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Abstract. We discuss four topics on discrete subgroups: Exceptional zeros of the
Selberg zeta function, the construction of noncongruence subgroups of an arithmetic co-
compact Fuchsian group, the construction of noncongruence subgroups of the unimodular
group and a presentation of a Hilbert modular group.

Introduction

Let Γ be a cocompact Fuchsian group. Selberg ([Sel1]) defined the zeta function
ZΓ (s) attached to Γ ; concerning the zeros ρ in the critical strip 0 < �(ρ) < 1, he showed
that ZΓ (s) satisfies the Riemann hypothesis except for finitely many zeros on the real line.
For these exceptional zeros, Selberg ([Sel2]) showed that they actually exist in some cases
and conjectured that such phenomena will not take place for congruence subgroups. Later
Randol ([R]) gave a simple proof of the existence of exceptional zeros.

In section 1, we will give another conceptually simple proof of the existence of excep-
tional zeros. The idea is to consider the distribution attached to ZΓ (s) and employ Weil’s
observation ([W]) that it is of positive type if and only if ZΓ (s) satisfies the Riemann hy-
pothesis. Our example of Γ is given as the kernel Γχ of a suitable character χ of Γ0, where
Γ0 is a cocompact torsion free Fuchsian group. When Γ0 is arithmetic, Γχ should be a
noncongruence subgroup in view of the Selberg conjecture. In section 2, we will show
that we can actually produce noncongruence subgroups in the form of Γχ . The relation of
noncongruence property and the existence of exceptional zeros is an interesting problem
but we will not touch this topic in this paper. In section 3, we will construct noncongruence
subgroups of SL(2,Z) by a different technique. Though the method of section 2 applies
for the case SL(2,Z), this new technique has the advantage that we can easily construct
examples of modular forms with respect to noncongruence subgroups. We will show an
example in section 4. In section 5, we will determine a presentation of the Hilbert modular
group for Q(

√
5).

Some parts of this paper have old origins. I found the proof given in section 1 about
twenty years ago when I was preparing my course; section 2 is added on this occasion. I
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232 H. YOSHIDA

found the construction of section 3 when I wrote the paper [Y2]; section 4 is worked out
for this paper. Section 5 appeared as an appendix of my paper in Math. Arxiv [Y3].

This paper is written on the occasion of the retirement of Professor Akio Fujii. It is
my great pleasure to dedicate this paper to him in gratitude for our long standing friendship
since 1973.

NOTATION. For an associative ringAwith identity element,A× denotes the group of
all invertible elements of A. Let R be a commutative ring with identity element. We denote
by M(n,R) the ring of all n × n matrices with entries in R. The unit matrix is denoted
by 1n. We define GL(n,R) = M(n,R)×, SL(n,R) = {g ∈ GL(n,R) | det g = 1}. The
quotient group of SL(n,R) by its center is denoted by PSL(n,R). For an algebraic number
field F , OF denotes the ring of integers and EF = O×

F denotes the group of units of F .
We denote by H the complex upper half plane. For modular groups and modular forms, we
follow the notation of Shimura [Sh2].

§1. Exceptional zeros of the Selberg zeta function

Let Γ be a cocompact Fuchsian group. For simplicity, we assume that −12 ∈ Γ and
put Γ = Γ/{±12}. Let χ be a character of Γ such that χ(−12) = 1. We consider χ as a
character of Γ . The Selberg zeta function ZΓ (s, χ) is defined by

ZΓ (s, χ) =
∏
{γ }

∞∏
k=0

(1 − χ(γ )(N(γ ))−s−k)

which converges absolutely when �(s) > 1 and can be continued to an entire function.
Here {γ } extends over all primitive hyperbolic conjugacy classes of Γ and N(γ ) denotes
the norm of γ . When χ is trivial, we denote ZΓ (s, χ) by ZΓ (s). We will give a simple
proof that there exists Γ for which ZΓ (s) has an exceptional zero.

Let L2(Γ \H, χ) be the Hilbert space consisting of all functions ϕ on H which satisfy
ϕ(γ z) = χ(γ )ϕ(z) for every γ ∈ Γ and |ϕ| ∈ L2(Γ \H). We assume that Γ is torsion free.
Then the trace formula reads as follows ([Sel1], p. 74, [H1], p. 32, Theorem 7.5, [GGP], p.
78). For a test function F ∈ C∞

c (R), put

Φ(s) =
∫ ∞

−∞
F(x)e(s−1/2)xdx .

Then, when F is an even function,

(1.1)

∑
ρ

Φ(ρ) =vol(Γ \H)
2π

∫ ∞

−∞
r
eπr − e−πr

eπr + e−πr Φ
(

1

2
+ ir

)
dr

+ 2
∑
{γ }

∞∑
k=1

χ(γ )k log(N(γ ))

N(γ )k/2 −N(γ )−k/2
F(k log(N(γ ))) .

Here for an eigenvalue λ of the non-Euclidean Laplacian ∆ = −y2
(
∂2

∂x2 + ∂2

∂y2

)
occuring

in L2(Γ \H, χ) with multiplicity m(λ), we let ρ occur in (1.1) with multiplicity m(λ) by
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the relation ρ = 1/2 ± s/2, λ = (1 − s2)/4. (When λ = 1/4, s = 0, we let ρ = 1/2
occur with the multiplicity 2m(1/4). When λ �= 1/4, two ρ’s occur.) And {γ } extends
over all primitive hyperbolic conjugacy classes of Γ . The ρ’s such that 0 < �(ρ) < 1
coincide with the zeros of ZΓ (Γ, χ) with the multiplicities stated above. Both sides of
(1.1) converge absolutely.

We recall the interpretation of (1.1) by representation theory. Let G = SL(2,R),
K = SO(2,R). Let L2(Γ \G,χ) be the Hilbert space consisting of all functions ϕ on
G which satisfy ϕ(γ g) = χ(γ )ϕ(g) for every γ ∈ Γ and |ϕ| ∈ L2(Γ \G). We put
Hχ = L2(Γ \G,χ); G acts on Hχ by the right translation. The Hilbert space L2(Γ \H, χ)
can be identified with the closed subspace of Hχ consisting of all K-fixed vectors. The
unitary representation of G on Hχ decomposes into a discrete direct sum:

Hχ = ⊕πVπ

where Vπ is a closed invariant subspace of Hχ and an irreducible unitary representation π
of G is realized on Vπ . Then π must satisfy π(−12) = id; Vπ contributes to L2(Γ \H, χ)
if and only if π has a (nonzero) K-fixed vector. The classification of such π is given as
follows. Let B be the subgroup ofG consisting of all upper triangular matrices. For s ∈ C,
we define a quasi-character ωs of B by

ωs

((
t u

0 t−1

))
= |t|s+1 .

Let PS(ωs) be the space of smooth functions f on G which satisfy f (bg) = ωs(b)f (g)
for b ∈ B. Then G acts on PS(ωs) by the right translation. When s ∈ iR, PS(ωs) is a
pre-Hilbert space with a canonical inner product. Let πs be the unitary representation of
G obtained by completion. It is irreducible and is called a principal series representation.
When −1 < s < 1, s �= 0, we obtain an irreducible unitary representation πs by a similar
procedure from PS(ωs). It is called a complementary series representation. We have πs ∼=
π−s . The eigenvalue of ∆ for a K-fixed vector of πs (unique up to constant multiple) is
(1 − s2)/4. This finishes the classification besides the trivial representation. A principal
series representation πs corresponds to zeros 1/2±s/2 on the critical line; a complementary
series representation πs corresponds to zeros ρ = 1/2 ± s/2 on the real line, 0 < ρ < 1,
ρ �= 1/2, i.e. exceptional zeros; the trivial representation contributes ρ = 0 and 1 for (1.1).

Now the trivial representation of G occurs in Hχ if and only if χ = 1. Therefore the
following observation holds.1

(F)
The terms Φ(0) and Φ(1) appear on the left hand side of (1.1)

if and only if χ = 1.

