{1, ..., r\} \mid e_i > 1\}.
$$

For $a \in V_2(m)$, define subsets $I(a) \subset I$, $I_2(a) \subset J$ by

$$
I_1(a) = \{i \in I \mid a \notin V_1(l_i)\},
$$

\n
$$
I_2(a) = \{i \in J \mid a \in V_2(l_i^{e_i}) \setminus V_1(l_i^{e_i})\}.
$$

Furthermore, let \tilde{a} denote the unique element of $V_1(m)$ such that

$$
\tilde{a} \equiv \begin{cases} a & \pmod{m_i} & (i \notin I_1(a) \cup I_2(a)) \\ a^{n_i} & \pmod{m_i} & (i \in I_1(a) \cup I_2(a)) \end{cases}
$$

where $n_i = n(m_i)$ is the integer defined in (3). Put

$$
\delta(a) = \prod_{i \in I_1(a)} l_i \, .
$$

Let $c(a) = 1$ or 2 according as $m/\delta(a) \neq m_0$ or $m/\delta(a) = m_0$.

THEOREM 5.1. *For any* $a \in (\mathbb{Z}/m\mathbb{Z})^{\times}$, *we have*

$$
\xi(a) = \begin{cases} c(a)\chi_0(\tilde{a}) \prod_{i \in I_1(a)} \frac{-1}{l_i - 3} \prod_{i \in I_2(a)} \frac{-1}{l_i - 1} & (if \ a \in V_2(m) \ and \ \tilde{a} \in \pm U(m/\delta(a))) \\ 0 & (otherwise) \end{cases}
$$

where χ_0 *is an arbitrary character in* $PC^+(\delta(a)) \times PC^-(m/\delta(a))$ *.*

As for the special case $r = 1$, we have the following

COROLLARY 5.2. Let $m = m_0 l$, where $m_0 = 3$ or 4 and $l > 3$ is a prime number. *Let* $\kappa = \pm 1$ *and assume that* $a \equiv \kappa \pmod{m_0}$ *. Then*

$$
\xi(a) = \begin{cases}\n\kappa & (if a \equiv \pm 1 \pmod{l}), \\
-\frac{2\kappa}{l-3} & (if a \not\equiv \pm 1 \pmod{l}).\n\end{cases}
$$

Proof. In this case, we have

$$
\delta(a) = \begin{cases} 1 & \text{(if } a \equiv \pm 1 \pmod{l}, \\ l & \text{(if } a \not\equiv \pm 1 \pmod{l}). \end{cases}
$$

In the first case, we have $c(a) = 1$, $a \in \pm U(m)$, and $\chi_0(a) = \kappa$ for any $\chi_0 \in PC^-(m)$. Hence $\xi(a) = \kappa$. In the second case, we have $c(a) = 2$, $\tilde{a} \in \pm U(m)$, and $\chi_0(\tilde{a}) = \kappa$ for any $\chi_0 \in PC^-(m)$. Hence $\xi(a) = -\frac{2\kappa}{l-3}$. This proves the corollary.

Before proving the theorem, we prove two lemmas.

LEMMA 5.3. Let l^e be a power of an odd prime number *l* or $l^e = 4$, and $\varepsilon = \pm$. *Then the following assertions hold for any* $a \in (\mathbb{Z}/l^e\mathbb{Z})^{\times}$ *.*

(i) *If* $e = 1$ *, then*

$$
\frac{1}{\#PC^{\varepsilon}(l)}\sum_{\chi \in PC^{\varepsilon}(l)}\chi(a) = \begin{cases} \chi_0(a) & (if \ a \in V_1(l)), \\ -\frac{2}{l-3} & (if \ a \notin V_1(l) \ and \ \varepsilon = +), \\ 0 & (if \ a \notin V_1(l) \ and \ \varepsilon = -), \end{cases}
$$

where χ_0 *is an arbitrary element of* $PC^{\varepsilon}(l)$ *.*

(ii) *If* $e > 1$ *, then*

$$
\frac{1}{\#PC^{\varepsilon}(l^{e})} \sum_{\chi \in PC^{\varepsilon}(l^{e})} \chi(a) = \begin{cases} \chi_{0}(a) & (if \ a \in V_{1}(l^{e})) \,, \\ -\frac{\chi_{0}(a^{l})}{l-1} & (if \ a \in V_{2}(l^{e}) \setminus V_{1}(l^{e})) \,, \\ 0 & (if \ a \notin V_{2}(l^{e})) \,, \end{cases}
$$

where χ_0 *is an arbitrary element of* $PC^{\varepsilon}(l^e)$ *.*

Proof. The assertion is trivially true if $l^e = 3$ or 4 since $PC^-(3)$ and $PC^-(4)$ consists of one element. In the following, we assume that $l^e > 4$. The character group $C(l^e)$ is a

cyclic group. Fix a generator χ_1 of $C(l^e)$. Then

$$
PC^-(l^e) = \{ \chi_1^k \mid 0 < k < \varphi(l^e), \ (k, 2l) = 1 \},
$$
\n
$$
PC^+(l^e) = \{ \chi_1^{2k} \mid 0 < k < \varphi(l^e)/2, \ (k, l) = 1 \}.
$$

Put *ζ* = *χ*1*(a)*.

First, suppose that $e = 1$. Then $#PC^{-}(l) = (l - 1)/2$ and

$$
\frac{1}{\#PC^{-}(l)} \sum_{\chi \in PC^{-}(l)} \chi(a) = \frac{2}{l-1} \sum_{\substack{0 < k < l-1 \\ (k,2)=1}} \zeta^k
$$
\n
$$
= \frac{2}{l-1} \left(\sum_{0 < k \le l-1} \zeta^k - \sum_{0 < i \le \varphi(l)/2} \zeta^{2k} \right)
$$
\n
$$
= \begin{cases} \zeta & \text{if } \zeta = \pm 1 \\ 0 & \text{if } \zeta \ne \pm 1 \end{cases}
$$

If $l = 3$, then $PC^+(3) = \emptyset$. If $l > 3$, then $\#PC^+(l) = (l - 3)/2$ and

$$
\frac{1}{\#PC^+(l)} \sum_{\chi \in PC^+(l)} \chi(a) = \frac{2}{l-3} \sum_{0 < k < (l-1)/2} \zeta^{2k}
$$
\n
$$
= \frac{2}{l-3} \left(\sum_{0 < k \le (l-1)/2} \zeta^{2k} - 1 \right)
$$
\n
$$
= \begin{cases} 1 & \text{if } \zeta = \pm 1, \\ -\frac{2}{l-3} & \text{if } \zeta \ne \pm 1. \end{cases}
$$

This proves (i).

