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1. Introduction

Efficient computation of the radical of an arbitrary ideal in a polynomial ring over a
field of positive characteristic is very interesting problem as we have to resolve compu-
tational difficulty coming from “inseparability” which appears in many cases. There are
several works on the subject and many of proposed methods are based on derivation. (See
[7, 8, 11].) In [12] Matsumoto proposed an effective and efficient method in a different
approach based on computation of inverse image of Frobenius map. Also, for further com-
putation such as prime/primary decomposition, special efforts are done for solving such
difficulty and, by using Matsumoto’s method, a complete method for prime decomposition
is established in [15, 13].

In this paper, we extend Matsumoto’s method for further decomposition of polynomial
ideals over finite fields without complicated procedures of prime decomposition. In more
detail, we can utilize inverse image of Frobenius map very precisely to extract the inter-
section of all primary components which are prime by basic ideal operations such as ideal
quotient and saturation. Moreover, by applying such computation repeatedly, we can obtain
an interesting intermediate decomposition, where each component has different degree of
nilpotency. Therefore, we call such an intermediate decomposition the distinct nilpotency
decomposition.

Now we explain the new notion distinct nilpotency decomposition. Let p be a
prime number and q a power of p. By Fq we denote the finite field of order q and by
Fq [x1, . . . , xn] we denote a polynomial ring over Fq in n variables x1, . . . , xn.

We begin by defining degree of nilpotency.

DEFINITION 1.1 (Degree of Nilpotency). For an ideal I of Fq [x1, . . . , xn], we de-
note its radical by

√
I . We define the degree of nilpotency of I as the smallest integer s

such that xs belongs to I for any element x in
√

I , and denote it by nil(I).

By Brownawell and Kollár, it is shown that the degree of nilpotency of an ideal J is
bounded by dn, where d is the maximum of total degrees of polynomials in a generating
set of J . (See Theorem 9.2.1 in [14].)
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REMARK 1.2. The definition of the degree of nilpotency is slightly different from
the standard one. In [14], the degree of nilpotency of J is defined as the smallest integer s

such that
√

J
s ⊂ J .

From now on, let I be an ideal of a polynomial ring Fq [x1, . . . , xn] and suppose that
I has no embedded primary component and every primary component of I has a common
maximal independent set. This assumption is not so special, since many cases in actual
mathematical problems have such property and also during primary decomposition there
appears such an ideal. See [9, 15, 13].

DEFINITION 1.3 (Distinct Nilpotency Decomposition). Let S(I) be the set of all
irredundant primary components. We note that S(I) is determined uniquely for I . Also,
when a subset A of S(I) is empty, we set

⋂
Q∈A Q = Fq[x1, . . . , xn].

(1) By R0(I), we denote the set of all irredundant primary components of I which
are prime, and we denote those intersection by r0(I), that is,

r0(I) =
⋂

Q∈R0(I )

Q .

We call r0(I) the radical part of I . For each Q in R0(I), its degree of nilpotency
is 1.

For each k ≥ 1, we denote byRk(I ) the set of all irredundant primary compo-
nents Q such that pk−1 < nil(Q) ≤ pk . Moreover, we denote those intersection
by rk(I ), that is,

rk(I ) =
⋂

Q∈Rk(I )

Q .

(2) We define NRk(I) by

NRk(I) = S(I) \
k⋃

i=0

Ri (I ) .

Then, NRk(I) consists of all irredundant primary components Q with nil(Q) >

pk . Moreover, we denote those intersection by nrk(I), that is,

nrk(I) =
⋂

Q∈NRk(I )

Q.

When k = 0, nr0(I) is the intersection of all primary components which are
non-prime, and we call it the non-radical part of I .

By definition, for each non-negative integer k, it follows that

I =
( k⋂

i=0

ri(I )

)
∩ nrk(I) .

When k = 0, we have

I = r0(I) ∩ nr0(I) (1)

and we call the decomposition (1) the radical part decomposition of I .
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(3) As the degree of nilpotency of each component Q is bounded, there exists a
non-negative integer d such that

I =
d⋂

i=0

ri(I ) . (2)

We call the decomposition (2) the distinct nilpotency decomposition of I or the
DND of I for short.

In this paper, we show that the DND of I can be computed by elementary ideal opera-
tions in a recursive manner as follows. Here by computing an ideal we mean computing its
Gröbner basis.

(I) First the radical part decomposition (1) is computed. That is, r0(I) and nr0(I)

are obtained by computation of inverse image of Frobenius map and ideal
quotient computation.

(II) Beginning by k = 0, by applying the method for (I) repeatedly, rk+1(I) and
nrk+1(I) are computed from nrk(I).

(III) When nrk(I) = rk+1(I), that is, NRk+1(I) = ∅, the whole computation
terminates. Then we have computed r0(I), . . . , rk+1(I) such that I =⋂k+1

i=0 ri(I ) gives the DND of I .

The method proposed in the paper has the following features:
(1) During radical computation along with Matsumoto’s method, we obtain the

DND as an intermediate decomposition.
(2) Additional computations for the DND are only basic ideal operations (ideal quo-

tient and saturation).
As the method does not require any additional “decomposition” based on factorization,
DND computation may contribute a new approach to efficient and practical prime/primary
decomposition of polynomial ideals over finite fields. Because, for prime decomposition
of an ideal with positive dimension, we have to execute a special treatment for resolving
computational difficulty derived from “inseparability”. (See [15, 13] for details.) Also,
when we consider the factorization of a polynomial over an algebraic extension of a rational
function field, it corresponds to a primary decomposition of a corresponding ideal and
the distinct nilpotency decomposition can be considered as a variant of the square-free
decomposition which is computed in a very different approach.

2. Mathematical fundamentals

Here we provide necessary definitions and useful propositions for the DND computa-
tion. We begin by showing our setting.

Let p be a prime number and q a power of p. By Fq we denote the finite field of order
q and by Fq [x1, . . . , xn] we denote a polynomial ring over Fq in n variables x1, . . . , xn.
For simplicity, we write X for {x1, . . . , xn} and Fq [X] for Fq [x1, . . . , xn]. For a subset Y

of X, we also write Fq [Y ] and Fq(Y ) for a polynomial ring over Fq in Y and a rational
function field over Fq in Y , respectively.
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SETTING: Let I be an ideal of Fq[x1, . . . , xn] and suppose that I has no embedded
primary component and every primary component of I has a common maximal independent
set. As to a maximal independent set, see [3] for its definition and computational details.
In this case, the dimension of each primary component coincides with the cardinality of a
common maximal independent set.