The left-hand side of (1.1) defines a distribution TΓ,χ : TΓ,χ (F ) = ∑
ρ Φ(ρ). As is well

known (cf. [W]), TΓ,χ is of positive type, i.e., TΓ,χ (α ∗ α̃) ≥ 0, α̃(x) = α(−x), for every
α ∈ C∞

c (R) if and only if all ρ on the left-hand side of (1.1) lie on the critical line. As a
slight refinement of this criterion, I showed that the condition TΓ,χ (α ∗ α̃) ≥ 0 for all odd

1This fact should not be confused with the existence of trivial zeros of ZΓ (s, χ).
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functions α is sufficient to assure this conclusion ([Y1], Proposition 1)2. Then F = α ∗ α̃
is an even function. Now from (F), we see that there exists odd α ∈ C∞

c (R) such that
TΓ,1(α∗ α̃) < 0. We fix such an α. Let g ≥ 2 be the genus of the compact Riemann surface
Γ \H. Since Γ ∼= π1(Γ \H), Γ has 2g generators σ1, . . ., σg , τ1, . . ., τg whose fundamental
relation is

(1.2) (σ1τ1σ
−1
1 τ−1

1 ) · · · (σgτgσ−1
g τ−1

g ) = 1 .

Choose si ∈ C, |si | = 1, ti ∈ C, |ti | = 1, 1 ≤ i ≤ g . In view of (1.2), we can define a
character χ of Γ by

χ(σi) = si , χ(τi) = ti , 1 ≤ i ≤ g .

Then we define a character χ of Γ by χ = χ ◦ p, where p : Γ −→ Γ is the canonical
homomorphism. If si and ti are sufficiently close to 1, then we see that TΓ,χ (α∗α̃) < 0 from
the right-hand side of the trace formula (1.1). In view of (F), this implies that ZΓ (s, χ) has
a zero ρ such that 0 < ρ < 1, ρ �= 1/2 (if χ �= 1). In particular, choose si = ti = e2πi/N ,
1 ≤ i ≤ g for a positive integer N . Let Γχ be the kernel of χ . Then Γ/Γχ ∼= Z/NZ and
we have3

ZΓχ (s) =
∏
η

ZΓ (s, η)

where η extends over all characters of Γ which are trivial on Γχ . Therefore, when N is
sufficiently large, ZΓχ (s) has a zero ρ such that 0 < ρ < 1, ρ �= 1/2.

A conjecture of Selberg states thatZΓ (s) has no exceptional zeros if Γ is of arithmetic
type. In view of this conjecture, the group Γχ should be a noncongruence subgroup when
Γ is of arithmetic type. We will examine this problem in the next section.

§2. Construction of noncongruence subgroups for cocompact case

We will give a simple proof for the existence of noncongruence subgroups of a co-
compact arithmetic Fuchsian group.

Let F be a totally real algebraic number field of degree n. Let OF denote the ring of
integers of F . Let B be a division quaternion algebra over F such that

(2.1) B ⊗Q R ∼= M(2,R)× Hn−1 .

Here H denotes the Hamilton quaternion algebra. Let ∗ denote the main involution and let
N : B −→ F denote the reduced norm. We have N(x) = xx∗. We take a maximal order
R of B and fix it. For a prime ideal p of F , we set

Bp = B ⊗F Fp, Rp = R ⊗OF
OFp ,

2This proposition is proved for zeros of the Dedekind zeta function. The modification adapted to the present
case is easy.

3We can prove this equality easily. Instead we can use the obvious fact that the spectra of ∆ in L2(Γ \H, χ)
are contained in that in L2(Γχ \H).
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where Fp is the completion of F at p and OFp is the ring of integers of Fp. We say that B
is ramified at p if Bp is a division algebra and unramified otherwise. In the latter case, Bp

is isomorphic to M(2, Fp) as algebras over Fp.
Put

Γ = R1 = {x ∈ R | N(x) = 1} .
By the projection to the first factor in (2.1), we can regard Γ as a subgroup of SL(2,R); Γ
is a cocompact Fuchsian group. For an integral ideal n of F , we put

Γn = {γ ∈ Γ | γ − 1 ∈ nR} .
We call Γn the principal congruence subgroup of level n. A subgroup of finite index of
Γ is called a noncongruence subgroup if it does not contain Γn for any n. We are going
to show that Γ contains noncongruence sugbroups. This case is of particular geometric
interest because Γ \H is (a special case of) the Shimura curve ([Sh1]).

LEMMA 2.1. There exists an ideal n such that Γn is torsion free.

proof. This is well known. We give a proof for the convenience of the reader. Let
γ ∈ Γ be an element of order n ≥ 2. Clearly we can obtain an isomorphism F(γ ) ∼=
F(e2πi/n) by sending γ to e2πi/n. Since γ ∗ = γ−1, γ + γ ∗ ∈ F , we see that F contains
cos(2π/n). Therefore n is bounded. Changing γ to a power of it if necessary, we may
assume that γ + γ ∗ = 2 cos(2π/n). Now suppose that γ ∈ Γn. Since R is stable under ∗,
we see that 2 cos(2π/n) ∈ 2 + nR, which implies 2 cos(2π/n)− 2 ≡ 0 mod n. It suffices
to choose n so that it does not divide (2 cos(2π/n) − 2) for all n ≥ 2 which can occur as
the order of γ ∈ Γ . This completes the proof.

We take an ideal n so that Γn is torsion free and put ∆ = Γn. Let g be the genus of
the compact Riemann surface ∆\H. As in §1, ∆ has 2g generators σ1, . . ., σg , τ1, . . ., τg
whose fundamental relation is (1.2). Let p be a prime ideal of F . We put

R1
p = {x ∈ Rp | N(x) = 1} .

For a nonnegative integer f , we put

Up,f = {u ∈ R1
p | u− 1 ∈ pf Rp} .

Let S be the finite set of all prime ideals of F at which B is ramified.

THEOREM 2.2. Letm be a positive integer and define a character χ of∆ by χ(σi)=
χ(τi) = e2πi/m, 1 ≤ i ≤ g . Let Γχ be the kernel of χ . We assume that m has a prime
factor l ≥ 5 which satisfies the following three conditions. (i) l does not divide the norm of
n. (ii) l is relatively prime to every prime ideal p ∈ S. (iii) l does not divide the order of
Up,0/Up,1 for every prime ideal p ∈ S. Then Γχ is a noncongruence subgroup of Γ .

proof. Suppose that Γχ contains a principal congruence subgroup of level m. Then
Γχ contains Γnm. We may regard χ as a character of ∆/Γnm. Therefore ∆/Γnm has a
character of order l. Let

n =
∏
p

pep , m =
∏
p

pdp
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be the prime ideal decompositions. By the strong approximation theorem (cf. [Sh3], Corol-
lary 32.13), we have

(2.2) Γn/Γnm
∼=

∏
p

(Up,ep/Up,ep+dp) .

Hence there exists p such that Up,ep/Up,ep+dp has a character ψ of order l. We distinguish
two cases.

(I) The case where p /∈ S.
Let pZ = p∩ Z. If ep > 0, then Up,ep/Up,ep+dp is a p-group. Since l �= p by (i), this

is a contradiction. Suppose ep = 0. Since Rp
∼= M(2,OFp), we have

Up,0/Up,dp
∼= SL(2,OF /p

dpOF ) .

If p ≥ 5, then by Lemma 2.3 given below, the commutator subgroup of SL(2,OF /p
dpOF )

coincides with itself, which is a contradiction. Suppose that p = 2 or 3. Since l ≥ 5 and
Up,1/Up,dp is a p-group, ψ is trivial on Up,1. Hence ψ can be identified with a character
of SL(2,OF /pOF ). We see that ψ is trivial on the subgroups

H =
{(

1 u

0 1

) ∣∣∣∣ u ∈ OF /pOF

}
and tH . Since H and tH generate SL(2,OF /pOF ), this is a contradiction.

(II) The case where p ∈ S.
By (ii) and (iii), we see that l does not divide the order of Up,ep/Up,ep+dp , which is a

contradiction.
To complete the proof of Theorem 2.2, it suffices to prove the next lemma.