Next, suppose that *e* > 1. Then $#PC^{-}(l^{e}) = \varphi(l^{e})/2$ and

$$
\frac{1}{\#PC^{-}(l^{e})} \sum_{\chi \in PC^{-}(l^{e})} \chi(a) = \frac{2}{\varphi(l^{e})} \sum_{\substack{0 < i < \varphi(l^{e}) \\ (k,2l)=1}} \zeta^{k}
$$
\n
$$
= \frac{2}{l^{e-1}(l-1)} \left(\sum_{0 < k \le \varphi(l^{e})} \zeta^{k} - \sum_{0 < k \le \varphi(l^{e})/2} \zeta^{2k} - \sum_{0 < k \le \varphi(l^{e})/l} \zeta^{lk} + \sum_{0 < i \le \varphi(l^{e})/2l} \zeta^{2lk} \right)
$$
\n
$$
= \begin{cases} \zeta & \text{if } \zeta = \pm 1, \\ -\frac{\zeta^{l}}{l-1} & \text{if } \zeta^{l} = \pm 1, \ \zeta \ne \pm 1, \\ 0 & \text{if } \zeta^{l} \ne \pm 1). \end{cases}
$$

On the other hand, we have $#PC^+(l^e) = l^{e-2}(l-1)^2/2$ and

$$
\frac{1}{\#PC^+(l^e)} \sum_{\chi \in PC^+(l^e)} \chi(a) = \frac{2}{l^{e-2}(l-1)^2} \sum_{\substack{0 < k < \varphi(l^e)/2 \\ (k,l)=1}} \zeta^{2k}
$$
\n
$$
= \frac{2}{l^{e-2}(l-1)^2} \left(\sum_{\substack{0 < k \le \varphi(l^e)/2 \\ 0 < k \le \varphi(l^e)/2}} \zeta^{2k} - \sum_{\substack{0 < k \le \varphi(l^e)/2l \\ 0 < k \le \varphi(l^e)/2l}} \zeta^{2lk} \right)
$$
\n
$$
= \begin{cases} 1 & \text{if } \zeta = \pm 1 \\ -\frac{1}{l-1} & \text{if } \zeta^l = \pm 1, \ \zeta \ne \pm 1 \\ 0 & \text{if } \zeta^l \ne \pm 1. \end{cases}
$$

This proves (ii). \Box

LEMMA 5.4. *Let* $e > 2$. *Then the following assertion holds for any* $a \in (\mathbb{Z}/2^e\mathbb{Z})^{\times}$.

$$
\frac{1}{\#PC^{\varepsilon}(2^e)}\sum_{\chi \in PC^{\varepsilon}(2^e)}\chi(a)=\begin{cases} \chi_0(a) & (\text{if } a\in V_1(2^e)) \ , \\ 0 & (\text{if } a\not\in V_1(2^e)) \ , \end{cases}
$$

where χ_0 *is an arbitrary element of* $PC^{\varepsilon}(2^e)$ *.*

Proof. Since $(\mathbb{Z}/2^e\mathbb{Z})^{\times} \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2^{e-2}\mathbb{Z}$, there exist two characters $\chi_1 \in C^-(2^e)$, $\chi_2 \in C^+(2^e)$ of order 2 and 2^{e-2} , respectively. Then $C(2^e)$ is generated by χ_1 and χ_2 , and

$$
PC^{-}(2^{e}) = \{ \chi_1 \chi_2^{k} \mid 0 < k < 2^{e-2}, \ (k, 2) = 1 \},
$$
\n
$$
PC^{+}(2^{e}) = \{ \chi_1^{k} \mid 0 < k < 2^{e-2}, \ (k, 2) = 1 \}.
$$

Hence $#PC^-(2^e) = #PC^+(2^e) = 2^{e-3}$. Put *χ*₁*(a)* = *η* and *ζ* = *χ*₂*(a)*. Then

$$
\frac{1}{\#PC^-(2^e)} \sum_{\chi \in PC^-(2^e)} \chi(a) = \frac{1}{2^{e-3}} \sum_{\substack{0 < k < 2^{e-2} \\ (k,2)=1}} \eta \zeta^k
$$
\n
$$
= \frac{1}{2^{e-3}} \left(\sum_{0 < k \le 2^{e-2}} \eta \zeta^k - \sum_{0 < k \le 2^{e-3}} \eta \zeta^{2k} \right)
$$
\n
$$
= \begin{cases} \eta \zeta & \text{if } \zeta = \pm 1 \\ 0 & \text{if } \zeta \ne \pm 1 \end{cases}
$$

On the other hand, as for $PC^+(2^e)$ we have

$$
\frac{1}{\#PC^+(2^e)} \sum_{\chi \in PC^+(2^e)} \chi(a) = \frac{1}{2^{e-3}} \sum_{\substack{0 < k < 2^{e-2} \\ (k,2)=1}} \zeta^k
$$
\n
$$
= \frac{1}{2^{e-3}} \left(\sum_{0 < i \le 2^{e-2}} \zeta^k - \sum_{0 < i \le 2^{e-3}} \zeta^{2k} \right)
$$
\n
$$
= \begin{cases} \zeta & \text{if } \zeta = \pm 1, \\ 0 & \text{if } \zeta \ne \pm 1. \end{cases}
$$

Note that $\zeta = \pm 1$ if and only if $a \in V_1(2^e)$, and that if $a \in V_1(2^e)$, then $\chi(a) = \eta \zeta$ for any $\chi \in PC^-(2^e)$ and $\chi(a) = \zeta$ for any $\chi \in PC^+(2^e)$. Therefore the lemma holds. \Box

Proof of Theorem 5.1. For each $e \in E(m)$, define

$$
\xi^{\mathbf{e}}(a) = \frac{1}{\#P C^{\mathbf{e}}(m)} \sum_{\chi \in P C^{\mathbf{e}}(m)} \chi(a) .
$$

Then $\xi(a)$ is the average of $\xi^e(a)$ ($e \in E^-(m, a)$), that is,

$$
\xi(a) = \frac{1}{\#E^-(m)} \sum_{e \in E^-(m)} \xi^e(a).
$$

In order to calculate $\xi^e(a)$, let

$$
E^*(m, a) = \{ (\varepsilon_0, \varepsilon_1, \dots, \varepsilon_r) \in E^*(m) \mid \varepsilon_i = +1 \text{ for any } i \in I_1(a) \},
$$

where $*$ denotes + or −. If $m_0 = 3$ or 4, then $E^-(m, a) \neq \emptyset$ for any a, and if $m_0 = 1$ or 12, then $E^-(m, a) = \emptyset$ if and only if $\delta(a) = m'$.