In the following, we denote the dimension of I by � and fix a common maximal
independent set Y . Then #Y = �. Also, let S(I) = {Q1, . . . ,Qt } the set of all irredundant
primary components, where Q1, . . . ,Qs (s ≤ t) are prime but Qs+1, . . . ,Qt are not. When
no component is prime, we set s = 0. Then the irredundant primary decomposition of I is
given as follows:

I = Q1 ∩ Q2 ∩ · · · ∩ Qt . (3)

We denote by Pi the associated prime of Qi , that is, Pi = √
Qi . Then for each Qi ,

i ≤ s, Qi = Pi and for each Qi , s + 1 ≤ i ≤ t , Qi �= Pi .
By Definition 1.3,

⋂s
i=1 Qi is the radical part r0(I) of I and

⋂t
i=s+1 Qi is the non-

radical part nr0(I) of I . We note that for a set A of ideals, if A is empty, we set
⋂

J∈A J =
Fq [X].

FROBENIUS MAP: We define the Frobenius map which is an endomorphism of
Fq [X] as follows:

ϕp : Fq[X] 	 f (x1, x2, . . . , xn) 
→ f (x1, x2, . . . , xn)
p ∈ Fq [x] .

We note that ϕp is the composition of the following commutative endomorphisms ϕv and
ϕc:

ϕv : Fq[X] 	 f (x1, x2, . . . , xn) 
→ f (x
p
1 , x

p
2 , . . . , x

p
n ) ∈ Fq[X] ,

ϕc : Fq [X] 	
∑

ae1,...,enx
e1
1 · · · xen

n 
→
∑

a
p
e1,...,en

x
e1
1 · · · xen

n ∈ Fq [X] .

That is, ϕp = ϕv ◦ ϕc = ϕc ◦ ϕv . If q = p, then ϕc is the identity map and ϕp = ϕv . Then,
the inverse image of the Frobenius map plays a very important role for radical computation.

PROPOSITION 2.1 ([12]).
(1) I ⊆ ϕ−1

p (I) ⊆ √
I .

(2) If I �= √
I , then I �= ϕ−1

p (I). Otherwise, I = ϕ−1
p (I).

(3) There is a positive integer d such that ϕ−d
p (I) = √

I .

The third statement of Proposition 2.1 can be shown by the finiteness of the following
ascending chain:

I � ϕ−1
p (I) � ϕ−2

p (I) � · · · � ϕ1−d
p (I) � ϕ−d

p (I) = √
I

To utilize ϕ−1
p (I) for the DND computation, we provide several lemmas and proposi-

tions in the sequent.
By a general property of maps, it follows that ϕ−1

p (A ∩ B) = ϕ−1
p (A) ∩ ϕ−1

p (B) for
subsets A,B of Fq [X]. By using this, we have the following.
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LEMMA 2.2. Corresponding to the primary decomposition (3) of I , we have the
following decomposition:

ϕ−1
p (I) =

t⋂
i=1

ϕ−1
p (Qi) .

In the following, we write J (k) for ϕ−k
p (J ) for an ideal J and a positive integer k.

Thus, I (k) = ϕ−k
p (I) and Q

(k)
i = ϕ−k

p (Qi). Then, for any positive integer k, Proposition

2.1 shows that Q
(1)
i = Qi for 1 ≤ i ≤ s, and Q

(1)
i � Qi for s + 1 ≤ i ≤ t .

IDEAL QUOTIENT AND SATURATION: Next we provide necessary properties re-
lated ideal quotient and saturation. We recall the definition of saturation in a general set-
ting. Let I1, I2 be ideals of a noetherian domain R. Then, we have the following ascending
chain of ideals:

I1 = (I1 : I 0
2 ) ⊂ (I1 : I2) ⊂ (I1 : I 2

2 ) ⊂ · · · ,

where we set I 0
2 = R. Then there exists a positive integer d such that

(I1 : Id−1
2 ) � (I1 : Id

2 ) = (I1 : Id+1
2 ) = · · · . (4)

DEFINITION 2.3. For a positive integer d satisfying the formula (4), (I1 : Id
2 ) is

called the saturation of I1 with respect to I2, and denoted by (I1 : I∞
2 ).

As to ideal quotient, the following related to primary ideals is very useful. (See Page
82 of [14].)

LEMMA 2.4. Let P be a prime ideal of a noetherian ring and Q a P -primary ideal.
Also, let J be an ideal of R. Then the quotient (Q : J ) of Q by J is determined as follows:

(1) If J �⊂ P , then (Q : J ) = Q.
(2) If J ⊂ Q, then (Q : J ) = R.
(3) If J ⊂ P and J �⊂ Q, then (Q : J ) is a P -primary ideal properly containing

Q.

Proof. The statements (1) and (2) can be proved directly by the definition of “primary
ideal”.

Now we consider the case (3) where J ⊂ P and J �⊂ Q. We remark that Q �= P , as
J �⊂ Q.

First we show that (Q : J ) ⊂ P . If not, there is an element f in (Q : J ) \ P . But,
as f J ⊂ Q, f g ∈ Q for any element g of J . Since Q is a primary ideal, it implies that
g ∈ Q and thus J ⊂ Q. This is a contradiction.

Next we show that (Q : J ) � Q. By the definition of ideal quotient, it is clear that
(Q : J ) ⊃ Q. Thus, we show that (Q : J ) �= Q. As Q is a P -primary ideal, there exists a
positive integer k such that Pk ⊂ Q, which implies J k ⊂ Q. Then there exists a positive
integer d such that J d ⊂ Q but J d−1 �⊂ Q. For such d , by the definition of ideal quotient,
we have J d−1 ⊂ (Q : J ). As J d−1 �⊂ Q, it follows that (Q : J ) �= Q.

Finally we show that (Q : J ) is a P -primary ideal. Suppose that f g ∈ (Q : J ) but
f �∈ (Q : J ) for some elements f, g . Then f gJ ⊂ Q but f J �⊂ Q, which means that there
is an element h in J such that f gh ∈ Q but fh �∈ Q. By the definition of primary ideal,
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it follows that gm ∈ Q ⊂ (Q : J ) for sufficiently large m, which shows that (Q : J ) is a
primary ideal. As P = √

Q ⊂ √
(Q : J ) ⊂ P , (Q : J ) is a P -primary ideal. �

LEMMA 2.5. For each primary component Qi and a positive integer k, Q(k)
i is a Pi -

primary ideal. Moreover, if Qi �= Pi , then Q
(k)
i � Qi and (Qi : Q

(k)
i ) is also a Pi -primary

ideal properly containing Qi .

Proof. For simplicity, we set Q = Qi , Q(k) = Q
(k)
i , and P = √

Q. As Q ⊂ Q(k) ⊂√
Q by Proposition 2.1, we have

√
Q(k) = P .