LEMMA 2.3. Let K be a non-archimedean local field, OK be the ring of integers,
� be a prime element and q be the order of the residue field of K . Take a positive integer
n and let G = SL(2,OK/�

nOK). If q > 3, then the commutator subgroup [G,G] of G
coincides with G.

proof. For a, b ∈ G, we define the commutator by [a, b] = aba−1b−1. First we
consider the case n = 1. Let Fq = OF /�OF be the finite field with q elements. It is well
known that PSL(2,Fq) is a simple group when q > 3. Therefore we have [G,G]{±12} =
G. Since [(

1 0
0 −1

)
,

(
0 1

−1 0

)]
=

(−1 0
0 −1

)
,

we have −12 ∈ [G,G]. Hence the assertion holds in this case.
Now assume n ≥ 2. We put R = OK/�

nOK . Define a subgroup H of G by

H = {g ∈ G | g ≡ 12 mod � } .
Then H is a normal subgroup of G such that G/H ∼= SL(2,Fq). We have [G,G]H = G.
For t ∈ R× and u ∈ R, we have[(

t 0
0 t−1

)
,

(
1 u

0 1

)]
=

(
1 (t2 − 1)u
0 1

)
.
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Since q > 3, we can choose t so that t2 − 1 ∈ R×. Hence we have
(

1 u
0 1

) ∈ [G,G] for
every u ∈ R. Similarly

(
1 0
u 1

) ∈ [G,G] for every u ∈ R. For x ∈ R, y ∈ �OK/�
nOK ,

we have(
1 0

−y/(1 + xy) 1

) (
1 x

0 1

) (
1 0
y 1

) (
1 −x/(1 + xy)

0 1

)
=

(
1 + xy 0

0 1/(1 + xy)

)
.

Therefore
(
t 0
0 t−1

)
∈ [G,G] for every t ∈ 1+(�OK/�

nOK). We can check easily thatH

is generated by such elements together with
(

1 x
0 1

)
,
( 1 0
y 1

)
, x, y ∈ �OK/�

nOK . Therefore
[G,G] ⊃ H . Combined with [G,G]H = G, the assertion follows.

REMARK 2.4. If χ is a character of ∆ whose order is divisible by a prime number
l satisfying the conditions of Theorem 2.2, then Γχ is a noncongruence subgroup of Γ .

PROBLEM 2.5. Let Γ = R1 and let Γ ′ be a subgroup of Γ of finite index. The Sel-
berg conjecture states that ZΓ ′(s) does not have an exceptional zero if Γ ′ is a congruence
subgroup. Is the converse true?

§3. Construction of noncongruence subgroups of SL(2,Z)

We will give a simple construction of noncongruence subgroups of SL(2,Z). Let

∆(z) = e2πiz
∞∏
k=1

(1 − e2πikz)24 , z ∈ H

be the cusp form of weight 12 with respect to SL(2,Z). Let n be a positive integer. We
define a holomorphic function ∆(z)1/n so that it takes positive values when z is purely
imaginary. We see easily that ∆(z)1/n has the product expansion

(3.1) ∆(z)1/n = e2πiz/n
∞∏
k=1

(1 − e2πikz)24/n, z ∈ H .

Here the branch of (1−e2πikz)24/n is taken so that it is positive when z is purely imaginary.
Take an integerm ≥ 2. Put

f (z) = ∆(mz)1/n/∆(z)1/n .

Then f (z)n is an automorphic function with respect to Γ0(m), since∆(mz) ∈ S12(Γ0(m)).
For γ ∈ Γ0(m), put

χ(γ ) = f (γ z)/f (z) .

Since χ(γ )n = 1, we see that χ(γ ) does not depend on z and χ is a character of Γ0(m).
From (3.1), we see that

∆(z+ 1)1/n = e2πi/n∆(z)1/n , ∆(m(z+ 1))1/n = e2mπi/n∆(mz)1/n .

Hence we obtain

(3.2) χ

((
1 1
0 1

))
= e2πi(m−1)/n .
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Let Γχ be the kernel of χ . Write (m− 1)/n = p/q with relatively prime positive integers
p and q . By (3.2), we see that the order of χ divides n and is divisible by q . Hence
[Γ0(m) : Γχ ] divides n and is divisible by q .

THEOREM 3.1. We assume that q has a prime factor l ≥ 5 which does not dividem
and t − 1 for every prime factor t of m. Then the group Γχ is a noncongruence subgroup.

proof. Suppose that Γχ contains the principal congruence subgroup Γ (N) for a pos-
itive interger N . Then m divides N and χ factors through the canonical map Γ0(m) −→
Γ0(m)/Γ (N). Hence Γ0(m)/Γ (N) posesses a character whose order is divisible by q . Let
N = ∏

pep be the prime factorization. We have

Γ0(m)/Γ (N) ∼=
∏
p|m

Gp ×
∏
p�m

SL(2,Z/pepZ) ,

where, pdp being the exact power of p dividing m,

Gp =
{(
a b

c d

)
∈ SL(2,Z/pepZ)

∣∣∣∣ c ∈ pdpZ/pepZ)
}
.

Let

G =




∏
p|m Gp × SL(2,Z/2e2Z)× SL(2,Z/3e3Z) if 6 does not dividem ,∏
p|m Gp × SL(2,Z/3e3Z) if 2 divides m and 3 does not divide m,∏
p|m Gp × SL(2,Z/2e2Z) if 3 divides m and 2 does not divide m ,∏
p|m Gp if 6 divides m .

By Lemma 2.3, the commutator subgroup of SL(2,Z/pepZ) coincides with itself if p ≥ 5.4

Therefore G must have a character whose order is divisible by q . Since the order of G is
not divisible by l, this is a contradiction and we complete the proof.

REMARK 3.2. The condition of the theorem is satisfied if m = 2 and n ≥ 5 is a
prime number. In the casem = 2, n = 5, we obtain a noncongruence subgroup of SL(2,Z)
of index 15.

REMARK 3.3. It is well known that the principal congruence subgroup Γ (p) is a
free group for a prime number p. Using this fact, we can apply the method of section 2 to
produce noncongruence subgroups.

REMARK 3.4. LetD be a hermitian symmetric space. If there exists an everywhere
nonvanishing holomorphic automorphic form on D with respect to an arithmetic group Γ ,
then we can produce noncongruence subgroups of Γ by a similar argument to the above.
However the non-existence of such a form is known for a wide class of D.

4Another simple proof is given as follows. It is well known that the commutator subgroup of SL(2,Z) contains
Γ (6). Take g ∈ SL(2,Z/pepZ). Write g = γ mod pep with γ ∈ Γ (6). We can write γ as the product of
commutators of elements of SL(2,Z). Reduce this expression modulo pep . Then we obtain an expression of g as
the product of commutators of the elements of SL(2,Z/pepZ).
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§4. An example of modular forms for a noncongruence subgroup

In Theorem 3.1, we assume that m and n are prime numbers such that n ≥ 5, n �= m

and n does not divide m − 1. Then Γχ is a noncongruence subgroup such that [Γ0(m) :
Γχ ] = n. Up to equivalence, Γ0(m) has two cusps ∞ and 0. The equivalence classes of
the cusps of Γχ lying over ∞ are in one to one correspondence with Γχ\Γ0(m)/Γ0(m)∞
where

Γ0(m)∞ = {γ ∈ Γ0(m) | γ∞ = ∞} .
By (3.2), we see easily that Γ0(m) = ΓχΓ0(m)∞. Hence, up to equivalence, there is only
one cusp of Γχ lying over ∞. We can check easily that

(4.1) χ

((
1 0
m 1

))
= e2πi(m−1)/n .

Then, similarly, we see that there is only one cusp of Γχ lying over 0, up to equivalence.
The number of equivalence classes of elliptic points of Γ0(m) of order 2 (resp. 3) are ν2
(resp. ν3) where (cf. [Sh2], Proposition 1.43)

(4.2) ν2 = 1 +
(−1

m

)
, ν3 = 1 +

(−3

m

)
.

