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1. Introduction

Let N be the set of natural numbers n = 1, 2, · · · . For a sequence of real numbers
{c(n)}n∈N and a real-valued locally integrable function g : (0,∞) → R, we consider a
weighted summatory function

h(x) =
∞∑
n=1

c(n)g
(n
x

)
. (1.1)

Typical example of a weight function is the step function gst which is defined by gst(y) = 1
for 0 < y � 1, and gst(y) = 0 for y > 1. In this case, we obtain the usual summatory
function

∑
n�x c(n).

As is often the case with an arithmetically defined sequence {c(n)}n∈N, a certain rea-
sonable estimate h(x) = O(xA) (x → ∞) is a sufficient or an equivalent condition to the
Generalized/Grand Riemann Hypothesis (GRH for short) for some zeta/L-function. On the
other hand, the monotonicity of

∫ x
c h(t) dt for large x � c > 0 may also be a sufficient or

an equivalent condition to the GRH for some zeta/L-function.
In the present paper we study the latter type conditions for a family of weighted sum-

matory functions with certain specific weights in terms of the sign of h(x), since the mono-
tonicity of

∫ x
c
h(t) dt for large x is equivalent to the condition that h(x) has a single sign

for large x.

We mention two examples of the monotonic condition. The first one is Pólya’s con-
jecture. Let λ(n) = (−1)Ω(n) be the Liouville function, where Ω(n) is the number of all
prime factors of n counted with multiplicity. Pólya [15] conjectured that the value of the
summatory function

∞∑
n=1

λ(n) · gst

(n
x

)
=
∑
n�x

λ(n) (1.2)

is nonpositive for x � 2 and noted that it is a sufficient condition for the Riemann Hy-
pothesis (RH for short), but it was disproved by Haselgrove [4]. However, recently, Pólya’s
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approach resurrected by Ram Murty [16] by considering an analogue of the Pólya conjec-
ture to L-functions of elliptic curves.

The second example is Chebyshev’s conjecture. Let� : N → {0, 1} be the character-
istic function of odd prime numbers. Chebyshev [1] asserted that the weighted summatory
function

∞∑
n=1

(−1)
n−1

2 �(n) · g
(n
x

)
(g(y) = exp(−y)) (1.3)

is nonpositive for large x > 0 without a proof. Subsequently, Hardy-Littlewood [3] and
Landau [10] proved independently that Chebyshev’s assertion is equivalent to the GRH
for the Dirichlet L-function L(s, χ4) associated with the primitive non-principal Dirichlet
character χ4 mod 4. Moreover, Knapowski-Turán [8] proved that the nonpositivity of the
weighted summatory function

∞∑
n=1

(−1)
n−1

2 �(n) logn · g
(n
x

)
(g(y) = exp(−(log y)2)) (1.4)

for large x > 0 is also equivalent to the GRH for L(s, χ4). In the later, Fujii [2] generalized
Chebyshev’s equivalence condition to the weight function g(y) = exp(−yα) for every
0 < α < α0 (α0 > 4), and conjectured that it holds for all α > 0. Furthermore, he
proved that Knapowski-Turán’s equivalence condition still holds if their weight function is
replaced by the inverse Mellin transform 2K0(2

√
y) ofΓ (s)2, whereKn(x) is theK-Bessel

function of index n and Γ (s) is the usual gamma function.
As mentioned in the final section of Fujii [2], we may replace the weight g in (1.3) or

(1.4) by a more general weight. Similarly, it is expected that we obtain various equivalence
conditions of the RH by replacing the weight gst in (1.2) by other reasonable weights as an
application of several standard techniques of analytic number theory.

The main subject of the present paper is a family of specific weighted summatory
functions h〈k〉

f,ω : (0,∞) → R associated with general L-functions L(f, s) in the sense of
Iwaniec-Kowalski [6, §5.1] endowed with two parameters 0 < ω < 1/2 and k ∈ N. It is
introduced in Section 2. The main result is that, for arbitrary fixed k � 2, the monotonicity
of
∫ x

1 h
〈k〉
f,ω(t) dt for large x > 0 for all 0 < ω < 1/2 is equivalent to the GRH of L(f, s).