Let

$$
\chi^{\mathbf{e}} = \prod_{i=1}^r \chi_{m_i}^{k_i} \in PC^{\mathbf{e}}(m) ,
$$

where χ_{m_i} is a generator of $C(m_i)$ and $k = 1$ if $\varepsilon_i = -1$ and $k_i = 2$ if $\varepsilon_i = +1$. Then from Lemma 5.3 and Lemma 5.4 it follows that

$$
\xi^{\mathbf{e}}(a) = \begin{cases} \chi^{\mathbf{e}}(\tilde{a}) \prod_{i \in I_1(a)} \frac{-2}{l_i - 3} \prod_{i \in I_2(a)} \frac{-1}{l_i - 1} & \text{ (if } a \in V_2(m) \text{ and } \varepsilon \in E^-(m, a)), \\ 0 & \text{ (otherwise).} \end{cases}
$$

Therefore,

$$
\xi(a) = \frac{1}{\#E^-(m)} \left(\sum_{e \in E^-(m,a)} \chi_0^e(\tilde{a}) \right) \prod_{i \in I_1(a)} \frac{-2}{l_i - 3} \prod_{i \in I_2(a)} \frac{-1}{l_i - 1}.
$$

Now, suppose $E^{-}(m, a) \neq ∅$ and fix an element **e**₀ ∈ $E^{-}(m, a)$. Then

 $E^{-}(m, a) = e_0 E^{+}(m, a)$.

If $#E^{-}(m, a) = 1$, then $E^{+}(m, a) = {1}$, where **1** = (1, ..., 1). But this is equivalent to the condition $\delta(a) = m'$. On the other hand, if $#E^-(m, a) > 1$, then write $e = e_0 e'$ with $e' \in E^+(m, a)$. Then

$$
\chi^e = \chi^{e_0} \chi^{e'}.
$$

Hence

$$
\frac{1}{\#E^-(m,a)} \sum_{\mathbf{e} \in E^-(m,a)} \chi^{\mathbf{e}}(\tilde{a}) = \frac{\chi^{\mathbf{e}_0}(\tilde{a})}{\#E^-(m,a)} \sum_{\mathbf{e}' \in E^+(\tilde{m},a)} \chi^{\mathbf{e}'}(\tilde{a})
$$

$$
= \begin{cases} \chi^{\mathbf{e}_0}(\tilde{a}) & (\text{if } \tilde{a} \equiv \pm 1 \pmod{m'}/\delta(a)) \\ 0 & (\text{if } \tilde{a} \not\equiv \pm 1 \pmod{m'/\delta(a))}. \end{cases}
$$

Note that

 $\tilde{a} \equiv \pm 1 \pmod{m'/\delta(a)} \iff \tilde{a} \in \pm U(m/\delta(a))$.

Moreover, if $E^-(m, a) \neq \emptyset$, then

$$
#E^-(m, a) = \begin{cases} #E^-(m)/2^{\#I_1(a)} & (\text{if } m/\delta(a) \neq m_0), \\ #E^-(m)/2^{\#I_1(a)-1} & (\text{if } m/\delta(a) = m_0). \end{cases}
$$

Therefore,

#*E*−*(m, a)* = *c(a)* · #*E*−*(m)* ²#*I*1*(a) ,*

and consequently

$$
\xi(a) = \frac{c(a)\chi_0(\tilde{a})}{2^{\#I_1(a)}} \prod_{i \in I_1(a)} \frac{-2}{l_i - 3} \prod_{i \in I_2(a)} \frac{-1}{l_i - 1}
$$

= $c(a)\chi_0(\tilde{a}) \prod_{i \in I_1(a)} \frac{-1}{l_i - 3} \prod_{i \in I_2(a)} \frac{-1}{l_i - 1}.$

This completes the proof. \Box

6. A useful lemma in the case of $m = m_0 l$

In the following we consider the case of $m = 3l$ or $m = 4l$ with *l* being a prime number > 3. We will always assume that $p^i \neq -1 \pmod{m}$ for any integer *i*. Let *H* be the subgroup of $(\mathbb{Z}/l\mathbb{Z})^{\times}$ generated by the class of p, and let \tilde{H} be the subgroup of $(\mathbb{Z}/m\mathbb{Z})^{\times}$ generated by the classes of −1 and *p*.

The lemma below will be useful in the following sections.

LEMMA 6.1. Let $m = m_0l$, where $m_0 = 3$ or 4, and $l > 3$ is a prime number. *Suppose that f is even and* $p^{f/2} \not\equiv -1 \pmod{m}$ *. Let* a_1, \ldots, a_r *be r elements of* $(\mathbb{Z}/m\mathbb{Z})^{\times}$ *such that*

(a) $a_i \tilde{H} \not\equiv a_j \tilde{H}$ ($i \neq j$), and

(b) $\chi(\nu_p(a_1, ..., a_r)) = 0$ *for any* $\chi \in PC^-(m)$ *.*

Assume that $p^{f/2} \in U(m)$ *. Then the following assertions hold.*

- (i) $f = \frac{l-1}{r}$.
- (ii) $p \equiv 1 \pmod{m_0}$ and $a_1 \equiv \cdots \equiv a_r \pmod{m_0}$.
- (iii) $v_p(a_1, \ldots, a_r) = \sigma_{l,1}^{(1)}$

where $\sigma_{l,1}^{(1)}$ *denotes the primitive part of* $\sigma_{l,1}$ *.*

Proof. Without loss of generality we may assume that $a_1 = 1$. Note that the assumption (a) implies that

$$
r \geq ((\mathbb{Z}/m\mathbb{Z})^{\times} : \tilde{H}).
$$

Since $V_1(m) = \{\pm 1, \pm u\}$ and $p^{f/2} \in V_1(m)$, we have $|\tilde{H}| = 2f$, and hence $((\mathbb{Z}/m\mathbb{Z})^{\times} : \tilde{H}) = \frac{2(l-1)}{2f}$.

Therefore, $f \leq \frac{l-1}{r}$.

Let *w* denote *u* or *v* according as $m = 4l$ or 3*l*, respectively. Since $p^{f/2} \neq \pm 1$ $p^{f/2} \equiv \pm w \pmod{m}$.