First we show that Q(k) is a P -primary ideal. For a, b ∈ Fq [X], suppose that ab ∈
Q(k). Then apk

bpk ∈ Q, as Q(k) = ϕ−k
p (Q) = {g ∈ Fq [X] | ϕp(g) = gpk ∈ Q}. If a �∈ P ,

then apk �∈ P , and bpk ∈ Q, since Q is a primary ideal. Thus, we have b ∈ ϕ−k
p (Q) = Q(k)

and Q(k) is shown to be a P -primary ideal.
Next we show that Q(k) � Q and (Q : Q(k)) is a P -primary ideal, if Q �= P . By

Proposition 2.1, if Q �= P , Q(k) is containing Q properly. Thus, using Lemma 2.4, it can
be shown that (Q : Q(k)) is a P -primary ideal properly containing Q, since Q and Q(k) are
P -primary ideal, and Q(k) ⊂ P and Q(k) �⊂ Q. �

EXTENSION AND CONTRACTION: Now we consider extension and contraction with
respect to Fq(Y )[X \ Y ], where Y is the fixed common maximal independent set. As Qi

and Q
(k)
i are Pi -primary ideal, those have Y as a common maximal independent set. Thus,

I (k) has also Y as its maximal independent set.
Then we consider those extensions as ideals of Fq(Y )[X \Y ] and contractions of such

extensions. Here we use the following notation:
For an ideal J of Fq [X], we denote by J e the extension of J , which is the ideal of

Fq(Y )[X \ Y ] generated by J . Also, for an ideal Ĵ of Fq(Y )[X \ Y ], we denote by Ĵ c the
contraction of Ĵ , which is defined as Ĵ ∩ Fq [X].

LEMMA 2.6. Let J,L be ideals of Fq[X] and J ′, L′ ideals of Fq(Y )[X \ Y ]. Then,
we have (J ∩ L)e = J e ∩ Le, (JL)e = J eLe, (J : L)e = (J e : Le) and (J ′ ∩ L′)c =
J ′c ∩ L′c.

Moreover, if J ec = J and Lec = L hold, then we have (J ∩ L)ec = (J ∩ L),
(J : L)ec = (J : L) and (J : Lk)ec = (J : Lk) for every positive integer k, which implies
(J : L∞)ec = (J : L∞).

Proof. Since Fq(Y )[X \ Y ] can be considered as the ring of fractions of Fq [X] with
respect to Fq [Y ] \ {0}, that is, Fq(Y )[X \ Y ] = (Fq [Y ] \ {0})−1Fq [X], it can be show
by using properties of rings of fractions that (J ∩ L)e = J e ∩ Le, (JL)e = J eLe and
(J : L)e = (J e : Le). (See Proposition 3.11 and Corollary 3.15 in [2].) Also, by a general
property of contraction, we have (J ′ ∩ L′)c = J ′c ∩ L′c.

Next we consider the case where J ec = J and Lec = L hold. By general properties
of contraction, we have (J ∩ L) ⊂ (J ∩ L)ec, and (J : L) ⊂ (J : L)ec. But, we also have

(J ∩ L)ec = (J e ∩ Le)c = J ec ∩ Lec = J ∩ L ,

(J : L)ec = (J e : Le)c ⊂ (J ec : Lec) = (J : L) .
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Thus, we obtain (J ∩ L)ec = J ∩ L and (J : L)ec = (J : L). For an integer k ≥ 2, since
(J : Lk) = ((J : Lk−1) : L), we can show (J : Lk)ec = (J : Lk) by using induction
argument on k. �

Since Y is a common maximal independent set, I e and I (1)e are 0-dimensional ideal of
Fq(Y )[X\Y ] and each Pe

i is a maximal ideal. Moreover, by the one-to-one correspondence
of primary components (see Proposition 3.11 and Proposition 4.8 in [2]), Pe

i �= Pe
j for

i �= j and Qi
e, (Q

(1)
i )e are Pe

i -primary ideals. We also notice that if i �= j , Qi
e �⊂ Pj and

(Q
(1)
i )e �⊂ Pj .

LEMMA 2.7. For each Qi and a positive integer k, we have Qec
i = Qi , Q

(k)
i

ec =
Q(k) and (Qi : Q

(k)
i )ec = (Qi : Q

(k)
i ). Moreover, we have I ec = I and (I (k))ec = I (k).

Proof. By Lemma 2.5, Qi and Q
(k)
i are Pi -primary ideals. Therefore, those have

Y as a common maximal independent set and we have Qec
i = Qi and (Q

(k)
i )ec = Q(k).

(See Proposition 4.8 in [2].) Also by Lemma 2.6, we also have (Qi : Q
(k)
i )ec = (Qi :

Q
(k)
i ), and moreover, we have I ec = I and I (k)ec = I (k), since I = ⋂t

i=1 Qi and I (k) =⋂t
i=1 Q

(k)
i . �

Now we show three propositions which are used for the DND computation in the next
section.

PROPOSITION 2.8. Suppose that Q′
i is a Pi-primary ideal and Qi ⊂ Q′

i for each
i. Then (Qi : Q′

i ) contains Qi properly, and if Qi �= Q′
i , then (Qi : Q′

i ) is a Pi -primary
ideal. Otherwise, that is, if Qi = Q′

i , then (Qi : Q′
i ) = Fq [X]. Moreover, we have

(
I :

t⋂
i=1

Q′
i

)
=

t⋂
i=1

(Qi : Q′
i ) =

⋂
i:Qi �=Q′

i

(Qi : Q′
i ).

Proof. By Lemma 2.4, it follows that (Qi : Q′
i ) contains Qi properly, and if Qi �=

Q′
i , then (Qi : Q′

i ) is a Pi-primary ideal. If Qi = Q′
i , then we have (Qi : Q′

i ) = Fq [X].
Since Q′

i is a Pi -primary ideal, Q′
i has Y as a maximal independent set and thus we

have (Q′
i )

ec = Q′
i . (See the proof of Lemma 2.7.) Then, by Lemma 2.6, we have

( t⋂
i=1

Q′
i

)ec

=
t⋂

i=1

Q′
i , and (I :

t⋂
i=1

Q′
i )

ec =
(

I :
t⋂

i=1

Q′
i

)
.

Now we evaluate (I : ⋂t
i=1 Q′

i )
e as follows. By Lemma 2.6, we have

(I : ⋂t
i=1 Q′

i )
e = (I e : (

⋂t
i=1 Q′

i )
e). Moreover, we have

( t⋂
i=1

Q′
i

)e

=
t⋂

i=1

Q′
i
e
.
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Since Q′
i
e is a Pi

e-primary ideal and Pi
e is maximal, it follows that Q′

i
e and Q′

j
e are co-

maximal for i �= j . Then, by Chinese remainder theorem, we have
t⋂

i=1

Q′
i
e =

t∏
i=1

Q′
i
e
.

By Lemma 2.6 and using properties of ideal quotient (see Exercise 1.12 in [2]), we
also have (

I :
t⋂

i=1

Q′
i

)e

=
( t⋂

i=1

Qi
e :

t∏
j=1

Q′
j
e

)
=

t⋂
i=1

(
Qi

e :
t∏

j=1

Q′
j
e

)
.