It is stated precisely in Section 2 as Theorem 2.1∼2.4 together with a little comment on a
background of h〈k〉

f,ω. These results are proved in Section 4 and Section 5 using two basic
facts stated in Section 3.
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2. Results

We start from two special cases of the main result (Themore 2.3 in below) for the sim-
plicity of statements. That are cases of the Riemann zeta function and DirichletL-functions.
The main result will be stated after these two special cases and a brief introduction of gen-
eral L-functions. We shall give a little comment on the main theorem and its background
after Theorem 2.4.

2.1. Riemann zeta function
Let ζ(s) be the Riemann zeta function which is defined by the series

∑∞
n=1 n

−s for
�(s) > 1 and extended to a meromorphic function on C with the unique pole of residue 1
at s = 1. We denote by γ (s) the factor π−s/2Γ (s/2) of the Riemann xi-function ξ(s) =
s(s − 1)π−s/2Γ (s/2)ζ(s). Let B(z;p, q) be the incomplete beta function defined by

B(z;p, q) =
∫ z

0
xp−1(1 − x)q−1 dx (0 � z � 1, �(p) > 0, �(q) > 0) . (2.1)

We use the notation

β(z;p, q) := B(p, q)− B(z;p, q) =
∫ 1

z

xp−1(1 − x)q−1 dx . (2.2)

Let 0 < ω < 1/2. We define the real-valued function gω on (0,∞) by

gω(x) = 4ω

2ω − 1

πω

Γ (ω)

×
{
xω−1 β

(
x2,

3 − 2ω

2
, ω

)
− 2ω + 1

4ω
x−1/2 β

(
x2,

5 − 2ω

4
, ω

)} (2.3)

for 0 < x < 1, and gω(x) = 0 for x � 1. In addition, we define

cω(n) := nω
∑
d |n

µ(d)

d2ω (2.4)

for natural numbers n, whereµ(n) is the Möbius function, i.e., µ(n) = 0 if n is not a square
free number, and µ(n) = (−1)k if n is the product of k distinct primes. nωcω(n) is called
Jordan’s totient function. Finally, we define the real-valued function hω on (0,∞) by

hω(x) = 1√
x

∞∑
n=1

cω(n)gω
(n
x

)
. (2.5)

Note that the sum on the right-hand side is finite for any x > 0, since gω is supported on
(0, 1] by its definition. Therefore hω is well-defined and supported on [1,∞).

THEOREM 2.1. Let 0 � ω0 < 1/2.
(1) Assume that there exists xω � 1 for every ω0 < ω < 1/2 such that hω is

nonnegative on (xω,∞). Then ζ(s) 	= 0 in the right-half plane �(s) > 1/2+ω0.
(2) Assume that the RH is valid for ζ(s). Then there exists xω � 1 for every 0 <

ω < 1/2 such that hω is nonnegative on (xω,∞).
In particular the validity of the RH is equivalent to the statement that there exists xω � 1
for every 0 < ω < 1/2 such that hω is nonnegative on (xω,∞).
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REMARK. The function gω has only one zero yω in (0, 1) which tends to zero as
ω → 0+, and gω(x) > 0 on (yω, 1). Moreover,

√
y gω(y) → 1 uniformly on any compact

subset of (0, 1) as ω → 0+. On the other hand, cω(n) > 0 for all n ∈ N because of the
Euler product formula of

∑
n�1 cω(n)n

−s . Therefore hω(x) > 0 for all 1 < x < y−1
ω

without any assumptions. Hence the proper interest is in values of hω(x) for x > y−1
ω .

2.2. Dirichlet L-functions
Let χ be a real primitive Dirichlet character modulo q , and let

δ = δχ =
{

0 if χ(−1) = 1 ,

1 if χ(−1) = −1 .