Since $p^{f/2} \equiv w \pmod{m}$, we have $v_p = (1, w)v'_p$, where

$$
v'_p = (1, p, \dots, p^{f/2-1}).
$$

It follows that $\chi(\nu_p \alpha) = 2\chi(\nu_p' \alpha)$ for any $\chi \in PC^-(m)$. Put

$$
v_p'' = (p, p^2, \dots, p^{f/2-1}), \qquad \alpha' = (a_2, \dots, a_r).
$$

Then

$$
v_p \alpha = (1, w)((1) + v_p'' + v_p' \alpha').
$$

It follows that

$$
2\{1 + \xi(v_p'') + \xi(v_p'\alpha'))\} = 0.
$$
\n(4)

Since every component of v_p'' and $v_p' \alpha'$ is in $(\mathbb{Z}/m\mathbb{Z})^{\times} \setminus V_1(m)$, it follows from Theorem 5.1 that

$$
|\xi(v_p'') + \xi(v_p'\alpha')| \le \frac{2}{l-3} \cdot \left\{ \frac{f}{2} - 1 + \frac{f}{2}(r-1) \right\} = \frac{fr-2}{l-3}.
$$
 (5)

But $\xi(v_p'') + \xi(v_p' \alpha') = -1$ by (4). Therefore, $\frac{fr-2}{1-3} \ge 1$ and so $f \ge \frac{l-1}{r}$. Hence $f = \frac{l-1}{r}$. But this holds if and only if the equality holds in (5). Therefore, Theorem 5.1 again implies that $p \equiv a_1 \equiv \cdots \equiv a_r \equiv 1 \pmod{m_0}$. This completes the proof.

For each divisor *n* of $l - 1$, let χ_l be a generator of $C(l)$ and put

$$
\eta(a) = \frac{2n}{l-1} \sum_{\substack{0 < k < (l-1)/n \\ k \text{ odd}}} \chi_l^k(a) \, .
$$

LEMMA 6.2. *Notation being as above*, *we have*

$$
\eta(a) = \begin{cases}\n1 & (a^n \equiv 1 \pmod{l}), \\
-1 & (a^n \equiv -1 \pmod{l}), \\
0 & (a^n \not\equiv \pm 1 \pmod{l}).\n\end{cases}
$$

In particular, *if at least one of η(a) and η(b) is non-zero*, *then*

$$
\eta(ab) = \eta(a)\eta(b) .
$$

Proof. Let *χ* be a generator of $C(l)$ and put $\chi(a) = \zeta$. Then

$$
\eta(a) = \frac{2n}{l-1} \left(\sum_{0 < k \leq (l-1)/n} \zeta^k - \sum_{0 < k \leq (l-1)/2n} \zeta^{2k} \right).
$$

Here note that the first sum equals $(l-1)/n$ or 0 according as $\zeta = 1$ or not, and the second sum equals $(l - 1)/2n$ or 0 according as $\zeta^2 = 1$ or not. Therefore we have

$$
\eta(a) = \begin{cases} 1 & (\zeta = 1) \\ -1 & (\zeta = -1) \\ 0 & (\zeta \neq \pm 1). \end{cases}
$$

Since $\zeta = 1$ (resp. -1) if and only if $a^n \equiv 1$ (resp. -1) (mod *l*), this proves the lemma. \Box

7. The case $N(\alpha) = 3$

For a primitive element $\alpha = (a_1, a_2, a_3) \in \mathfrak{A}_m$, let

$$
N(\alpha) = #\{i \mid (m, a_i) = 1\}.
$$

If $m = m_0 l$ with $m_0 = 3$ or 4, then $N(\alpha) = 1, 2$ or 3. In addition, if $N(\alpha) = 3$, then *m* must be odd, so $m = 3l$ and

$$
a_1 \equiv a_2 \equiv a_3 \equiv 1 \pmod{3}.
$$

Recall that *H* is the subgroup of $(\mathbb{Z}/l\mathbb{Z})^{\times}$ generated by the class of *p*, and \tilde{H} is the subgroup of $(\mathbb{Z}/m\mathbb{Z})^{\times}$ generated by the classes of -1 and *p*.

THEOREM 7.1. *Let* $m = 3l$ *and assume that* $p^i \not\equiv -1 \pmod{m}$ *for any integer i.* Let $\alpha = (1, a, b) \in \mathfrak{A}_m$ be such that $(ab, m) = 1$. Assume that $\nu_n \alpha \in B_m$. Then the *following statements hold.*

(i) *If* $p^{f/2} \equiv v \pmod{m}$, *then* $l \equiv 1 \pmod{3}$, *and either* $f = l - 1$ *or* $f =$ *(l* − 1)/3*. Moreover*, {1*, a, b*} *is a complete set of representative of* $(\mathbb{Z}/m\mathbb{Z})^{\times}/\tilde{H}$ $if f = (l - 1)/3$ *. In this case, we have*

$$
\nu_p \alpha = \begin{cases} \sigma_{l,\alpha} - (l, -l)\alpha & (if \ f = l - 1), \\ \sigma_{l,1} - (l, -l) & (if \ f = (l - 1)/3). \end{cases}
$$

- (ii) *If* $p^{f/2} \equiv -v \pmod{m}$, *then either*
	- (1) $3 \in \langle p \pmod{l} \rangle$ *or*
	- (2) $\{1, a, b\}$ *H* = $\langle a, p \pmod{l} \rangle$ *is the subgroup of* $(\mathbb{Z}/l\mathbb{Z})^{\times}$ *of order* 3*f/2 and* $3 \in \langle a, p \pmod{l} \rangle$.

In this case, *we have*

$$
\nu_p \alpha = \sigma_{3,\nu'_p \alpha} - (3,-3)\nu'_p \alpha.
$$

Proof. Case 1. Suppose $p^{f/2} \equiv v \pmod{m}$. Then

$$
v_p=(1,v)v'_p,
$$

where $v'_p = (1, p, \dots, p^{f/2-1}).$

Case 1-1. If $\{1, a, b\}$ is a complete set of representative of $(\mathbb{Z}/m\mathbb{Z})^{\times}/\tilde{H}$, then Lemma 6.1 implies that $l \equiv 1 \pmod{3}$, $f = (l - 1)/3$ and

$$
\nu_p \alpha = \sigma_{l,1} - (l,-l) \in B_m.
$$

Case 1-2. Suppose $\{1, a, b\}$ is not a complete set of representative of $(\mathbb{Z}/m\mathbb{Z})^{\times}/\tilde{H}$. Then there are only two essentially distinct cases:

- (i) $a \in \tilde{H}, b \notin \tilde{H}$.
- (ii) $a, b \in \tilde{H}$.

In the case of (i), $a \in \langle p \rangle$ or $a \in -\langle p \rangle$. In the first case, we have

$$
\nu_p \alpha = \nu_p(1, 1, b).
$$

But since $\chi((1, 1, b)) \neq 0$ for any $\chi \in PC^{-}(m)$, this implies that $\nu_p \in B_m$. In the second case, we have

$$
\nu_p \alpha = \nu_p(1, -1, b).
$$

This also implies that $v_p \in B_m$. Consequently we have $v_p \in B_m$ in the both cases.