For each (Qi
e : ∏t

j=1 Q′
j
e
), by using general properties of ideal quotient, we have

(
Qi

e :
t∏

j=1

Q′
j
e

)
= ((· · · ((Qi

e : Q′
1
e
) : Q′

2
e
) · · · ) : Q′

t
e
) . (5)

By changing the order of evaluation of the ideal quotient by each Q′
j
e in (5) so that the

ideal quotient by Q′
i
e is evaluated lastly, we obtain

(
Qi

e :
t∏

j=1

Q′
j
e

)
= (Qi

e : Q′
i
e
) ,

as (Qe
i : Q′

j
e
) = Qe

i for j �= i by Lemma 2.4. We note that Q′
j
e �⊂ Pe

i for j �= i.

Since Qec
i = Qi and Q′

i
ec = Q′

i , it follows that if Qi = Q′
i , then we have Qi

e = Q′
i
e

and

(Qi
e : Q′

i
e
) = Fq(Y )[X \ Y ] . (6)

Also, if Qi � Q′
i , then we have Qi

e � Q′
i
e and

Pe
i ⊃ (Qi

e : Q′
i
e
) � Qi

e , (7)

by Lemma 2.4. Thus, gathering the results (6) and (7) in the above, we obtain(
I :

t⋂
i=1

Q′
i

)e

=
t⋂

i=1

(Qi
e : Q′

i
e
) =

⋂
i:Qi �=Q′

i

(Qi
e : Q′

i
e
) . (8)

Next we evaluate the contraction of of (8). Then we have(
I :

t⋂
i=1

Q′
i

)ec

=
((

I :
t⋂

i=1

Q′
i

)e)c

=
( ⋂

i:Qi �=Q′
i

(Qi
e : Q′

i
e
)

)c

=
⋂

i:Qi �=Q′
i

(Qi
e : Q′

i
e
)c

by Lemma 2.6. Since (Qi
e : Q′

i
e
)c = (Qi : Q′

i )
ec = (Qi : Q′

i ), we have
(

I :
t⋂

i=1

Q′
i

)
=

(
I :

t⋂
i=1

Q′
i

)ec

=
t⋂

i=1

(Qi : Q′
i ) =

⋂
i:Qi �=Q′

i

(Qi : Q′
i ) .

�
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We can extend Proposition 2.8 as follows.

PROPOSITION 2.9. Suppose that Q′
i is a Pi -primary ideal and Qi ⊂ Q′

i for each i.
Let λ0 = {1, 2, . . . , t} and λ1, λ2 subsets of λ0. Then we have (

⋂
i∈λ1

Qi : ⋂
i∈λ2

Q′
i )

ec =
(
⋂

i∈λ1
Qi : ⋂

i∈λ2
Q′

i ) and( ⋂
i∈λ1

Qi :
⋂
i∈λ2

Q′
i

)
=

( ⋂
i∈λ1\λ2

Qi

)
∩

( ⋂
i∈λ1∩λ2:Qi �=Q′

i

(Qi : Q′
i )

)
.

Proof. We consider non-empty λ1 and λ2. We use the same argument used in the
proof of Proposition 2.8. Since Y is a common maximal independent set of all Qi and Q′

i ,
Qi

ec = Qi and Q′
i
ec = Q′

i . By Lemma 2.6, we have( ⋂
i∈λ1

Qi :
⋂
i∈λ2

Q′
i

)ec

=
( ⋂

i∈λ1

Qi :
⋂
i∈λ2

Q′
i

)
.

Then we evaluate (
⋂

i∈λ1
Qi : ⋂

i∈λ2
Q′

i )
e. By the argument used in the proof of Proposi-

tion 2.8, it follows that( ⋂
i∈λ1

Qi :
⋂
i∈λ2

Q′
i

)e

=
⋂
i∈λ1

(
Qe

i :
∏
j∈λ2

Q′
j
e

)
.

On the other hand, each (Qe
i : ∏

j∈λ2
Q′

j
e
) can be evaluated in the same manner as in the

proof of Proposition 2.8 as follows:
(

Qe
i :

∏
j∈λ2

Q′
j
e

)
=




Qe
i (i ∈ λ1 \ λ2) ,

Fq(Y )[X \ Y ] (i ∈ λ1 ∩ λ2, Qi = Q′
i ) ,

(Qe
i : Q′

i
e
) (i ∈ λ1 ∩ λ2, Qi �= Q′

i ) .

Thus, we obtain( ⋂
i∈λ1

Qi :
⋂
i∈λ

Q′
i

)e

=
( ⋂

i∈λ1\λ2

Qe
i

)
∩

( ⋂
i∈λ1∩λ2:Qi �=Q′

i

(Qe
i : Q′

i
e
)

)
.

To evaluate its contraction, we can apply the argument in the proof of Proposition 2.8 and
obtain( ⋂

i∈λ1

Qi :
⋂
i∈λ

Q′
i

)
=

( ⋂
i∈λ1

Qi :
⋂
i∈λ

Q′
i

)ec

=
( ⋂

i∈λ1\λ2

Qi

)
∩

( ⋂
i∈λ1∩λ2:Qi �=Q′

i

(Qi : Q′
i )

)
.

�
Replacing ideal quotient with saturation in Proposition 2.9, we have the following.

PROPOSITION 2.10. Suppose that Q′
i is a Pi-primary ideal and Qi ⊂ Q′

i for each
i. Let λ0 = {1, 2, . . . , t} and λ1, λ2 subsets of λ0. Then the saturation of

⋂
i∈λ1

Qi with
respect to

⋂
i∈λ2

Q′
i coincides with

⋂
i∈λ1\λ2

Qi . That is, we have( ⋂
i∈λ1

Qi : (
⋂
i∈λ2

Q′
i )

∞
)

=
⋂

i∈λ1\λ2

Qi .
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Proof. We set I1 = ⋂
i∈λ1

Qi and I2 = ⋂
i∈λ2

Q′
i . Then, as shown in the proof of

Proposition 2.9, we have I ec
1 = I1, I

ec
2 = I2 and (I1 : Ik

2 )ec = (I1 : Ik
2 ) for any positive

integer k by using Lemma 2.6.
When k = 1, in Proposition 2.9 we have shown

(I1 : I2) =
( ⋂

i∈λ1\λ2

Qi

)
∩

( ⋂
i∈λ1∩λ2:Qi �=Q′

i

(Qi : Q′
i )

)
.

For each positive integer k, by using the fact that (I1 : Ik
2 ) = ((I1 : Ik−1

2 ) : I2) and
applying the argument in the proof of Proposition 2.9 repeatedly, it follows that

(I1 : Ik
2 ) =

( ⋂
i∈λ1\λ2

Qi

)
∩

( ⋂
i∈λ1∩λ2:Qi �=Q′

i

(Qi : Q′
i
k
)

)
.

Consider the case Qi �= Q′
i . Since Qi and Q′

i
k are Pi -primary ideals, there exists

a positive integer di such that P
di

i ⊂ Qi and we have Q′
i
di ⊂ Qi . Thus, for any integer

k ≥ di we obtain
(Qi : Q′

i
k
) = Fq [X] .