Let L(s, χ) be the Dirichlet L-function associated with χ which is defined by the series∑∞
n=1 χ(n)n

−s for �(s) > 1 and extended to an entire function on C. We denote by γ (s, χ)
the factor π−s/2Γ ((s + δ)/2) of the completed L-function Λ(s, χ) = qs/2π−s/2Γ ((s +
δ)/2)L(s, χ).

Let 0 < ω < 1/2. We define the function gχ,ω on (0,∞) by

gχ,ω(x) = πω

Γ (ω)

1√
x
β

(
x2; 1 + 2δ − 2ω

4
, ω

)
(2.6)

for 0 < x < 1, and gχ,ω(x) = 0 for x � 1, where β(z;p, q) is the function defined in
(2.2). By using (2.4), we define

cχ,ω(n) := χ(n)cω(n)

for natural numbers n. Finally, we define the real-valued function hχ,ω on (0,∞) by

hχ,ω(x) = q−ω 1√
x

∞∑
n=1

cχ,ω(n) gχ,ω
(n
x

)
. (2.7)

As well as hω of (2.5), hω,χ is well-defined and supported on [1,∞).

THEOREM 2.2. Let 0 � ω0 < 1/2.
(1) Assume that L(s, χ) 	= 0 for real s ∈ (1/2 +ω0, 1]. Moreover assume that there

exists xω � 1 for every ω0 < ω < 1/2 such that hχ,ω of (2.7) does not change
sign on (xω,∞). Then L(s, χ) 	= 0 in the right-half plane �(s) > 1/2 + ω0.

(2) Assume that the GRH is valid for L(s, χ). Then there exists xω � 1 for every
0 < ω < 1/2 such that hχ,ω does not change sign on (xω,∞).

In particular the validity of the GRH for L(s, χ) is equivalent to the statement that there
exists xω � 1 for every 0 < ω < 1/2 such that hχ,ω does not change sign on (xω,∞).

REMARK. We have L(s, χ) 	= 0 for real s if the series θχ (x) = ∑
n∈Z

nδχ(n)

e−πn2x/q attached to L(s, χ) has a single sign on (0,∞) by the formula Λ(s, χ) =∫∞
0 θχ(x

2) xs+δ−1 dx which is valid for all s ∈ C. We may check whether θχ(x) has a
single sign by an elementary way if the modulo q is small.
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2.3. General L-functions
In order to state the main result, we specify the meaning of “L-function” in the present

paper according to Iwaniec-Kowalski [6, §5.1]. We say that L(f, s) is an L-function with
the symbol f if we have the following data and conditions:

(L-1) A Dirichlet series with Euler product of degree d � 1

L(s, f ) =
∞∑
n=1

λf (n)

ns
=
∏
p

(
1 − αf,1(p)

ps

)−1

. . .

(
1 − αf,d (p)

ps

)−1

with λf (1) = 1, λf (n) ∈ C, and αf,i(p) ∈ C. We assume that the series and
the Euler product converges absolutely for �(s) > 1, and the local parameters
αf,i (p) (1 � i � d) satisfy |αf,i(p)| < p for all prime numbers p.

(L-2) A gamma factor

γ (f, s) = π−ds/2
d∏
j=1

Γ

(
s + κj

2

)

with κj ∈ C. We assume that the local parameters κi (1 � j � d) are either
real or come in conjugate pairs. Moreover �(κj ) > −1.

(L-3) An integer q(f ) � 1 such that αf,i (p) 	= 0 for p � q(f ) and 1 � i � d .

(L-4) The complete L-function defined by

Λ(f, s) = q(f )
s
2 γ (f, s)L(f, s)

admits analytic continuation to a meromorphic function for s ∈ C of order 1,
with at most poles at s = 0 and s = 1 with the same order r � 0. Moreover it
satisfies the functional equation

Λ(f, s) = ε(f )Λ(f̄ , 1 − s) ,

where f̄ is an object associated with f (the dual of f ) for which λf̄ (n) =
λf (n), γ (f̄ , s) = γ (f, s), q(f̄ ) = q(f ) and ε(f ) is a complex number of
absolute value 1.