Now, write *νp* as

$$
\nu'_p = (1) + \nu''_p,
$$

where $v''_p = (p, p^2, \dots, p^{f/2-1})$. Then

$$
0 = \xi(\nu_p) = 1 + \xi(\nu_p'') \, .
$$

Since $p^i \notin V_1(m)$ for any $i = 1, \ldots, f/2 - 1$, it follows that

$$
1 = |\xi(\nu_p'')| \le \frac{2}{l-3}(f/2 - 1) = \frac{f-2}{l-3} \le 1.
$$

Therefore $f = l - 1$ and $p \equiv 1 \pmod{3}$. This implies that $v_p = \sigma_{l,1}^{(1)}$. If $l \equiv 1 \pmod{3}$, then it follows that $v_p = \sigma_{l,1} - (l, -l)$ and so

$$
\nu_p \alpha = \sigma_{l,\alpha} - (l, -l)\alpha.
$$

On the other hand, if $l \equiv -1 \pmod{3}$, then

$$
v_p \alpha = \sigma_{l,\alpha} - 2(-l)\alpha.
$$

But since $(-l)\alpha = (-l, -l, -l) \notin B_m$, this case does not occur.

Case 2. Suppose $p^{f/2} \equiv -v \pmod{m}$. Then $f/2$ is odd and $p \equiv -1 \pmod{3}$. We have

$$
\nu_p = (1, -v)\nu'_p.
$$

Since $-v \equiv -1 \pmod{3}$, we have

$$
\tau_l(\nu_p \alpha) = 3(1, -l^{-1})(1, -1)\nu'_p \in D_3.
$$

On the other hand, we have

$$
\tau_3(\nu_p \alpha) = 2(1, -3^{-1})\nu_p' \alpha.
$$

If $3 \in H$, then $(1, -3^{-1})v_p' \in D_l$, and so $(1, -3^{-1})v_p' \alpha \in D_l$. On the contrary, if $3 \notin H$, then

$$
(1 - \chi(3)^{-1})\chi(\alpha) = 0
$$

for the character $\chi = \chi_l^{f/2} \in PC^{-}(l)$, where χ_l is a generator of *C(l)*. Since 3 $\notin H$, we have χ (3) \neq 1, hence χ (α) = 0. Then the order of *a* in $(\mathbb{Z}/l\mathbb{Z})^{\times}/H$ is 3, and

$$
b \equiv a^2 p^i \pmod{l}
$$

for some *i*. Taking $\chi = \chi^3 = \chi_l^{3f/2} \in PC^-(l)$, we have

$$
0 = \chi'(\tau_3(\nu_p \alpha)) = 3f(1 - \chi'(3)^{-1}).
$$

Hence $\chi'(3) = 1$. This implies that $3 \in \langle a, p \pmod{l} \rangle$.

In order to get an explicit form of $v_p \alpha$, first suppose $l \equiv 1 \pmod{3}$. Then $v = 2l - 1$ and

$$
(1,-v) = \sigma_{3,1} - (2l+1,-3).
$$

Since $3 \in \{1, a, b\}$ *H* = $\langle a, p \pmod{l} \rangle$, we have $(2l + 1, -3)v_p' \alpha = (3, -3)v_p' \alpha \in D_m$. Therefore

$$
\nu_p \alpha = \sigma_{3,\nu_p'} \alpha - (3,-3)\nu_p' \alpha \in B_m.
$$

Next suppose $l \equiv 2 \pmod{3}$. Then $v = l - 1$ and

$$
(1,-v) = \sigma_{3,1} - (l+1,-3).
$$

Since $3 \in \langle a, p \pmod{l} \rangle$, we have $(l + 1, -3)v_p' \alpha = (3, -3)v_p' \alpha \in D_m$. Therefore

*ν*_{*p*}α = $σ_{3,ν'_pα} - (3, -3)ν'_pα ∈ B_m$

This completes the proof. \Box

8. The case $N(\alpha) = 2$

In this section we consider the case where $N(\alpha) = 2$. For this we begin with the following

PROPOSITION 8.1. Let *x* be an element of $(\mathbb{Z}/m\mathbb{Z})^{\times}$ of order 2. If $p^{f/2} \equiv x$ $(mod \, m)$ *, then* $(1, -x, x - 1)$ *belongs to* $B_m(p)$ *.*

Proof. Let $v'_p = (1, p, \dots, p^{f/2-1})$. Then $v_p = (1, x)v'_p$. It follows that

$$
\begin{aligned} \nu_p \alpha &= (1, x)\nu'_p(1, -x) + (1, x)\nu'_p(x - 1) \\ &= (1, x)(1, -x)\nu'_p + (x - 1, 1 - x)\nu'_p \\ &= (1, -1)(1, -x)\nu'_p + (1, -1)(x - 1)\nu'_p \\ &= (1, -1)(1, -x, x - 1)\nu'_p \\ &= (1, -1)\alpha \nu'_p \in D_m \,. \end{aligned}
$$

Therefore $\alpha \in B_m(p)$.

THEOREM 8.2. Let $m = 3l$, where *l* is a prime number greater than 3. Let $\alpha =$ *(*1*, a, b) be an element of* ∈ *Bm(p) such that (m, a)* = 1 *and (m, b) >* 1*. Assume that* $p^i \not\equiv -1 \pmod{m}$ *for any integer i. Then one of the following statements holds.*

(i) *If* $p^{f/2} \equiv v \pmod{m}$, *then* $\alpha = (1, -p^i, p^i - 1)$, *where i is an integer such that* $0 < i < f$ *and* $p^{i} \equiv 1 \pmod{3}$ *.*

(ii) *If* $p^{f/2} \equiv -v \pmod{m}$, *then* $\alpha = (1, v, -v - 1)$ *. In the both cases*, *we have*

$$
\nu_p \alpha = (1, -1) \alpha \nu'_p \in D_m \, .
$$

Proof. Case 1. First consider the case $p^{f/2} \equiv v \pmod{m}$.

Case 1-1. Suppose $a \notin \tilde{H}$. Then Lemma 6.1 implies that $f = (l - 1)/2$, $a \equiv 1$ (mod 3) and $\{1, a\}$ is a complete set of representative of $(\mathbb{Z}/l\mathbb{Z})^{\times}/H$. In this case we have

$$
\nu_p(1,a) = \sigma_{l,1}^{(1)}.
$$

Since $a \neq -1 \pmod{3}$, $b \neq 0 \pmod{3}$ and so *l*|*b*. But in this case it follows that $a \equiv -1$ (mod *l*), which implies that $a \in \tilde{H}$. This gives a contradiction. Hence this case cannot occur.

Case 1-2. Suppose $a \in \tilde{H}$. Then $a \in H$ or $a \in -H$.