We can show easily that the number of equivalence classes of elliptic points of Γχ of order
2 (resp. 3) are nν2 (resp. nν3).

Let gχ (resp. g0) be the genus of the compact Riemann surface Γχ\H ∪ {cusps} (resp.
Γ0(m)\H ∪ {cusps}). By Theorem 2.20 of [Sh2], we find

(4.3) gχ = n

[
1

12
(m+ 1)− 1

4
ν2 − 1

3
ν3

]
, gχ = ng0 .

Here ν2 and ν3 are given by (4.2). By Theorem 2.24 of [Sh2], we have dim S2(Γχ) = gχ
and for an even integer k > 2, we have

(4.4) dim Sk(Γχ) = (k − 1)gχ − 1 + nν2

[
k

4

]
+ nν3

[
k

3

]
.

Let

(4.5) f (z) = ∆(mz)1/n/∆(z)1/n

be the function used in §3. We see that f (z) is an automorphic function with respect to Γχ .
Let q = e2πiz/n (resp. q ′) be the uniformizing parameter at the cusp ∞ (resp. 0) of Γχ .
We have

(4.6) ordq(f (z)) = m− 1 , ordq ′(f (z)) = −(m− 1) .

For a function F on H, k ∈ Z and g = (
a b
c d

) ∈ GL(2,R), det g > 0, we define a
function (F |k g)(z) on H by

(F |k g)(z) = (det g)k/2F(gz)(cz+ d)−k , z ∈ H .

For 1 ≤ i ≤ n− 1, we set

Sk(Γ0(m), χ
i) = {h ∈ Sk(Γχ) | h|k γ = χ(γ )ih , γ ∈ Γ0(m)} .
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Then we have a decomposition:

(4.7) Sk(Γχ ) = Sk(Γ0(m))⊕ (⊕n−1
i=1 Sk(Γ0(m), χ

i)) .

Let ω = (
0 1−m 0

)
. We have

(4.8) χ(ωγω−1) = χ(γ )−1 , γ ∈ Γ0(m) .

Hence we see that ω normalizes Γχ and that the operator |k ω gives an isomorphism of
Sk(Γ0(m), χ

i) onto Sk(Γ0(m), χ
−i ).

Now we take m = 2, n = 5. We have ν2 = 1, ν3 = 0. By (4.3), we have gχ = 0. By
(4.4), we have dim S4(Γχ) = 4. Let

E4(z) = 1 + 240
∞∑
n=1

σ3(n)e
2πinz

be the Eisenstein series of weight 4 with respect to SL(2,Z). Here σ3(n) = ∑
0<d |n d3.

Put

(4.9) g(z) = E4(z)− 24E4(2z) .

Then g(z) is a modular form of weight 4 with respect to Γ0(2) and we see that

ordq(g(z)) = 0 , ordq ′(g(z)) = n .

In view of (4.6), f (z)ig(z) ∈ S4(Γ0(2), χi) ⊂ S4(Γχ) for 1 ≤ i ≤ 4. By (4.7), they are
linearly independent. Therefore a basis of S4(Γχ) is given by

(4.10) {f (z)g(z), f (z)2g(z), f (z)3g(z), f (z)4g(z)} .
REMARK 4.1. We have

f (z)ig(z)|kω = f (z)5−ig(z) , 1 ≤ i ≤ 4 .

Put h(z) = E4(z)− E4(2z). Then we have

ordq (h(z)) = n , ordq ′(h(z)) = 0 .

A basis of S4(Γχ ) is also given by

{f (z)−1h(z), f (z)−2h(z), f (z)−3h(z), f (z)−4h(z)} .
Using the fact dimS4(Γ0(2), χ) = 1, we can prove the relation

h(z) = −16f (z)5g(z) .

REMARK 4.2. We have dim S6(Γχ) = 4 and a basis of this space can be given
similarly. We have dim S8(Γχ) = 9, dim S8(Γ0(2)) = 1. For 1 ≤ i ≤ 4, a basis of
S8(Γ0(2), χi) is given by {f (z)ig(z)2, f (z)ig(z)E4(z)} and f (z)5g(z)2 spans S8(Γ0(2))
(cf. (4.7)).

REMARK 4.3. It would be interesting to examine the example of this section in
more detail in view of the Atkin-Swinnerton-Dyer congruences (cf. [AS], [Sc1], [Sc2]).
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§5. Generators and relations for a Hilbert modular group

Let F be a real quadratic field and ε be the fundamental unit of F . Let {1, ω} be an
integral basis of OF , i.e., OF = Z ⊕ Zω. We write

(5.1) ε2 = A+ Bω , ε2ω = C +Dω .

We put Γ = PSL(2,OF ), Γ̃ = SL(2,OF ),

P̃ =
{(
a b

0 a−1

) ∣∣∣∣ a ∈ EF , b ∈ OF

}
, P = P̃ /{±12} .

We define elements of Γ̃ by

σ =
(

0 1
−1 0

)
, µ =

(
ε 0
0 ε−1

)
, τ =

(
1 1
0 1

)
, η =

(
1 ω

0 1

)
.

Then it is known that σ , µ, τ and η generate Γ̃ (cf. Vaserštein [V]). This fact can be proved
in elementary way if OF is a Euclidean ring, F = Q(

√
5) for example. We use same letters

σ , µ, τ and η for their classes in Γ , since this will cause no confusion. Now we have
relations among them:

(i) σ 2 = 1 .

(ii) (στ)3 = 1 .

(iii) (σµ)2 = 1 .

(iv) τη = ητ .

(v) µτµ−1 = τAηB .

(vi) µηµ−1 = τCηD .

If we can take ω = ε and −ε−1 = A′ + B ′ε, then we have

(vii) σησ = τA
′
ηB

′
ση−1µ .

The relations (ii) and (vii) follow from

(5.2) σ

(
1 t

0 1

)
σ =

(
1 −t−1

0 1

)
σ

(−t 1
0 −t−1

)
, t ∈ EF .

It is easy to see that µ, τ and η generate P and (iv)∼(vi) are their fundamental relations.
The purpose of this section is to prove the following theorem.

THEOREM 5.1. Let F = Q(
√

5) and Γ = PSL(2,OF ). We take ω = ε. The
fundamental relations satisfied by the generators σ , µ, τ and η are (i)∼(vii).
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We note that if F = Q(
√

5) then A = 1, B = 1, C = 1, D = 2, A′ = 1, B ′ = −1.
The relations (i) to (vi) and (5.2) hold for any real quadratic field. Our theorem states that
the minimal relations are enough when F = Q(

√
5). This minimality will be satisfied by

some more real quadratic fields with small discriminants but will not hold in general.
We begin by preliminary considerations on generators and relations of Γ .5 Since Γ is

generated by P and σ , every relation among elements of P and σ takes the form

p1σp2σ · · ·pmσ = 1 , pi ∈ P , 1 ≤ i ≤ m .

Using (i) and (iii)∼(vi), this relation can be written as(
1 x1
0 1

)
σ

(
1 x2
0 1

)
σ · · ·

(
1 xm
0 1

)
σ =

(
u 0
0 u−1

)
, xi ∈ OF , u ∈ EF .

We call a relation of this type an m terms relation counting the number of σ involved.

LEMMA 5.2. Using relations (i) and (iii)∼(vi), every three terms relation can be
reduced to (5.2).

proof. If we have a two terms relation(
1 x1
0 1

)
σ

(
1 x2
0 1

)
σ =

(
u 0
0 u−1

)
,

we have x1 = x2 = 0, u = ±1. Hence the two terms relation reduces to (i) . Let(
1 x1
0 1

)
σ

(
1 x2
0 1

)
σ

(
1 x3
0 1

)
σ =

(
u 0
0 u−1

)
be a three terms relation. Then we see that x2 = ±u ∈ EF . Using (5.2), we have
σ

( 1 x2
0 1

)
σ = p1σp2 with some p1, p2 ∈ P and the three terms relation in question re-

duces to a two terms relation. This completes the proof.