Finally, for sufficiently large k it follows that

(I1 : Ik
2 ) =

⋂
i∈λ1\λ2

Qi ,

which implies (I1 : I∞
2 ) = ⋂

i∈λ1\λ2
Qi . �

3. Distinct Nilpotency Decomposition

In this section, we show a concrete method for the DND for a given ideal. We begin
by showing a method for the radical part decomposition which can be considered as the
first step of the DND.

3.1. Computation of Radical Part Decomposition
The radical part decomposition of I , that is, computation of r0(I) and nr0(I), can be

done by computation of one “inverse image of Frobenius map”, that of two ideal quotients
and that of one saturation.

PROPOSITION 3.1. (I : I (1)) = ⋂t
i=s+1(Qi : Q

(1)
i ) and (I : I (1))ec = (I : I (1))

hold.

Proof. By Lemma 2.7 and Lemma 2.6, we have (I : I (1))ec = (I : I (1)). Also, by
Lemma 2.5, we have Qi

(1) = Qi = Pi for 1 ≤ i ≤ s and Qi
(1) � Qi for s + 1 ≤ i ≤ t .

Then by replacing Q′
i with Q

(1)
i in Proposition 2.8, where Q′

i = Qi for 1 ≤ i ≤ s and
Q′

i �= Qi for s + 1 ≤ i ≤ t , it follows that



A Note on Distinct Nilpotency Decomposition of Polynomial Ideals over Finite Fields 155

(I : I (1)) =
t⋂

i=s+1

(Qi : Q
(1)
i ) .

�
Next we set J1(I) = (I : I (1)) and consider the saturation of I with respect to J1(I).

THEOREM 3.2. (I : J1(I)∞) coincides with r0(I).

Proof. By Lemma 2.5 (Qi : Qi
(1)) is a Pi -primary ideal properly containing Qi for

s + 1 ≤ i ≤ t . By setting λ1 = {1, 2, . . . , t}, λ2 = {s + 1, . . . , t} and Q′
i = (Qi : Q

(1)
i )

for s + 1 ≤ i ≤ t in Proposition 2.10, we have

(I : J1(I)∞) =
s⋂

i=1

Qi = r0(I) .

�
Once we have obtained r0(I), we can compute nr0(I) by ideal quotient computation.

THEOREM 3.3. nr0(I) coincides with (I : r0(I)).

Proof. As r0(I) = ⋂s
i=1 Qi , we have r0(I)ec = r0(I) by Lemma 2.6. Then, also

by Lemma 2.6, we have (I : r0(I))ec = (I : r0(I)). Setting λ1 = {1, 2, . . . , t}, λ2 =
{1, . . . , s} and Q′

i = Qi for 1 ≤ i ≤ s in Proposition 2.9, it follows that

(I : r0(I)) =
( s⋂

i=1

(Qi : Qi)

)
∩

( t⋂
i=s+1

Qi

)
=

t⋂
i=s+1

Qi = nr0(I) .

�
Also by using a similar argument as in the proof of Theorem 3.3 based on Proposition

2.9, we have the following.

PROPOSITION 3.4. ϕ−1
p (nr0(I)) coincides with (I (1) : r0(I)).

Following our notation, we write nr0(I)(1) for ϕ−1
p (nr0(I)). Although this ideal does

not appear in the DND of I , it can be used effectively for computation of the DND.
Thus, it is shown that the radical part decomposition of I can be done by computation

of one “inverse image of Frobenius map”, that of two ideal quotients and that of one sat-
uration. Applying this computation repeatedly, we have a total method for computing the
DND.

3.2. Computation of DND
Here we show that the DND of I can be computed by applying the method in the pre-

vious subsection for the radical part decomposition repeatedly. For describing our method,
we redefine Rk(I ) in a different form.

LEMMA 3.5. For each positive integer k, Rk(I ) consists of all primary component
Qi such that ϕ1−k

p (Qi) �= Pi and ϕ−k
p (Qi) = Pi .

Proof. Consider a primary component Qi in Rk(I ). By the definition of Rk(I ), gpk

belongs to Qi for any element g in Pi = √
Qi and there exists some element h in Pi such
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that hpk−1 �∈ Qi . This implies that Pi ⊂ ϕ−k
p (Qi) but Pi �⊂ ϕ−k+1

p (Qi). Since ϕ−k
p (Qi) is

a Pi -primary ideal by Lemma 2.5, we have Pi = ϕ−k
p (Qi).

It can be shown in a similar manner that for any primary component Qi such that
Pi ⊂ ϕ−k

p (Qi) but Pi �⊂ ϕ−k+1
p (Qi), Qi belongs to Rk(I ). �

Now we consider the radical part decomposition of I described in the previous subsec-
tion as the first round of recursive structure of the DND computation. Then we will show
the second round and k-th round in the below. We denote ϕ−k

p (nr0(I)) by nr0(I)(k).

SECOND ROUND: By Lemma 2.2 we have

nr0(I)(1) =
t⋂

i=s+1

ϕ−1
p (Qi) =

t⋂
i=s+1

Q
(1)
i ,

nr0(I)(2) =
t⋂

i=s+1

ϕ−2
p (Qi) =

t⋂
i=s+1

Q
(2)
i .

Now we let J2(I) = (nr0(I)(1) : nr0(I)(2)).

PROPOSITION 3.6. J2(I) = ⋂
i∈{s+1,...,t}:Q(1)

i �=Q
(2)
i

(Q
(1)
i : Q

(2)
i ) and J2(I)ec =

J2(I) hold.

Proof. By Lemma 2.5, Q(1)
i is a Pi -primary ideal. Also by Proposition 2.1, Q(1)

i = Pi

holds if and only if Q
(1)
i = Q

(2)
i .

Now we consider the radical part decomposition of nr0(I)(1). Then, we can apply
Proposition 2.9, where we replace Qi and Q′

i with Q
(1)
i and Q

(2)
i , respectively, and set

λ1 = λ2 = {s + 1, . . . , t} to show the statements of the proposition. �
We remark that for computation nr0(I)(1) we can do it efficiently by nr0(I)(1) =

(I (1) : r0(I)). (See Proposition 3.4.) Also, nr0(I)(2) can be computed by the inverse image
of the Frobenius map of nr0(I)(1), that is, nr0(I)(2) = ϕ−1

p (nr0(I))(1).
Next we consider the saturation of nr0(I) with respect to J2(I). Then, by Proposition

2.10, we have the following.

PROPOSITION 3.7. (nr0(I) : J2(I)∞) = ⋂
i∈{s+1,...,t}:Q(1)

i =Pi
Qi and (nr0(I) :

J2(I)∞)ec = (nr0(I) : J2(I)∞) hold.