If $a \in H$, then

$$
\nu_p \alpha = \nu_p(1, 1, b).
$$

It follows that $\chi(v_p) = 0$ for any $\chi \in PC^-(m)$. Then by Lemma 6.1 we have

$$
f = l - 1
$$
, $p \equiv 1 \pmod{3}$, $v_p = \sigma_{l,1}^{(1)}$.

In this case, we have $a \equiv 1 \pmod{3}$ and so $b \not\equiv 0 \pmod{3}$. Consequently *l*|*b*. But in this case, we have $a \equiv -1 \pmod{l}$, which implies that $a = v$ and $b = -v - 1$. Therefore

$$
\tau_l(\nu_p \alpha) = f\{2(1, -l^{-1}) + (l - 1)(-l^{-1})\}.
$$

It follows that

$$
2(1, -l^{-1}) + (l - 1)(-l^{-1}) \in D_3.
$$

But this is impossible.

If $a \in -\langle p \pmod{l} \rangle$, then

$$
\nu_p \alpha = \nu_p(1, -1, b).
$$

It follows that $(b)\nu_p \in B_m$. If $3|b$, then $(b)\nu_p \in D_m$ and

$$
\alpha=(1,-p^i,\,p^i-1)
$$

for some *i* such that $p^i \equiv 1 \pmod{3}$.

If $l|m$, then $a \equiv -1 \pmod{l}$. But since $a \equiv -p^i \pmod{m}$ for some *i* with $0 < i <$ *f*, we have $p^i \equiv 1 \pmod{l}$, which is a contradiction.

Case 2. Next consider the case $p^{f/2} \equiv -v \pmod{m}$. Then $f/2$ is odd and $p \equiv -1$ *(*mod 3*)*. In this case, we have

$$
\nu_p = (1, -v)\nu'_p.
$$

Suppose l/b . Then $a \equiv -1 \pmod{-1}$. It follows that $a = v$ and

$$
\nu_p(1, a) = (1, -v)(1, v)\nu'_p = (1, -1)(1, v)\nu'_p \in D_m.
$$

Since $p \equiv -1 \pmod{3}$, we have $(b)v_p \in D_m$, and consequently $v_p \alpha \in B_m$. If 3|*b*, then $a \equiv -1 \pmod{3}$. In this case, we have

$$
\tau_3(\nu_p \alpha) = 2\nu'_p \{ (1, -3^{-1})(1, a) + 2(b') \}.
$$

But one can show that the right hand side cannot belong to D_l , which is a contradiction. This completes the proof. \Box

THEOREM 8.3. Let $m = 4l$, where l is a prime number greater than 3. Let $\alpha =$ $(1, a, b)$ *be an element of* $B_m(p)$ *such that* $(m, a) = 1$ *and* $(m, b) > 1$ *. Assume that* $p^i \not\equiv -1 \pmod{m}$ *for any integer i.*

(i) *If* $p^{f/2} \equiv u \pmod{m}$, *then* $p \equiv a \equiv 1 \pmod{4}$ *and* $f = l - 1$ *or* $(l - 1)/2$ *.* (1) *If* $f = l - 1$, *then* $l \equiv 1 \pmod{4}$ *and*

$$
v_p \alpha = \sigma_{l,\alpha} - (l,-l)\alpha.
$$

(2) *If* $f = (l - 1)/2$, *then* $l \equiv 1 \pmod{4}$, $\{1, a\}$ *is a complete set of representatives of* $(\mathbb{Z}/m\mathbb{Z})^{\times}/\tilde{H}$ *and*

$$
\nu_p \alpha = \sigma_{l,(1,b)} - (l, -l) - (lb, -lb).
$$

(ii) *If* $p^{f/2} \equiv -u \pmod{m}$, *then one of the following statements holds.* (1) $\alpha = (1, m/2 - 1, m/2)$ *and*

$$
\nu_p \alpha = (1, -1) \nu'_p \alpha.
$$

(2) $a \equiv 1 \pmod{4}$, 2 ∈ *H*, *and*

$$
\nu_p \alpha = \sigma'_{2,\nu'_p \alpha} - (4, -4)\nu'_p \alpha.
$$

Proof. Case 1. Suppose $p^{f/2} \equiv u \pmod{m}$.

If l/b , then $\alpha = (1, m/2 - 1, m/2)$. By Lemma 6.1 one can easily see that $\alpha \in B_m(p)$ if and only if $f = l - 1$ and $l \equiv 1 \pmod{4}$. Thus we may assume that $l \nmid b$.

Case 1-1. Suppose $a \notin \tilde{H}$. Then $a \not\equiv \pm 1 \pmod{l}$. In particular, $1 + a \not\equiv 0 \pmod{l}$. Therefore $b \not\equiv 0 \pmod{l}$.

By Lemma 6.1, we have $f = (l - 1)/2$ and $p \equiv a \equiv 1 \pmod{4}$. Hence

$$
\tau_l(\nu_p \alpha) = (1, -l^{-1}) \nu_p(1, a) = 2f(1, -l^{-1}) \in D_4.
$$

This is possible only when $l \equiv 1 \pmod{4}$. Moreover we have

$$
\tau_4(\nu_p \alpha) = (1, -2^{-1}) \nu_p \{(1, a) + 2(b')\},\,
$$

which belongs to D_l since $p^{f/2} \equiv -1 \pmod{l}$. Hence

$$
\nu_p \alpha = \sigma_{l,1} - (l, -l) + \nu_p(b).
$$

Here we note that $v_p(b) = (b, -b)v'_p \in D_m$.

Case 1-2. Suppose $a \in H$. Then $a \in \pm \langle p \rangle$.

If $a \equiv p^i \pmod{m}$ for some *i*, then we have $v_p(1, a) = 2v_p$. Therefore, $\chi(v_p) = 0$ for any $\chi \in PC^{-}(m)$. Then Lemma 6.1 again shows that $f = l - 1$ and $p \equiv 1 \pmod{4}$. Hence $a \equiv 1 \pmod{4}$ and $2 \parallel b$. Therefore

$$
\tau_4(\nu_p \alpha) = (1, -2^{-1}) \nu_p \{(1, a) + 2(b')\}.
$$

This implies that $b \equiv 2p^i \pmod{m}$.

On the other hand, if $a \equiv -p^i \pmod{m}$ for some *i*, then one can easily see that α is of type (ii) of Theorem 1.1.

Case 2. Suppose that $p^{f/2} \equiv -u \pmod{m}$.

If l/b , then $\alpha = (1, m/2 - 1, m/2)$. In this case, we see that

$$
\nu_p \alpha = (1, -1) \nu_p' \alpha \in D_m \, .
$$

Assume that $l \nmid b$.