It is said that L(f, s) satisfies the Ramanujan-Petersson conjecture if for any 1 � i � d we
have |αf,i (p)| = 1 for all p � q(f ) and |αf,i (p)| � 1 otherwise. This implies, in particular,
λf (n) � τd(n) 
ε n

ε for the Dirichlet coefficients τd(n) of ζ d(s). The Grand Riemann
Hypothesis (GRH for short) refers to the statement that all zeros of L(f, s) in the critical
strip 0 < �(s) < 1 lie on the critical line �(s) = 1/2.

The Riemann zeta function and Dirichlet L-functions are L-functions in this sense.
Products ζ(s)k0L(s, χ1)

k1 · · ·L(s, χl)kl (kj ∈ Z�0, 0 � j � l) of them are also L-
functions. Other typical examples of L-functions are L-functions L(s, φ) associated with
normalized Hecke eigen holomorphic cusp forms φ. As for the theory of holomorphic cusp
forms, see Chapter 14 of [6], for example. We refer these examples as L-functions of the
symbol f = 1, f = χ , and f = φ, respectively.
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Now we generalize Theorem 2.1 and 2.2 to L-functions. An L-function L(f, s) is
called self-dual if f = f̄ . Hereafter we assume that L(f, s) is self-dual. Then coefficients
λf (n) are real for all n by definition of the dual f̄ , and ε(f ) ∈ {±1}. The Rimeann zeta
function and Dirichlet L-functions associated with real primitive characters are self-dual
L-functions. An L-function attached to a normalized Hecke eigen holomorphic cusp form
φ satisfyingWφ = φ for the Fricke involution W is also self-dual L-function.

Let 0 < ω < 1/2. We define functions gf,ω,j , 1 � j � d on (0,∞) by

gf,ω,j (x) := 2πω

Γ (ω)
x−ω+κj (1 − x2)ω−1 (2.8)

for 0 < x < 1, and gf,ω,j (x) = 0 for x � 1. In addition, we define

p1(x) := δ1(x)− 2ω(1 − 2ω) xω−1 − 2ω(1 + 2ω) xω

for 0 < x < 1, and p1(x) = 0 for x > 1, where δ1(x) is the delta function at x = 1, and

pr(x) :=
∫ 1

0
· · ·
∫ 1

0
p1

(
x

y1 · · · yr−1

)
p1(y1) · · ·p1(yr−1)

dy1

y1
· · · dyr−1

yr−1
(r � 2) .

By using these functions, we define

g〈0〉
f,ω(x) := (pr ∗ gf,ω,1 ∗ · · · ∗ gf,ω,d )(x) , (2.9)

where r � 0 is the order of the pole of Λ(f, s) at s = 1 and ∗ means the multiplicative
convolution (F ∗G)(x) = ∫∞

0 F(x/y)G(y) y−1dy. Note that g〈0〉
f,ω(x) = 0 for x > 1 by its

definition. We define numbers µf (n) by the Dirichlet coefficients of L(f, s)−1:

1

L(f, s)
=

∞∑
n=1

µf (n)

ns
=
∏
p

(
1 − αf,1(p)

ps

)
· · ·
(

1 − αf,d (p)

ps

)
, (2.10)

and define the numbers cf,ω(n) by

cf,ω(n) = nω
∑
d |n

µf (d)λf (n/d)

d2ω
. (2.11)

Moreover we define the function h〈0〉
f,ω on (0,∞) by

h
〈0〉
f,ω(x) = q(f )−ω 1√

x

∞∑
n=1

cf,ω(n)g
〈0〉
f,ω

(n
x

)
. (2.12)

As well as (2.5) and (2.7), the right-hand side of (2.12) is a finite sum for any fixed x � 1
and vanishes for 0 < x < 1. Finally we define the function h〈k〉

f,ω for k ∈ N by

h
〈k〉
f,ω(x) :=

∫ x

1
h

〈k−1〉
f,ω (y)

dy

y
. (2.13)