By Propositions 3.6 and 3.7 and Lemma 3.5, we can compute the decomposition
nr0(I) = r1(I) ∩ nr1(I) as follows:

THEOREM 3.8. r1(I) coincides with (nr0(I) : J2(I)∞) and nr1(I) coincides with
(nr0(I) : r1(I)) = (nr0(I) : r1(I)∞).

Proof. By Proposition 3.7, (nr0(I) : J2(I)∞) is the intersection of primary com-
ponents Qi such that ϕ−1

p (Qi) �= Pi and ϕ−2
p (Qi) = Pi . Then, by Lemma 3.5, those

components Qi belong to R1(I), that is, the degree of nilpotency nil(Qi) is greater than 1
but not greater than p. Thus, we have r1(I) = (nr0(I) : J2(I)∞).

Also by Proposition 2.9, nr1(I) coincides with the saturation of nr1(I) with respect to
r1(I). �
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By the same argument as in Proposition 3.4, we have the following on nr1(I)(2)(=
ϕ−2

p (nr1(I))).

PROPOSITION 3.9. ϕ−2
p (nr1(I)) coincides with (nr0(I)(2) : r1(I)).

As nr0(I)(2) and r1(I) are already computed, we obtain nr1(I)(2) by ideal quotient of
already computed ideals. By this way, we may avoid unnecessary computation of inverse
image of Frobenius map. See Remark 4.2 for computational aspect.

(K−1)-TH ROUND: For each positive integer k, we can compute the decomposition
nrk−1(I) = rk(I ) ∩ nrk(I) by the same manner as in the second round.

Now we assume that nrk−1(I) = rk(I ) ∩ nrk(I) is already computed for some k ≥ 1.
We denote ϕ−k−1

p (nrk(I)) and ϕ−k−2
p (nrk(I)) by nrk(I)(k+1) and nrk(I)(k+2), respectively.

Then, by Lemma 2.2, we have

nrk(I)(k+1) =
⋂

Qi∈NRk(I )

ϕ−k−1
p (Qi) =

⋂
Qi∈NRk(I )

Q
(k+1)
i

nrk(I)(k+2) =
⋂

Qi∈NRk(I )

ϕ−k−2
p (Qi) =

⋂
Qi∈NRk(I )

Q
(k+2)
i .

Also we set Jk+2(I) = (nrk(I)(k+1) : nrk(I)(k+2)).
Corresponding to Proposition 3.6, we have the following proposition by using the

same argument as in used in the proof of Proposition 3.6.

PROPOSITION 3.10. Jk+2(I) = ⋂
Qi∈NRk(I ):Q(k+1)

i �=Q
(k+2)
i

(Q
(k+1)
i : Q

(k+2)
i ) and

Jk+2
ec = Jk+2 hold.

Proof. By Lemma 2.5, Q
(k+1)
i is a Pi -primary ideal and also Q

(k+1)
i = Pi if and only

if Q
(k+1)
i = Q

(k+2)
i .

Now we consider the radical part decomposition of nk(I)(k+1). Samely as in the proof
of Proposition 3.6, we can apply Proposition 2.9, where we replace Qi and Q′

i with Q
(k+1)
i

and Q
(k+2)
i , respectively, and set λ1 = λ2 = {i | Qi ∈ NRk(I)}. �

Also, corresponding to Proposition 3.7, we have the following saturations with respect
to Jk+2(I).

PROPOSITION 3.11. (nrk(I) :Jk+2(I)∞)=⋂
Qi∈NRk(I ):Q(k+1)

i =Pi
Qi and (nr0(I) :

Jk+2(I)∞)ec = (nr0(I) : Jk+2(I)∞) hold.

By Propositions 3.11, (nr0(I) : Jk+2(I)∞) is the intersection of primary components
Qi of I such that ϕ−k

p (Qi) �= Pi and ϕ−k−1
p (Qi) = Pi . Then, by Lemma 3.5, those

components Qi belongs to Rk+1(I), that is, nil(Qi) is greater than pk but not greater than
pk+1. Thus, we have rk+1(I) = (nr0(I) : Jk+2(I)∞) and the following corresponding to
Theorem 3.8. (From rk+1(I), we can compute nrk+1(I) by saturation computation.)

THEOREM 3.12. rk+1(I) coincides with (nrk(I) : Jk+2(I)∞) and nrk+1(I) coin-
cides with (nrk(I) : rk+1(I)) = (nrk(I) : rk+1(I)∞)
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Thus, we can compute the decomposition nrk(I) = rk+1(I) ∩ nrk+2(I) by ideal quo-
tient and saturation. When nrk(I) = rk+1(I) holds, the whole computation is completed
and we have the DND of I :

I = r0(I) ∩ · · · ∩ rk+1(I) .

As to nrk+1(I)(k+2)(= ϕ−k−2
p (nrk+1(I))), we also compute it by ideal quotient of

already computed ideals as the same manner as in Proposition 3.9.

PROPOSITION 3.13. ϕ−k−2
p (nrk+1(I)) coincides with (nrk(I)(k+2) : rk+1(I)).

4. Computational Details and Examples

In this section, we give computational details on inverse image of Frobenius map, ideal
quotient and saturation and some examples for making the details of the method very clear.

4.1. Inverse Frobenius Map and Ideal Quotient
We begin by showing a concrete method for inverse image of Frobenius map.

INVERSE IMAGE OF FROBENIUS MAP: Computation of the inverse image of
Frobenius map φp consists of that of φv and that of φc, as φ−1

p (L) = φ−1
c (φ−1

v (L)) =
φ−1

v (φ−1
c (L)) for an ideal L of Fq [X]. Here we show a method given in [12].

For computation of the inverse image of φv of an ideal L, we provide new n variables
y1, . . . , yn and consider ideals of a polynomial ring Fq [X ∪ Y ] in 2n variables, where we
set Y = {y1, . . . , yn}. In Fq [X ∪ Y ] we consider the ideal F(L) which is generated by
L ∪ {xp

1 − y1, x
p

2 − y2, . . . , x
p
n − yn}. (Actually F(L) is generated by a given generating

set of L and {xp

1 − y1, x
p

2 − y2, . . . , x
p
n − yn}.) Moreover, we fix an elimination order ≺

with {y1, . . . , yn} ≺≺ {x1, . . . , xn}. Then we have the following. (See Chapter 2 in [1] or
[12].)

PROPOSITION 4.1. The elimination ideal Fq [Y ] ∩ F(L) coincides with the ideal
ϕ−1

v (L) with yi replaced by xi for each i. Moreover, for a Gröbner basis G0 of F(L) with
respect to the elimination order ≺, G0 ∩ Fq [Y ] with yi replaced by xi is a Gröbner basis
of ϕ−1

v (L).

For computation of the inverse image of φc of an ideal L, we use the property that the
restriction φc|Fq of φc on Fq is a field automorphism and its inverse can be computed easily
as follows:

(φc|Fq )
−1 : Fq 	 α 
→ αq/p ∈ Fq .