Case 2-1. Suppose
$$
a \notin \tilde{H}
$$
. In this case, since $p^{f/2} \equiv -1 \pmod{4}$, we have

$$
\tau_l(\nu_p \alpha) = (1, -l^{-1}) \nu_p(1, a) \in D_4.
$$

Moreover

$$
\tau_4(\nu_p \alpha) = \begin{cases} (1, -2^{-1})\nu_p \{(1, a) + 2(b')\} & \text{(if } 2||b), \\ \nu_p \{(1, -2^{-1})(1, a) + 2(b')\} & \text{(if } 4|b). \end{cases}
$$

Since a similar argument as above shows that the case 4|*b* cannot occur, we suppose that 2||b. In this case, we have $a \equiv 1 \pmod{4}$ since $1 + a \equiv 2 \pmod{4}$. Letting $\chi = \chi^{f/2}$, we have

$$
(1 - \chi(2^{-1}))(1 + \chi(a) + 2\chi(b')) = 0.
$$

If $1 + \chi(a) + 2\chi(b') = 0$, then $\chi(a) = 1$ and $\chi(b') = -1$. But this implies that $a \in H$, which is a contradiction. Therefore, $\chi(2) = 1$, which implies that $2^n \equiv 1 \pmod{l}$, or equivalently $2 \in \langle p \pmod{l} \rangle$. Then the assertion follows since

$$
\nu_p \alpha = \sigma'_{2,\nu'_p \alpha} - (4, -4)\nu'_p \alpha.
$$

Case 2-2. Suppose $a \in H$. Then $a \in \pm \pmod{\langle p \rangle}$. If $a \equiv p^i \pmod{m}$, then $v_p(1, a) = 2v_p$ and

$$
\nu_p \alpha = \sigma_{2,(1,a)\nu'_p} - \sigma_{2,(-2)(1,a)\nu'_p} + 2\sigma_{2,(b)\nu'_p} + (m/2 - 2, 4)\nu'_p - 2(m/2 + b, -2b)\nu'_p.
$$

Therefore $v_p \in B_m$ if and only if

$$
(m/2-2,4)v'_p-2(m/2+b,-2b)v'_p \in D_m,
$$

and this holds if and only if $2 \in \langle p \pmod{l} \rangle$.

On the other hand, if $a \equiv -p^i \pmod{m}$ for some *i*, then

$$
v_p \alpha = (1, -1)v_p \in D_m.
$$

Therefore, $v_p \alpha \in B_m$ if and only if $(b)v_p \in B_m$. This holds if and only if α is the element of type (ii) of Theorem 1.1. This completes the proof. \Box

9. The case $N(\alpha) = 1$

In this section we prove the following

THEOREM 9.1. Let $m = 4l$ and assume that $p^i \not\equiv -1 \pmod{m}$ for any integer *i*. *Let* $\alpha = (1, a, b)$ *be an element of* $B_m(p)$ *such that* $2|a, l|b$ *. Then* $\alpha = (1, 3l - 1, l)$ *or (*1*, l* − 1*,* 3*l)*, *and the following assertions hold*:

- (i) *If* $2||a,$ *then* $2 \in H$ *.*
- (ii) *If* 4|*a*, *then* $-2 \in H$ *.*

Moreover, *we have*

$$
\nu_p \alpha = \begin{cases} \sigma'_{2,(1,a)\nu'_p} - (4,-4)(1,a)\nu'_p + (b,-b)\nu'_p & (\text{if } 2||a), \\ \sigma'_{2,\nu'_p} + (4,-4)\nu'_p - (m/2+2,m/2-2)\nu'_p - (l,-l)\nu'_p & (\text{if } 4|a). \end{cases}
$$

Before proving this we remark that in the case of $N(\alpha) = 1$ it suffices to consider the case $m = 4l$.

LEMMA 9.2. *If* $m = 3l$ *and* $N(\alpha) = 1$ *. Then* α *cannot belong to* $B_m(p)$ *.*

Proof. Suppose $\alpha \in B_m(p)$. We may assume that $\alpha = (1, a, b)$ with $3|a$ and $l|b$. Then $a \equiv -1 \pmod{l}$.

First, suppose $p^{f/2} \equiv v \pmod{m}$. Then by Lemma 6.1, we have $f = l - 1$ and $\nu_p = \sigma_{l,1}^{(1)}$. Hence

$$
\tau_l(\nu_p \alpha) = f\{(1, -l^{-1}) + (l - 1)(b')\}.
$$

It follows that $\chi(\tau_l(\nu_p\alpha)) \neq 0$ for any $\chi \in PC^-(3)$ since $l-1 > 2$. This is a contradiction. Next, suppose $p^{f/2} \equiv -v \pmod{m}$. Then

$$
\tau_3(\nu_p \alpha) = 2\nu'_p \{ (1, -3^{-1}) + 2(a') \}.
$$

Therefore

$$
1 - \eta(3) + 2\eta(a') = 0,
$$

which implies that $\eta(3) = \eta(a') = -1$. This implies that $\eta(a) = \eta(3a') = 1$. But this is a contradiction since $a \equiv -1 \pmod{l}$.

Proof of Theorem 9.1*.* First note that $a \equiv -1 \pmod{l}$ since $1 + a + b \equiv 0 \pmod{m}$ and *l*|*b*. Hence either $a = 3l - 1$ or $a = l - 1$, and

$$
\alpha = (1, 3l - 1, l)
$$
 or $(1, l - 1, 3l)$.

Moreover, we $\chi(\nu_p) = 0$ for any $\chi \in PC^-(m)$.

Case 1. Suppose $p^{f/2} \equiv u \pmod{m}$. Then by Lemma $f = l - 1$, $p \equiv 1 \pmod{4}$. In this case, we have

$$
\tau_l(\nu_p \alpha) = f\{(1, -l^{-1}) + (l - 1)(b')\}.
$$

But, since *l* − 1 ≥ 4, we have $\chi(\tau_l(\nu_p \alpha)) \neq 0$ for the character $\chi \in PC^-(4)$, which is a contradiction.

Case 2. Next, suppose $p^{f/2} \equiv -u \pmod{m}$. Then $f/2$ is odd and $p \equiv -1$ (mod 4). Therefore $\tau_l(\nu_p \alpha) \in D_l$. On the other hand, since $p^{f/2} \equiv 1 \pmod{l}$ and $f/2$ is odd, we have $p^i \not\equiv -1 \pmod{l}$ for any *i*.

Case 2-1. If $2|a$, then

$$
\tau_4(\nu_p \alpha) = 2\nu'_p(1, -2^{-1})(1, a', a').
$$

Since $\chi((1, a', a')) = 1 + 2\chi(a') \neq 0$ for any $\chi \in PC^{-}(l)$, we have $\eta(2) = 1$. It follows that $2 \in H$. Then $(m/2 - 2, 4)v'_p \in D_m$. On the other hand, we have

$$
v_p = (1, m/2 + 1)v'_p
$$

= (1, m/2 + 1, m/2 + 2, -4)v'_p - (m/2 + 2, -4)v'_p
= \sigma'_{2, v'_p} - (m/2 - 2, 4)v'_p.