LEMMA 5.3. Assume that we can take ω = ε. The relation (5.2) can be reduced to
the relations (i)∼(vii). In other words, the relation (5.2) for t ∈ EF can be reduced to the
relations (5.2) for t = 1, ε using relations (i) and (iii)∼(vi).

proof. We write the relation (5.2) as {t}. Using (i), the relation (iii) implies the

relation
(
u 0
0 u−1

)
σ = σ

(
u−1 0

0 u

)
for u ∈ EF . Then we obtain the relation {−t} taking the

inverse of the both sides of (5.2), using (i), (iv)∼(vi). Taking the conjugate by µ of both
sides of (5.2), we obtain the relation {ε−2t} using (i), (iii)∼(vi). Since EF is generated by
ε and ±1, this completes the proof.

Next we consider the four terms relation.

(5.3)

(
1 x1
0 1

)
σ

(
1 x2
0 1

)
σ

(
1 x3
0 1

)
σ

(
1 x4
0 1

)
σ =

(
u 0
0 u−1

)
We write the relation (5.3) as {x1, x2, x3, x4; u}.

LEMMA 5.4. The four terms relation (5.3) reduces to (i)∼(vi) and (5.2) if xi ∈ EF
for some i, 1 ≤ i ≤ 4.

5For this part, we do not assume F = Q(
√

5).
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proof. Suppose that x2 ∈ EF . By (5.2), we have σ
( 1 x2

0 1

)
σ = p1σp2 with some p1,

p2 ∈ P . Using this expression, we find that (5.3) reduces to a three terms relation. We
write (5.3) as(

1 x2
0 1

)
σ

(
1 x3
0 1

)
σ

(
1 x4
0 1

)
σ = σ

(
1 −x1
0 1

) (
u 0
0 u−1

)
.

Using (i)∼(vi), the right-hand side can be written as
(
u−1 0

0 u

)
σ

(
1 −u−2x1
0 1

)
. Hence

{x1, x2, x3, x4; u} is equivalent to {x2, x3, x4, u
−2x1; u−1} under (i)∼(vi). By this cyclic

rotation, any xi can be brought to the second position at the cost of multiplying by a unit.
Hence the assertion follows.

For u ∈ EF , x ∈ OF , we have the relation

(5.4)

(
1 x

0 1

)
σ

(
1 (1 − u)/x

0 1

)
σ

(
1 −x/u
0 1

)
σ

(
1 −u(1 − u)/x

0 1

)
σ

=
(
u 0
0 u−1

)
if x divides u− 1.

LEMMA 5.5. Under (i)∼(vi) and (5.2), the four terms relation (5.3) can be reduced
to (5.4) with some x and u.

proof. We see easily that the four terms relation (5.3) is equivalent to a relation of
the form

(5.3′) σ

(
1 x

0 1

)
σ =

(
1 y1
0 1

)
σ

(
1 y2
0 1

)
σ

(
1 y3
0 1

) (
h 0
0 h−1

)
.

Here x, yi ∈ OF , 1 ≤ i ≤ 3 and h ∈ EF . By a direct computation, we get

h(y1y2 − 1) = −ω , hy2 = ωx , h−1(y2y3 − 1) = −ω ,
where ω = ±1. Putting u = ωh−1, we have

y2 = ux , y1 = 1 − u

ux
, y3 = 1 − u−1

ux
.

Hence we see that x divides u− 1 and that (5.3′) is equivalent to

(5.3′′)
σ

(
1 x

0 1

)
σ

=
(

1 (1 − u)/ux

0 1

)
σ

(
1 ux

0 1

)
σ

(
1 (1 − u−1)/ux

0 1

) (
u−1 0

0 u

)
.

On the other hand, under (i)∼(vi), (5.4) is equivalent to

(5.4′)
σ

(
1 −x
0 1

)
σ

=
(

1 (1 − u)/x

0 1

)
σ

(
1 −x/u
0 1

)
σ

(
1 −u(1 − u)/x

0 1

) (
u 0
0 u−1

)
.
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We obtain (5.3′′) from (5.4′) by substituting x by −x and u by u−1. This completes the
proof.

We denote the four terms relation (5.4) by {x, u}. We have {x, u} = {x, (1 − u)/x,

−x/u,−u(1−u)/x; u}. Under (i)∼(vi), the relation of the form (5.3′) is equivalent to {x, u}
and the relation {x1, x2, x3, x4; u} is equivalent to {x2, x3, x4, u

−2x1; u−1} (cf. the proofs
of Lemmas 5.4 and 5.5). Therefore {x, u} is equivalent to {(1 − u)/x, u−1} under (i)∼(vi).
By Lemma 5.4, {x, u} is reducible to (i)∼(vi) and (5.2) if x ∈ EF or (1 − u)/x ∈ EF .

LEMMA 5.6. Assuming (i)∼(vi) and (5.2), the following assertions hold.

(1) {x, u} is equivalent to {−x, u−1}.
(2) {x, u} is equivalent to {t2x, u} for every t ∈ EF .
(3) We assume the four terms relation {x, u}. Then {x, ue} is equivalent to {uex, u1−e}

for e ∈ Z.
(4) {x, u} is equivalent to {(1 − u)/x, u−1}.
(5) Suppose that (x) = (2). Then {x, u} is equivalent to {x,−u}.
proof. We write {−x, u−1} in the form of (5.3′′). Taking the inverses of both sides,

we obtain (1). We obtain (2) taking the conjugates of both sides by
(
t−1 0
0 t

)
. To prove

(3), we set the right-hand side of (5.3′′) is equal for {x, u} and for {x, ue}. By a simple
computation, we find that the resulting equality is

σ

(
1 uex

0 1

)
σ

=
(

1 (ue−1 − 1)/uex
0 1

)
σ

(
1 ux

0 1

)
σ

(
1 (u−1 − ue−2)/x

0 1

) (
ue−1 0

0 u1−e
)
,

which is {uex, u1−e}. Hence we obtain (3). We noted (4) already in the discussion before
Lemma 5.6. To prove (5), we set the right-hand side of (5.3′′) is equal for {x, u} and for
{x,−u}. The resulting equality is

σ

(
1 ux

0 1

)
σ

=
(

1 −2/ux
0 1

)
σ

(
1 −ux
0 1

)
σ

(
1 −2/ux
0 1

)(−1 0
0 −1

)
,

Since −2/ux ∈ EF , this relation reduces to a three terms relation by Lemma 5.4. In view
of Lemma 5.2, this completes the proof.

REMARK 5.7. Suppose that (1 − u)/x ∈ EF . Then, by Lemma 5.4, {tx, u} can be
reduced to (i)∼(vi) and (5.2) for every t ∈ EF . By (1) and (3) of Lemma 5.6, we see that
{x, ue} can be reduced to (i)∼(vi) and (5.2) for all e ∈ Z.

The following Lemma is of some interest though it will not be used in this paper.

LEMMA 5.8. Suppose that there exist sequences of integers x0, x1, . . ., xk ∈ OF

and units u0, u1, . . ., uk ∈ EF such that

xi−1xi = 1 − ui , 1 ≤ i ≤ k .
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We assume that ui = u
mi
i−1, 1 ≤ i ≤ k with a nonzero integermi . If (1 −u0)/x0 ∈ EF , then

the four terms relation {xk, uk} reduces to (i)∼(vi) and (5.2).

proof. Using Lemma 5.6, the reducibility of {txi, uei }, t ∈ EF , e ∈ Z can be shown
easily by induction on i.

Let G be a group with generators σ1, . . . , σm. Let F be a free group on the free
generators σ̃1, . . . , σ̃m. Then we can define a surjective homomorphism π : F −→ G by
π(̃σi) = σi , 1 ≤ i ≤ m. Let R be the kernel of π . Next let S be a finite subset of G
which generates G. For γ ∈ S, we prepare a symbol [γ ] and let F ′ be the free group on
the free generators [γ ], γ ∈ S. We can define a surjective homomorphism π ′ : F ′ −→ G

by π ′([γ ]) = γ , γ ∈ S. Let R′ be the kernel of π ′. Clearly ([γ1][γ2])−1[γ1γ2] ∈ R′ if
γ1, γ2, γ1γ2 ∈ S. We assume that R′ is generated by the elements of this form and their
conjugates.