We note that αq = α for any α in Fq . Then, we have

φ−1
c : Fq [X] 	

∑
ae1,...,enx

e1
1 · · · xen

n 
→
∑

a
q/p
e1,...,enx

e1
1 · · · xen

n ∈ Fq [X] .

Thus, for a given generator {g1, . . . , gm} of L, φ−1
c (L) is computed as an ideal generated

by {φ−1
c (g1), . . . , φ

−1
c (gm)}.

REMARK 4.2. As to the computational efficiency of the inverse image of Frobenius
map ϕ−d

p , the size pd effects very much. When d becomes large, its computation becomes
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very difficult. However, even though d increases during the DND computation, ideals for
which inverse images are computed become “large”, which means those Gröbner basis
computation tend to be efficiently done. Moreover, during the DND computation, for each
k-th round, we can utilize the ideal nr

(k+1)
k (I ), which can be computed by ideal quotient

of already computed ideals, for computation of the inverse image ϕ−k−2
p (nrk(I)), since

ϕ−k−2
p (nrk(I)) = ϕ−1

p (nr
(k+1)
k (I )).

IDEAL QUOTIENT: Next we show two typical methods for ideal quotient. (See [14,
10] for details.)

For two ideals I1, I2 of Fq [X], the ideal quotient (I1 : I2) can be computed by the
following methods. Here we assume that I2 is generated by H = {h1, . . . , hs}, that is,
I2 = 〈H 〉 = 〈h1, . . . , hs〉.

(Method 1) As I2 is generated by H , it follows that

(I1 : I2) =
s⋂

i=1

(I1 : hi) (9)

Then, the computation of the ideal quotient can be reduced to that of ideal intersection
and that of ideal quotient in special case, that is, “ideal quotient by principal ideal”. See
[14, 10] for computational details on ideal intersection.

Thus, we assume that I2 is a principal ideal generated by a polynomial h. Then, it is
easily shown that a generating set of the ideal I1 ∩ 〈h〉 is of form {g1h, . . . , gt h}. From this
generating set, we have (I1 : h) = 〈g1, . . . , gt 〉.

(Method 2) We can compute the ideal quotient more simply. Let y be a new variable
and consider a polynomial ring Fq [X ∪ {y}] in n + 1 variables. Also we set

h = h1 + h2y + · · · + hsy
s−1 . (10)

Then, we have
(I1 : I2) = (I · Fq [X ∪ {y}] : h) ∩ Fq [X] ,

where I · Fq [X ∪ {y}] is the ideal of Fq [X ∪ {y}] generated by I . Thus, the computation
the ideal quotient (I1 : I2) is reduced to that of ideal quotient in special case and that of
elimination ideal.

In fact, we first compute the ideal quotient (I ·Fq[X ∪{y}] : h) by Method 1, and then
we compute its elimination ideal with respect to an elimination order X ≺≺ {y}.

REMARK 4.3. In the ideal intersection computation in (9) we can omit (I1 : hi) if
hi ∈ I1, since (I1 : hi) = Fq [X] holds for such a case. Also, for construction (10) of h, we
can omit all elements hi ∈ I1, by which we have a smaller expression of h and improve the
efficiency of the computation (I1 : I2).

There are cases where such omissions appear. Especially, in algebraic factorization of
polynomials, which is considered as a special type of prime decomposition, ideals contain
a prime ideal which describes an algebraic extension over a rational function field as those
elimination ideals. For such ideals, there are many common elements in their generating
sets which are corresponding to generators for the common prime ideal, and we can omit
those for ideal quotient computation. See Example 2 for such a case.
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SATURATION: Finally we show some typical methods for saturation. (See [3, 10,
14] for details.)

(Method 3) First we show a special method for a saturation with respect to an ele-
ment (a principal ideal). In this case, the computation of saturation can be reduced to that
of elimination ideal.

Suppose that I2 is a principal ideal generated by a polynomial h. Then, providing a
new variable z, we consider a polynomial ring Fq [X ∪ {z}] in n + 1 variables, and its ideal
Î1 generated by I1 and zh − 1. That is, Î1 = 〈I1 ∪ {zh − 1}〉. Then, it can be shown that
Î1 ∩ Fq [X] = (I1 : h∞).

Now we show two general methods for saturation.
(Method 4) We compute the saturation (I1 : I∞

2 ) by repeating corresponding ideal
quotient computation as follows: Compute the ascending chain of ideal quotients till it
stops, that is, (I1 : Id

2 ) = (I1 : Id+1
2 ) holds.

I1 = (I1 : I 0
2 ) ⊂ (I1 : I2) ⊂ (I1 : I 2

2 ) = ((I1 : I2) : I2) ⊂ · · ·
Then, by the definition of saturation, we have (I1 : Id

2 ) = (I1 : I∞
2 ).

(Method 5) We compute the saturation at once by using the same idea used in
Method 2. Suppose that I2 is generated by H = {h1, . . . , hs}. Then we introducing new
variables y, z and consider a polynomial ring Fq [X ∪ {y, z}] in n + 2 variables. Let h be a
polynomial expressed in the formula (10). Then we have

(I1 : I∞
2 ) = (〈I ∪ {z − h}〉 : z∞) ∩ Fq [X] .

Thus, for computation of (〈I ∪{z −h}〉 : z∞), we apply Method 3 and by elimination ideal
computation, we obtain (〈I ∪ {z − h}〉 : z∞) ∩ Fq [X].
4.2. Examples

Here we give two examples for making computational behaviors of proposed method
clear.

EXAMPLE 1. First we show a simpler case, where the given ideal is principal. In
this case, each primary component is also principal and its degree of nilpotency coincides
with the multiplicity of its generator.

Suppose that an ideal I is generated by a polynomial f in F3[x, y, z] and

f = (x2 + y + z)3(x + 2y + z2)(x2y + zx + y3)2

In order to make our computation very clear, for each principal ideal, its generator is written
in a factorized form.

Then, I (1) is computed by the method based on elimination ideal computation and its
reduced Gröbner basis consists of one element g , where

g = (x2 + y + z)(x + 2y + z2)(x2y + zx + y3) .

We note that I (1) = I (2) in this case and 〈g〉 coincides with the radical
√

I .
By Method 1, we compute the reduced Gröbner basis of the ideal quotient J1(I) =

(I : I (1)) = (〈f 〉 : 〈g〉). Then the Gröbner basis consists of one element h, where

h = (x2 + y + z)2(x2y + zx + y3) .
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The polynomial h coincides with the division of f by g .
Also by Method 3, we compute the radical part r0(I) by saturation computation (I :

J∞
1 ) and its Gröbner basis consists of one element k, where

k = x + 2y + z2 .

Then r0(I) = 〈x + 2y + z2〉.
Finally, by Method 1, we compute the reduced Gröbner basis of the non-radical part

of I and
nr0(I) = 〈(x + 2y + z2)2(x2 + y + z)3〉 .

As I (1) = I (2) = √
I , we also have r1(I) = nr0(I).