As proved in Lemma 4.1 below, h〈k〉
f,ω is a well-defined continuous function on (0,∞). We

have

h
〈k〉
f,ω(x) = q(f )−ω

1√
x

∞∑
n=1

cf,ω(n)g
〈k〉
f,ω

(n
x

)
(2.14)
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if we put

g〈k〉
f,ω(x) :=

∫ 1

x

√
y

x
g〈k−1〉
f,ω (y)

dy

y
. (2.15)

As proved in Lemma 4.1 below, g〈k〉
f,ω is a well-defined continuous function on (0,∞).

The function h〈1〉
f,ω is equal to (2.5) (resp. (2.7)) if f = 1 (resp. f = χ) by Lemma 4.3

below. Now Theorems 2.1 and 2.2 are generalized as follows:

THEOREM 2.3. Let 0 � ω0 < 1/2. Let L(f, s) be a self-dual L-function in the
sense of the above.

(1) Assume that L(f, s) 	= 0 for any real s ∈ (1/2 + ω0, 1]. Moreover assume
that the following condition holds for some natural number k � 1: there exists
xω,k � 1 for every ω0 < ω < 1/2 such that h〈k〉

f,ω of (2.13) does not change
sign on (xω,k,∞). Then L(f, s) 	= 0 in the right-half plane �(s) > 1/2 +ω0.

(2-a) Assume that the GRH is valid for L(f, s). Then there exists xω,k � 1 for every

natural number k � 2 and every real number 0 < ω < 1/2 such that h〈k〉
f,ω

does not change sign on (xω,k,∞).
(2-b) Assume that d = 1 (see (L-1)) and that the Ramanujan-Petersson conjecture

and the GRH are valid forL(f, s). Then there exists xω,k � 1 for every natural

number k � 1 and every real number 0 < ω < 1/2 such that h〈k〉
f,ω does not

change sign on (xω,k,∞).

REMARK. Let L(s, φ) be a self-dual L-function attached to a normalized Hecke
eigen holomorphic cusp form φ of weight k and level q . If φ(iy) has a single sign on
(0,∞), e.g. the Ramanujan delta function, ∆(z) = e2πiz∏∞

n=1(1 − e2πinz)24, we have
L(s, φ) 	= 0 for s ∈ R by the integral formula Λ(s, f ) = ∫∞

0 y(k−1)/2φ(iyq−1/2) ys−1 dy.

By Kaczorowski-Perelli [7], the assertion of (2-b) for k = 1 is essentially (2) of The-
orem 2.1 and 2.2. One of obvious advantage of cases of d = 1; the Riemann zeta function
(f = 1) and Dirichlet L-functions (f = χ), is that we can define functions h〈1〉

f,ω by el-
ementally ways only because of the simplicity of the coefficients λf (n) and the gamma
factor γ (f, s).

It is not obvious whether the condition k � 2 in (2-a) is relaxed to k � 1 for any d > 1
by a technical reason. However, we obtain the following result at least.

THEOREM 2.4. Let L(f, s) be a self-dual L-function. Assume that the GRH is valid
for L(f, s). Then the function

Rf,ω(x) := h
〈1〉
f,ω(x)− ε(f ) · 1[1,∞)(x) (2.16)

belongs to L2((1,∞), x−1dx) for every 0 < ω < 1/2, where ε(f ) is the sign of the
functional equation in (L-4) and 1[1,∞) is the characteristic function of [1,∞). In other

words, for large x � 1, h〈1〉
f,ω has the definite sign ε(f ) in the sense of L2.

Conversely, if (2.16) belongs to L2((1,∞), x−1dx) for every ω0 < ω < 1/2, Then
L(f, s) 	= 0 in the right-half plane �(s) > 1/2 + ω0.
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In Theorem 2.3, we specified the special type function g〈k〉
f,ω of (2.15) as a weight in

(1.1). As found in (2.3) or (2.6), the weight g〈k〉
f,ω has quite different form comparing with

any other weights in the introduction and other usual weights studied in analytic number
theory (see [11, §5.1], for example). One may consider that it is possible to extend Theorem
2.3 to more wide class of weights. Moreover one may wonder why we introduced the
parameter ω (and k) which complicate the statements of results.