Moreover $v_p(b) = f(l, -l) \in D_m$. Therefore

$$
\nu_p \alpha = \sigma'_{2,\nu'_p}(1,a) - (m/2-2,4)\nu'_p(1,a) + \nu_p(b) \in B_m.
$$

Case 2-2. If $4|a$, then

$$
\tau_4(\nu_p \alpha) = 2\nu'_p \{ (1, -2^{-1}) + 2(a') \}.
$$

In this case, we have

$$
1 - \eta(2) + 2\eta(a') = 0.
$$

This holds in the following two cases:

(i) $\eta(2) = -1$ and $\eta(a') = 0$.

(ii) $\eta(2) = \eta(a') = -1.$

Case (i) cannot occur. Indeed, in that case we have

$$
\eta(a) = \eta(4a') = 0,
$$

which is a contradiction since $a \equiv -1 \pmod{l}$.

In the case of (ii), we have $-2 \in H$ and $\eta(4a') = -1$. Hence $\eta(a) = -1$, and so $(1, a)v_p = (1, -4)v_p$. Therefore

$$
v_p(1, a) = (1, m/2 + 1)(1, -4)v'_p
$$

= (1, m/2 + 1, -4, -4)v'_p
= (1, m/2 + 1, m/2 + 2, -4)v'_p + (-4, m/2 - 2)v'_p - (m/2 + 2, m/2 - 2)v'_p
\in B_m

Consequently

$$
\nu_p \alpha = \sigma'_{2,\nu'_p} + (4, -4)\nu'_p - (m/2 + 2, m/2 - 2)\nu'_p - (l, -l)\nu'_p.
$$

This completes the proof. \Box

References

- [1] Akiyama, S., On the pure Jacobi sums, Acta Arith., **LXXV.2** (1996), 97–104.
- [2] Aoki, N., On some arithmetic problems related to the Hodge cycles on the Fermat varieties, Math. Ann., **266** (1983), 23–54. (Erratum: Math. Ann. **267** (1984), p. 572.)
- [3] Aoki, N., Simple factors of the jacobian of a Fermat curve and the Picard number of a product of Fermat curves, Amer. J. Math., **113** (1991), 779–833.
- [4] Aoki, N., Abelian fields generated by a Jacobi sum, Comm. Math. Univ. Sancti Pauli, **45** (1996), 1–21.
- [5] Aoki, N., On the purity problem of Gauss sums and Jacobi sums over finite fields, Comm. Math. Univ. Sancti Pauli, **46** (1997), 223–233.

- [6] Aoki, N., Some remarks on the Hodge conjecture for abelian varieties of Fermat type, Comm. Math. Univ. Sancti Pauli, **49** (2000), 177–194.
- [7] Aoki, N., A finiteness theorem for pure Gauss sums, Comm. Math. Univ. Sancti Pauli, **53** (2004), 145– 168.
- [8] Aoki, N., On the solvability of a certain linear Diophantine equation with a parity condition, Comm. Math. Univ. Sancti Pauli, **56** (2007), 71–96.
- [9] Berndt, B. C., Evans, R. J. and Williams, K. S., Gauss and Jacobi Sums, Wiley-Interscience, N.Y., 1998.
- [10] Chowla. S., On Gaussian sums, Narske Vid. Selsk. Forh. (Trendheim), **35** (1962), 66–67.
- [11] Chowla. S., On Gaussian sums, Proc. Nat. Acad. Sci., **48** (1962), 1127–1128.
- [12] Davenport, H., and Hasse, H., Die Nullstellen der Kongruenz-Zetafunktionnen in gewissen zyklischen Fällen, J. Reine Angew. Math., **172** (1935), 151–182.
- [13] Coleman, R. F., Torsion points on abelian étale covering of P¹ − {0*,* 1*,*∞}, Trans. Amer. Math. Soc., **311** (1989), 185–208.
- [14] Evans, R. J., Pure Gauss sums over finite fields, Mathmatika, **28** (1981), 239–248.
- [15] Gouvêa, F. Q. and Yui, N., *Arithmetic of Diagonal Hypersurfaces over Finite Fields*, LMS Lect. Note Series **209** 1995.
- [16] Ireland, K. and Rosen, M., *A Classical Introduction to Modern Number Theory*, Springer-Verlag 1993.
- [17] Iwasawa, K., A note on Jacobi sums, Symposia Math., **15** (1975), 447–459.
- [18] Joly, J. R., Nombre de solutions de certaines équations diagonales sur un corps fini, C. R. Acad. Sci. Paris, Ser. A-B, **272** (1971), 1549–1552.
- [19] Kubert, D. S. and Lang, S., Independence of modular units, Math. Ann., **240** (1979), 191–201.
- [20] Lidl, R. and Niederreiter, H., Finite fields, Encyclopedia of Mathematics and Its Applications, **20**, Addison-Wesley, 1983.
- [21] Mordell, L. J., On a cyclotomic resolvent, Arch. Math., **13** (1962), 486–487.
- [22] Schmidt, W. M., Equations over finite fields, Lecture Notes in Mathematics, **536**, Springer-Verlag 1976.
- [23] Stickelberger, L., Über eine Verallgemeinerung der Kreistheilung, Math. Ann., **37** (1890), 321–367.
- [24] Shioda, T., The Hodge conjecture for Fermat varieties, Math. Ann., **245** (1979), 175–184.
- [25] Shioda, T., The Hodge Conjecture and the Tate Conjecture for Fermat varieties, Proc. Japan Academy, **55** (1979), 111–114.
- [26] Shioda, T., Algebraic cycles on abelian varieties of Fermat type, Math. Ann., **258** (1981), 65–80.
- [27] Shioda, T., What is known about the Hodge conjecture?, Adv. St. in Pure Math., **1** (1983), 55–68.
- [28] Shioda, T. and Katsura, T., On Fermat varieties, Tôhoku Math. J., **31** (1979), 97–115.
- [29] Washington, L. C., *Introduction to Cyclotomic Fields*, Graduate Texts in Mathematics, **83**, Springer-Verlag 1982.
- [30] Weil, A., Numbers of solutions of equations in finite fields, Bull. Amer. Math. Soc., **55** (1949), 497–508.
- [31] Yamamoto, K., The gap group of multiplicative relationship of Gauss sums, Symp. Math., **XV** (1975), 427–440.

Department of Mathematics Rikkyo University Nishi-Ikebukuro, Toshima-ku Tokyo 171–8501, Japan e-mail: aoki@rkmath.rikkyo.ac.jp