Now for every γ ∈ S, we take and fix an expression

γ = σ
ε1
i1

· · ·σεkik , ij ∈ [1,m] , εj = ±1

and put γ̃ = σ̃
ε1
i1

· · · σ̃ εkik . (If γ = σi ∈ S, we put γ̃ = σ̃i .) By the universality of the
free group, there exists a homomorphism ϕ : F ′ −→ F which satisfies ϕ([γ ]) = γ̃ ,
γ ∈ S. Then we have π ′ = π ◦ ϕ. Let R0 be the normal subgroup of F generated by
(γ̃1γ̃2)

−1γ̃1γ2, γ1, γ2, γ1γ2 ∈ S and their conjugates. We have R0 ⊂ R. Since ϕ(R′) ⊂ R0
by the assumption, ϕ induces the homomorphism ϕ̄ : F ′/R′ −→ F/R0 which satisfies
ϕ̄(g mod R′) = ϕ(g) mod R0, g ∈ F ′.

LEMMA 5.9. Let the notation be the same as above. If σi ∈ S, 1 ≤ i ≤ m, then we
have R0 = R.

proof. Define a homomorphism π0 : F/R0 −→ G by π0(h mod R0) = π(h),
h ∈ F . Since (π0 ◦ ϕ̄)(g mod R′) = (π ◦ ϕ)(g) = π ′(g), g ∈ F ′, π0 ◦ ϕ̄ is injective.
Hence π0|ϕ̄(F ′/R′) is injective. We can write ϕ̄(F ′/R′) = H/R0 with a subgroup H of
F . Now the assumption of the Lemma implies H = F . Therefore π0 is injective and we
obtain R0 = R.

For the proof of Theorem 5.1, we use the following theorem of Macbeath (cf. Theorem
1 of [M] and also Theorem 1.1 of [Sw]).

THEOREM M. Let X be a path connected Hausdorff topological space and Γ be a
group which acts onX as homeomorphisms. We assume that the fundamental group π1(X)

of X is trivial. Let V be a path connected open subset of X such that X = Γ V . Define a
subset S of Γ by

S = {γ ∈ Γ | V ∩ γV �= ∅} .
Then S generates Γ .6 Let F be the free group which has the symbols [σ ], σ ∈ S as free
generators. Define a homomorphism π : F −→ Γ by π([σ ]) = σ . Let R be the kernel
of π . Then R is generated by ([σ ][τ ])−1[στ ] and their conjugates, where σ and τ are
elements of S which satisfy

(∗) V ∩ σV ∩ στV �= ∅ .

6This fact is an old result of Siegel, cf. [Si1].
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In other words, Γ has a presentation Γ = F/R.
Swan ([Sw]) generalized this theorem to the case where π1(X) �= 1 and obtained

generators and relations for SL(2,OK), for several imaginary quadratic fieldsK with small
discriminants.

Let the notation be the same as in Theorem M. For a subset T of X, we put

S(T ) = {γ ∈ Γ | T ∩ γ T �= ∅} .
Let D be a closed subset of X such that ΓD = X.

LEMMA 5.10. Suppose in addition that the topological space X is normal. Then
we have

∩U⊃D, U is open S(U) = S(D) .

proof. Clearly the left-hand side contains the right-hand side. Pick an element γ of
the left-hand side. Assume that D ∩ γD = ∅. Since X is normal, we can find open subsets
U and U ′ of X so that

U ⊃ D, U ′ ⊃ γD , U ∩ U ′ = ∅ .
Put U ′′ = U ∩ γ−1U ′. Then we have U ′′ ⊃ D, U ′′ ∩ γU ′′ ⊂ U ∩ U ′ = ∅. This is a
contradiction and we complete the proof.

Next we assume that S(D) is finite and that S(U) is finite for an open set U which
contains D. We put

S(D) = {γ1, . . . , γm} , S(U) = {γ1, . . . , γm, γm+1, . . . , γn}
assuming S(U) � S(D). By Lemma 5.10, for every γi , i > m, there exists an open set
Ui ⊃ D such that γi /∈ S(Ui). Put V = U ∩ (∩ni=m+1Ui). Then we have γi /∈ S(V ).
Therefore we conclude that S(D) = S(V ) for an open set V which containsD. This means
that we may replace S to S(D) in Theorem M if such a V is path connected. (Note that in
Theorem M, ([σ ][τ ])−1[στ ] ∈ R for σ , τ ∈ S such that στ ∈ S. Thus the condition (∗)
may be dropped. However (∗) reduces the number of relations and can be essential for the
practical purpose.)

Now let F be a totally real field of degree n. Let us review the fundamental domain
of Γ = PSL(2,OF ) acting on Hn (cf. [Si2]). Let σ1, . . . , σn be all the isomorphisms of F
into R. For a ∈ F , we put a(i) = aσi . Take an integral basis of OF so that

OF = Zω2 + Zω2 + · · · + Zωn

and let ε1, . . . , εn−1 be generators of a free part of EF . For x = (x1, . . . , xn) ∈ Cn, we
put N(x) = x1 · · · xn. For simplicity, we assume that the class number of F is one. Take
z = (z1, . . . , zn) ∈ Hn. Put zj = xj + iyj , xj , yj ∈ R. We define the local coordinates of
z relative to the cusp ∞ by the formulas (cf. [Si2], p. 249)

(5.5) Y1 log |ε(k)1 | + · · · + Yn−1 log |ε(k)n−1| = 1

2
log

yk
n
√
N(y)

, 1 ≤ k ≤ n− 1 .

(5.6) X1ω
(l)
1 + · · · +Xnω

(l)
n = xl , 1 ≤ l ≤ n .
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Here y = (y1, . . . , yn). We put

D∞ =
{
z ∈ Hn | −1

2
≤ Yi <

1

2
, 1 ≤ i ≤ n− 1 , −1

2
≤ Xj <

1

2
, 1 ≤ j ≤ n

}
.

ThenD∞ is a fundamental domain of P . (P is the subgroup of Γ consisting of all elements
which are represented by upper triangular matrices.) We define

(5.7)
D = {z ∈ D∞ |N(|cz+ d|) ≥ 1 whenever

c and d are relatively prime integers of OF } .
Here D∞ denote the closure of D∞ and |cz + d| = (|c(1)z1 + d(1)|, . . . , |c(n)zn + d(n)|).
ThenD satisfies that (cf. [Si2], p. 266–268):

(1) D is a closed subset of Hn such that ΓD = Hn.
(2) Two distinct interior points of D cannot be transformed each other by an element

of Γ .
(3) There are only finitely many γ ∈ Γ such that D ∩ γD �= ∅. Furthermore D and

γD, γ �= 1 can intersect only on the boundary of D.

Now we assume that [F : Q] = 2. We may assume that ω1 = 1, ω2 = ω, ε(1) = ε.
Then we have

(5.8)

D =
{
z ∈ H2 | ε−2 ≤ y2

y1
≤ ε2 ,

− 1

2
≤ 1

ω − ω′ (ω
′x1 − ωx2) ≤ 1

2
, −1

2
≤ 1

ω − ω′ (x1 − x2) ≤ 1

2
,

N(|cz+ d|) ≥ 1 whenever c and d are relatively prime integers of OF

}
.

Here ω′ denotes the conjugate of ω.
Hereafter in this section, we assume that F = Q(

√
5). We take ω = ε. The next

lemma is the essential ingredient of the proof of Theorem 5.1.

LEMMA 5.11. Let F = Q(
√

5) and take ω = ε. Put S = {γ ∈ Γ | D ∩ γD �= ∅}.
Then S is a finite set and we have S ⊂ S0 � S1 � S2, where

S0 = P , S1 =
{
γ =

(
a b

c d

)
, c ∈ EF

}
,

S2 =
{
γ =

(±ε3 b

2ε ±ε3

)
,

( ±1 b

2ε−2 ±1

)}
.