However we have a positive reason for the restriction of weights to the special g〈k〉
f,ω.

It is in the connection between the weighted summatory functions h〈k〉
f,ω and the theory of

model subspaces of the Hardy space on the upper half plane generated by meromorphic
inner functions. In this connection the case of k = 1 has a particular importance.

A model subspace is the orthogonal complement of some invariant subspace of the
Hardy space. The theory of model subspaces is one of fruitful area of function analysis
and operator theory (see [12, 13], for example). The existence of such background is a
remarkable advantage of our summatory functions with the special weights. In general, it
is hard to prove the monotonicity of

∫
h if it is sufficient or equivalent to the GRH for some

zeta/L-function. A reason of such difficulty may be in a situation that we can not reduce
the monotonicity of

∫
h to other plausible problem inside/outside number theory, of course,

except for an essential difficulty of the GRH itself. For example, as far as the author know,
the monotonicity of primitive functions of (1.2), (1.3), and (1.4) are not reduced to other
reasonable problems inside/outside number theory. See the forthcoming paper [17] for
bridges between weighted summatory functions h〈1〉

f,ω and the theory of model subspaces.

3. Preliminaries

NOTATION. We denote by s = σ + it the complex variable with the real part σ and
the imaginary part t , and use ε to express arbitrary small positive real number. For a positive
valued function g(x), we use Landau’s f (x) = O(g(x)) and Vinogradov’s f (x) 
 g(x)
as the same meaning in the usual sense. Also we use Landau’s f (x) = o(g(x)) for x → ∞
in the meaning that for any ε there exists xε > 0 such that |f (x)| � εg(x) for x � xε .

The following lemmas are used repeatedly in the later sections.

LEMMA 3.1 (Stirling’s formula [6 A.4 of §5]). Let −∞ < σ1 < σ2 < ∞. We have

Γ (σ + it) = √
2π |t|σ+it−1/2e−(π/2)|t |−it+sgn(t)i(π/2)(σ−1/2)(1 +O(|t|−1)) (3.1)

for σ1 � σ � σ2 and |t| � 1.

LEMMA 3.2 ([14, (5.35) of p. 195]. For �(s + α) > 0 and �(β − α) > 0, we have

Γ (s + α)

Γ (s + β)
= 1

Γ (β − α)

∫ 1

0
xα(1 − x)β−α−1 xs

dx

x
. (3.2)
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4. On the first half of Theorem 2.3

In this section, we prove Theorem 2.3 (1). We define the entire function ξ(f, s) by

ξ(f, s) := sr (s − 1)rΛ(f, s) ,

where r is the order of the pole of Λ(f, s) at s = 1 (see (L-4)), and put

Θf,ω(s) := ξ(f, s − ω)

ξ(f, s + ω)
=
[
(s − ω)(s − ω − 1)

(s + ω)(s + ω − 1)

]r
Λ(f, s − ω)

Λ(f, s + ω)
. (4.1)

LEMMA 4.1. Let 0 < ω < 1/2 and k ∈ N. Functions g〈k〉
f,ω of (2.15) and h〈k〉

f,ω of
(2.13) are continuous functions on (0,∞) supported on (0, 1] and [1,∞), respectively.