EXAMPLE 2. Next we show an example which related to algebraic factoring.

Algebraic Factoring Problem: We consider an extension field K of a rational func-
tion field Fq(Y ) by K ∼= Fq(Y )[X]/P , where X,Y are set of variables with X ∩ Y = ∅
and P is a maximal ideal of Fq(Y )[X]. Then, for a given polynomial f (t) in K[t], where
t is also a new variable, we want to factor f (t) over K .

This problem can be reduced to that of primary decomposition of the ideal I of Fq [X∪
Y ∪ {t}] which is generated by P ∩ Fq [X ∪ Y ] and f (t), where we consider f (t) as a
polynomial in X ∪ Y ∪ {t} over Fq by removing the denominator, if necessary. Thus, the
DND of I = 〈P ∪ {t}〉 is an intermediate decomposition of I .

Now consider F3, Y = {y1, y2}, X = {x1, x2} and P = 〈x3
1 − y1, x

9
2 − y2〉. Moreover,

let f (t) = (t3 − y1)(t
9 − y2)(t

3 + t − x1). In fact f (t) can be expressed by (t − x1)
3(t −

x2)
9(t3 + t − x1) as a polynomial in t over K .

REMARK 4.4. We note that, for polynomials g(t), h(t) in F3[X ∪ Y ∪ {t}], the
ideal quotient (〈P ∪ {g(t)}〉 : h(t)) can be considered as the division of g(t) by h(t) over
K = F3(Y )[X]/P , and there is a polynomial k(t) in F3[X∪Y ∪{t}] such that (〈P ∪{g(t)}〉 :
h(t)) = 〈P ∪ {k(t)}〉. For this k(t), f (t) = g(t)k(t) over K .

Now we compute the DND of the ideal

I = 〈x3
1 − y1, x

9
2 − y2, (t

3 − y1)(t
9 − y2)(t

3 + t − x1)〉
of F3[y1, y2, x1, x2, t]. By the method based on elimination ideal, we have

I (1) = 〈x3
1 − y1, x

9
2 − y2, (t − x1)(t

3 − x3
2 )(t3 + t − x1)〉 .

Then by Method 2 in the previous subsection, we have

(I : I (1)) = (I : x3
1 − y1) ∩ (I : x9

2 − y2) ∩ (I : (t − x1)(t
3 − x3

2)(t3 + t − x1)) .

By Remark 4.3, the first two ideal quotients can be omitted and thus, we apply Method 1
for computing

J1(I) = (I : (t − x1)(t
3 − x3

2)(t3 + t − x1)).

Then, I ∩ 〈(t − x1)(t
3 − x3

2 )(t3 + t − x1)〉 is generated by 3 elements which are divisible
by (t − x1)(t

3 − x3
2)(t3 + t − x1)) and from those, we have

J1(I) = 〈x3
1 − y1, x

9
2 − y2, (t − x2)

6(t − x1)
2〉 .
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By Remark 4.4, (I : (t − x1)(t
3 − x3

2 )(t3 + t − x1)) can be considered as the division of
f (t) by (t − x1)(t

3 − x3
2)(t3 + t − x1) over K = F3(Y )[X]/P .

Then, we obtain the radical part r0(I) of I by r0(I) = (I : J∞
1 ), which is computed by

elimination technique described in Method 3. Also by Remark 4.3, as the reduced Gröbner
basis of I and that of J1 have the first two elements in common, we omit those and thus, the
saturation (I : J∞

1 ) coincides with (I : (t − x2)
∞(t − x1)

∞) and we can apply Method 3
for its computation. The computed reduced Gröbner basis of r0(I) consists of one element
t3 + t − x1 and thus

r0(I) = 〈x3
1 − y1, x

9
2 − y2, t

3 + t − x1〉 .

The non-radical part nr0(I) of I is computed by the ideal quotient (I : r0(I)). But,
samely as in the computation of J1(I), we have

(I : r0(I)) = (I : x3
1 − y1) ∩ (I : x9

2 − y2) ∩ (I : t3 + t − x1) = (I : t3 + t − x1) .

Thus, its computation is done by Method 1 and we obtain

nr0(I) = 〈x3
1 − y1, x

9
2 − y2, (t

3 − y1)(t
9 − y2)〉 = 〈x3

1 − y1, x
9
2 − y2, (t − x1)

3(t − x2)
9〉 .

In the second round, we have

nr0(I)(1) = 〈x3
1 − y1, x

9
2 − y2, (t − x1)(t − x2)

3〉 ,

nr0(I)(2) = 〈x3
1 − y1, x

9
2 − y2, (t − x1)(t − x2)〉 .

Then, in a similar way as in the first round, we have

J2(I) = 〈x3
1 − y1, x

9
2 − y2, (t − x2)

2〉 ,

r1(I) = (nr0(I) : J2(I)∞) = (nr0(I) : (t − x2)
∞)

= 〈x3
1 − y1, x

9
2 − y2, (t − x1)

3〉 .

Finally, we obtain

nr1(I) = (nr0(I) : r1(I)) = (nr0(I) : (t − x1)
3) = 〈x3

1 − y1, x
9
2 − y2, (t − x2)

9〉 .

And, by computation of ϕ−2
3 (nr1(I)), we have r2(I) = nr1(I).

5. Concluding Remarks

In this paper we have shown that an intermediate decomposition of an ideal named
distinct nilpotency decomposition (DND) related to degree of nilpotency can be computed
by combining computation of inverse image of Frobenius map and that of basic ideal oper-
ations such as ideal quotient and saturation. The notion distinct nilpotency decomposition
and its computation are derived by revisiting Matsumoto’s method [12] for computation
of the radical of an ideal based on computation of inverse image of Frobenius map. The
method for the DND proposed in the paper has the following features;

(1) During radical computation along with Matsumoto’s method, we obtain the
DND as an intermediate decomposition.

(2) Additional computations for the DND are only basic ideal operations (ideal quo-
tient and saturation).
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As the method does not require any additional decomposition based on factorization, DND
computation may contribute a new approach to efficient and practical prime/primary de-
composition of polynomial ideals over finite fields. Because, for prime decomposition of
such an ideal, when its dimension is positive, we have to execute a special treatment for
resolving computational difficulty derived from “inseparability”. Thus, it is expected that
for many cases, we can avoid such a special treatment, which should contribute the total
efficiency. Also, the prime part decomposition, which is considered as the first step of the
DND, is efficiently computable and it is useful for obtaining primary components which
are prime at once.

Although certain interesting property is given and possible effectiveness of the DND
is discussed in the paper, the proposed method is merely shown to be executable on real
computer. Therefore, as further works, the efficiency and the practicality of the DND com-
putation should be examined both in theory and practice. To do so, improving the compu-
tational efficiency of basic ideal operations such as ideal quotient, saturation and inverse
image of Frobenius map, used in the DND is very important and analysis on finding certain
classes of ideals for which the DND can be efficiently applied is highly required.
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