Here ± can be taken arbitrarily and b ∈ OF is chosen so that det γ = 1. (S2 consists of
eight elements.)

We give a proof of Theorem 5.1 assuming Lemma 5.11.

PROOF OF THEOREM 5.1. We consider H2 ⊂ C2 and let d denote the Euclidean
metric induced by this embedding. For δ > 0, we put

Dδ = {z ∈ H2 | d(z,D) < δ} .
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We see easily that D is path connected. Let z ∈ Dδ . Then there exists z1 ∈ D such that
d(z, z1) < δ. Hence z is connected by a path to z1. Therefore Dδ is path connected. By
using the argument of Lemma 5.10, we see that ∩δ>0S(Dδ) = S. Moreover we can show
without difficulty that S(Dδ) is finite when δ is sufficiently small. Therefore S(Dδ) = S

when δ is sufficiently small and Theorem M can be applied with S given in Lemma 5.11.
For γ ∈ S, we prepare a symbol [γ ] and consider the free group F ′ on the free

generators [γ ]. By Theorem M, it is sufficient to show that [γ2]−1[γ1]−1[γ1γ2], γ1, γ2,
γ1γ2 ∈ S can be reduced to a three term relation. We put S′

i = S ∩ Si , 0 ≤ i ≤ 2. We
can check easily that σ , µ, τ , η ∈ S. Hence Lemma 5.9 is applicable. Let F be the free
group on the free generators σ̃ , µ̃, τ̃ and η̃. We define a homomorphism π : F −→ Γ

by π(̃σ ) = σ , π(µ̃) = µ, π(̃τ ) = τ , π(̃η) = η. For γ ∈ S, we define γ̃ ∈ F such that
π(γ̃ ) = γ as follows.

If γ ∈ P , we write γ = µaτbηc. Then we define γ̃ = µ̃a τ̃ bη̃c. In particular, this rule
applies to an element γ ∈ S′

0. We have

(5.9)

(
a b

c d

)
=

(
1 c−1a

0 1

) (
0 1

−1 0

) (−c −d
0 −c−1

)
, c ∈ EF .

Hence γ ∈ S′
1 can be written as γ = p1σp2, p1, p2 ∈ P . We fix such an expression and

define γ̃ = p̃1σ̃ p̃2. Suppose γ ∈ S′
2. We write γ in the form γ =

(
u β

2εm u∗
)

, u, u∗ ∈ EF ,

β ∈ OF , m ∈ Z. We have

(5.10)

(
u β

2εm u∗
)

= σ

(
1 −2u−1εm

0 1

)
σ

(−u −β
0 −u−1

)
.

We fix this expression γ = σp1σp2, p1, p2 ∈ P and define γ̃ = σ̃ p̃1σ̃ p̃2.
By Lemma 5.9, it is sufficient to show that γ̃−1

2 γ̃−1
1 γ̃1γ2 reduces to a three terms

relation (under (i)∼(vi) and (5.2)) when γ1, γ2, γ1γ2 ∈ S. We see that there cannot arise
the case where all of γ1, γ2, γ1γ2 belong to S′

2, by inspecting the (2, 1)-component of γ1γ2.
This implies that if two of γ1, γ2, γ1γ2 belong to S′

2, then the other one must belong to
S′

0. Therefore γ̃−1
2 γ̃−1

1 γ̃1γ2 defines at most a four terms relation. We may assume that
γ̃−1

2 γ̃−1
1 γ̃1γ2 defines a four terms relation. Then one of γ1, γ2, γ1γ2 belongs to S′

2. By
(5.10), this relation takes the form (5.3′) with x ∈ OF such that (x) = (2). As shown in the
proof of Lemma 5.5, it suffices to consider the four terms relation {x, u} for u ∈ EF such
that x divides u − 1 . Now the group E(2) = {u ∈ EF | u ≡ 1 mod 2} is generated by
−1 and ε3. By ε3 − 1 = 2ε and Remark 5.7, we see that {x, ε3e} is reducible to (i)∼(vi)
and (5.2) for e ∈ Z. By Lemma 5.6, (5), {x,−ε3e} is reducible to (i)∼(vi) and (5.2). This
completes the proof.

Now we are going to prove Lemma 5.11. We consider an element γ ∈ Γ such that
for a point z ∈ D, γ z ∈ D holds, i.e., D ∩ γ−1D �= ∅.7 We put γ = (

a b
c d

)
, z′ = γ z,

z′ = (z′1, z′2), z′j = x ′
j + iy ′

j , j = 1, 2, y ′ = (y ′
1, y

′
2). We have

N(y ′) = N(y)

N(|cz+ d|)2 .

7Since Si , i = 0, 1, 2 is stable under γ �→ γ−1, it suffices to determine γ which satisfies D ∩ γ−1D �= ∅.
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Hence N(y ′) ≤ N(y). Changing the roles of z and z′, we have N(y) ≤ N(y ′). Hence we
see that N(y ′) = N(y) and

(5.11) N(|cz+ d|) = 1 .

Since we are assuming that F = Q(
√

5), ω = ε, we have

x1 = X1 + 1 + √
5

2
X2 , x2 = X1 + 1 − √

5

2
X2 , −1

2
≤ X1 ≤ 1

2
, −1

2
≤ X2 ≤ 1

2
.

Then x1x2 = X2
1 −X2

2 +X1X2 and we see that

(5.12) |x1x2| ≤ 5

16
, |x1| ≤ 3 + √

5

4
, |x2| ≤ 1 + √

5

4
.

Since z ∈ D, we have

(5.13) N(|z|)2 = (x2
1 + y2

1)(x
2
2 + y2

2) ≥ 1 .

Put k = y1y2. Since ε−2 ≤ y1/y2 ≤ ε2, we have ε−1
√
k ≤ y1, y2 ≤ ε

√
k. Then by (5.13),

we have
k2 + (x2

1 + x2
2)ε

2k + x2
1x

2
2 − 1 ≥ 0 .

We consider the equation with respect to t :

(5.14) t2 + (x2
1 + x2

2 )ε
2t + x2

1x
2
2 − 1 = 0 .

Let ξ be the positive root of (5.14) and let κ∗ = min ξ . Here the minimum is taken with
respect toX1 andX2, regarding x1 and x2 as the functions ofX1 andX2;X1 andX2 extend
over the domain −1/2 ≤ X1,X2 ≤ 1/2. Let κ be the positive root of the equation

t2 + 7(3 + √
5)

8
t − 15

16
= 0 .

This is the positive root of (5.14) when X1 = X2 = 1/2, x1 = (3 + √
5)/4, x2 = (3 −√

5)/4. We have κ = 0.19622 · · · . By elementary but somewhat tedious calculation, which
we omit the details, we can show that κ∗ = κ . Hence we have

(5.15) y1y2 ≥ κ = 0.19622 · · · .
If c = 0, then γ ∈ S0. It suffices to show that γ ∈ S1 � S2 assuming c �= 0. By (5.11),

we have

(5.16) |N(c)|y1y2 ≤ 1 .

By (5.15), we have |N(c)| ≤ 1/κ . Therefore |N(c)| = 1 or 4 or 5. If |N(c)| = 1, then
c ∈ EF and γ ∈ S1. Hereafter we assume |N(c)| = 4 or 5. By (5.15) and (5.16), noting
ε−2 ≤ y1/y2 ≤ ε2, we obtain

(5.17) ε−1√κ ≤ y1, y2 ≤ ε√|N(c)| .

Since N(|z|) ≥ 1, we have (x2
1 + y2

1 )(x
2
2 + y2

2 ) ≥ 1. Using y1y2 ≤ 1/|N(c)|, we have

(5.18) x2
1y

4
2 −

(
1 − x2

1x
2
2 − 1

N(c)2

)
y2

2 + x2
2

N(c)2
≥ 0 .
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If x1 = 0, we obtain

y2
1x

2
2 ≥ 1 − 1

N(c)2
≥ 1 − 1

16
from N(|z|) ≥ 1 and (5.16). By (5.12), we have

y1 ≥
√

1 − 1

16
· 2

ε
= 1.19681 · · · .

This contradicts (5.17). Hence we have x1 �= 0.
First we exclude the case |N(c)| = 5. To this end, we assume |N(c)| = 5 and consider

the equation (cf. (5.18))

(5.19) x2
1 t

2 −
(

1 − x2
1x

2
2 − 1

25

)
t + x2

2

25
= 0 .

Let f (t) be the polynomial of t on the left-hand side. For t0 = ε−2κ , we have

f (t0) ≤
(
ε + 1

2

)2

t20 −
(

1 − 25

256
− 1

25

)
t0 + 1

25

(
ε

2

)2

= −0.02882 · · · < 0

using (5.12). Let η1 > ε−2κ > η2 be the roots of the equation (5.19). By (5.17) and (5.18),
we must have y2 ≥ √

η1. We note that (cf. (5.17))

(5.20) y1, y2 ≤ ε√
5

= 0.72360 · · · .
We consider η1 as a function of X1 and X2 defined in the domain −1/2 ≤ X1,X2 ≤ 1/2.
First we consider η1 on the subdomain defined by the condition x1 > 0. It is not difficult to
check that η1 is monotone decreasing with respect to the both arguments X1 and X2. For
X1 = 1/2, X2 = 0.4985, we have

√
η1 = 0.72377 · · · . For X1 = 0.4985, X2 = 1/2, we

have
√
η1 = 0.72389 · · · . In view of (5.20), we must have X1, X2 > 0.4985. Similarly, in

the subdomain x1 < 0, we must have X1, X2 < −0.4985.
First we consider the case X1, X2 > 0.4985. For relatively prime integers α, β ∈ OF ,

we have (cf. (5.8)) N(|αz + β|) ≥ 1. Take α = 2, β = −ε2. We have

|2x1 − ε2| ≤ 0.03(1 + ε) , |2x2 − ε−2| ≤ 0.03(1 + |ε′|) .
Here ε′ = (1 − √

5)/2 is the conjugate of ε. Then we find

N(|2z− ε2|)2 = {(2x1 − ε2)2 + 4y2
1}{(2x2 − ε−2)2 + 4y2

2}
= 16y2

1y
2
2 + 4y2

1(2x2 − ε−2)2 + 4y2
2(2x1 − ε2)2 + (2x1 − ε2)2(2x2 − ε−2)2

≤ 16

25
+ 4y2

1{0.03(1 + ε)}2 + 4y2
2{0.03(1 + |ε′|)}2

+ {0.03(1 + ε)}2{0.03(1 + |ε′|)}2 .

Since y1, y2 ≤ 0.72360 · · · , this contradicts N(|2z − ε2|) ≥ 1. When X1, X2 < −0.4985,
we obtain a contradiction similarly by taking α = 2, β = ε2. Thus we have shown that the
case |N(c)| = 5 cannot occur.

It remains to show that γ ∈ S2 assuming |N(c)| = 4. We can write c = ±2εm

with m ∈ Z. Changing γ to −γ if necessary, we may assume that c = 2εm. We put
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z′ = (z′1, z′2) = γ z, z′j = x ′
j + iy ′

j , j = 1, 2. Since z = γ−1z′, γ−1 = (
d −b−c a

)
, the

estimate (5.17) holds also for y ′
1 and y ′

2. We have

(5.21) ε−1√κ = 0.27376 · · · ≤ y1, y2, y
′
1 , y

′
2 ≤ ε√|N(c)| = 0.80901 · · · .

We have
|c(j)zj + d(j)|2 = yj

y ′
j

, j = 1, 2 .

Hence we obtain

(5.22) ε−2√κ√|N(c)| ≤ |c(j)zj + d(j)|2 ≤ ε2

√
κ
√|N(c)| , j = 1, 2 .

In particular, we have

(c(j))2y2
j ≤ ε2

√
κ
√|N(c)| , j = 1, 2 .

Using (5.21), we obtain

(5.23) |c(j)| ≤ ε2κ−3/4|N(c)|−1/4 = 6.27915 · · · , j = 1, 2 .

From (5.23), we obtain m = 0, ±1, ±2.
Next we are going to restrict possibilities of d . A preliminary table of listing all

possible d can be obtained by (5.22) and (5.23). By (5.11) and (5.21), we have

(5.24) {(2εmx1 + d(1))2 + 4ε2m · ε−2κ}{(2(ε′)mx2 + d(2))2 + 4ε−2m · ε−2κ} ≤ 1 .

We consider the equation (cf. (5.18))

(5.25) x2
1 t

2 −
(

1 − x2
1x

2
2 − 1

16

)
t + x2

2

16
= 0 .

Let g(t) be the polynomial of t on the left-hand side. For t0 = ε−2κ , we can check
g(t0) < 0. Let η1 > t0 > η2 be the roots of g(t). By (5.18) and (5.21), we have y2 ≥ √

η1.
As in the case where |N(c)| = 5, we consider η1 as a function of X1 and X2 defined in the
domain −1/2 ≤ X1,X2 ≤ 1/2. On the subdomain defined by the condition x1 > 0, we
check that η1 is monotone decreasing with respect to the both arguments X1 and X2. For
X1 = 1/2, X2 = 0.39, we have

√
η1 = 0.81291 · · · . For X1 = 0.38, X2 = 1/2, we have√

η1 = 0.81101 · · · . In view of (5.21), we must have X1 > 0.38, X2 > 0.39. Similarly,
in the subdomain x1 < 0, we must have X1 < −0.38, X2 < −0.39. Let V be the closed
domain

V = {(X1,X2) | 0.38 ≤ |X1| ≤ 1/2 , 0.39 ≤ |X2| ≤ 1/2}
and consider the function

f (X1,X2) = {(2εmx1 + d(1))2 + 4ε2m−2κ}{(2(ε′)mx2 + d(2))2 + 4ε−2m−2κ}
on V . By (5.24), we see that:

(C1) The minimum of f (X1,X2) on V does not exceed 1.
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Next let ξ be the positive root of (5.14). Since y1y2 ≥ ξ , we have y1, y2 ≥ ε−1√ξ . By
(5.11), we obtain another inequality:

(5.26)
(2εmx1 + d(1))2(2(ε′)mx2 + d(2))2 + 4ε−2m−2ξ(2εmx1 + d(1))2

+ 4ε2m−2ξ(2(ε′)mx2 + d(2))2 + 16ξ2 ≤ 1 .

We regard x1, x2 and ξ as the functions of X1 and X2 and let g(X1,X2) be the function on
the left-hand side of (5.26). Then (5.26) implies:

(C2) The minimum of g(X1,X2) on V does not exceed 1.

By numerical computations using a computer, we find the following:
For m = 0, (C1) leaves possibilities d = ±1, ±ε, ±ε2, ±ε−1. If combined with

(C2), the only possibility is d = ±ε2. For m = 1, (C1) leaves possibilities d = ±1, ±ε,
±ε2, ±ε3. If combined with (C2), the only possibility is d = ±ε3. For m = 2, (C1)
leaves possibilities d = ±ε, ±ε2, ±ε3, ±ε4. If combined with (C2), the only possibility is
d = ±ε4. For m = −1, (C1) leaves possibilities d = ±1, ±ε, ±ε−1, ±ε−2. If combined
with (C2), the only possibility is d = ±ε. For m = −2, (C1) leaves possibilities d = ±1,
±ε−1, ±ε−2, ±ε−3. If combined with (C2), the only possibility is d = ±1.

Thus, in every case where c = 2εm, we have d = ±εn with n depending only on m.
Changing the roles of z and z′ and noting that −γ−1 = ( −d b

c −a
)
, we see that a must have

the same form a = ±εn. (Here the ± sign is arbitrary but n is the same for d and a.) By
det γ = 1, we have ad ≡ 1 mod 2, which implies n ≡ 0 mod 3. Therefore only the
cases m = 1, −2 can survive and we see that γ ∈ S2. This completes the proof of Lemma
5.11.
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