Proof. By (2.14), it is sufficient to prove that g〈k〉
f,ω is a continuous function on (0, 1]

and lim
x→1− g〈k〉

f,ω(x) = 0. By (2.15), it is reduced to the case k = 1, and we have

√
x g〈1〉

f,ω(x) =
∫ 1

x

√
y g〈0〉

f,ω(y)
dy

y
. (4.2)

Because L1((0, 1), x−1dx) is closed under the multiplicative convolution, g〈0〉
f,ω belongs to

L1((0, 1), x−1dx) by definition (2.9) and the assumption 0 < ω < 1/2. Hence the right-
hand side of (4.2) is a continuous function on (0, 1) and tends to zero as x → 1−. �

LEMMA 4.2. Let 0 < ω < 1/2 and k ∈ N. We have∫ ∞

1
h

〈k〉
f,ω(x) x

1
2 −s dx

x
= Θf,ω(s)

(s − 1/2)k
(4.3)

together with the absolute convergence of the integral for sufficiently large �(s) > 0. Un-
der the Ramanujan-Petersson conjecture, the region of the absolute convergence is relaxed
to the right-half plane �(s) > 1 + ω.

Proof. Put γj (f, s) := π−s/2Γ ((s + κj )/2) for 1 � j � d such that γ (f, s) =∏d
j=1 γj (f, s). Applying (3.2) to functions gf,j,ω of (2.8), we have∫ 1

0
gf,j,ω(x) xs

dx

x
= γj (f, s − ω)

γj (f, s + ω)
for �(s) > 1 + ω , (4.4)

since �(κj ) > −1 (see (L-2)). On the other hand, we have∫ 1

0
p1(x) x

s dx

x
= (s − ω)(s − ω − 1)

(s + ω)(s + ω − 1)
for �(s) > 1 + ω (4.5)

by elementary ways. Applying Theorem 44 of [18] to (4.4) and (4.5) with definition (2.9),
we obtain∫ ∞

1
g〈0〉
f,ω(x) x

s dx

x
=
[
(s − ω)(s − ω − 1)

(s + ω)(s + ω − 1)

]r
γ (f, s − ω)

γ (f, s + ω)
for �(s) > 1 + ω . (4.6)
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Using (2.15) repeatedly, we have

g〈k〉
f,ω(x) = (−1)k−1

(k − 1)!
∫ 1

x

√
y

x

(
log

x

y

)k−1

g〈0〉
f,ω(y)

dy

y
, (4.7)

while

(−1)k

(k − 1)!
∫ 1

0
x−1/2(log x)k−1 xs

dx

x
= 1

(s − 1/2)k
for �(s) > 1/2 . (4.8)

Therefore, by applying Theorem 44 of [18] again to (4.6) and (4.8) with (4.7), we obtain∫ ∞

1
g〈k〉
f,ω(x) x

s dx

x

= 1

(s − 1/2)k

[
(s − ω)(s − ω − 1)

(s + ω)(s + ω − 1)

]r
γ (f, s − ω)

γ (f, s + ω)
for �(s) > 1 + ω .

(4.9)

By definition (2.10) and (2.11), we have
∞∑
n=1

cf,ω(n)

ns
=

∞∑
m=1

λf (m)

ms−ω
∞∑
n=1

µf (n)

ns+ω
= L(f, s − ω)

L(f, s + ω)
(4.10)

as an equality of formal Dirichlet series. However all Dirichlet series in (4.10) converge
absolutely if �(s) > 0 is sufficiently large, since we assumed |αf,i(p)| < p (see (L-1)).

Under the Ramanujan-Petersson conjecture, the region of the absolute convergence of
the Dirichlet series (4.10) is relaxed to �(s) > 1+ω, since λf (n) 
ε n

ε andµf (n) 
ε n
ε .

Hence, (2.14), (4.9), (4.10), and Fubini’s theorem derive the assertion we needed. �
LEMMA 4.3. The function gω of (2.3) (resp. gχ,ω of (2.6)) is equal to g〈1〉

f,ω of (2.13)
for f = 1 (resp. f = χ).

Proof. This is a simple consequence of (3.2) and [18, Theorem 44] by (2.1) and
(2.2). �

Proof of Theorem 2.3 (1). We prove that Λ(f, s) 	= 0 for any s ∈ C in the strip
1/2 + ω0 < �(s) � 1 by contradiction. Note that Λ(f, s) 	= 0 for �(s) > 1 by the Euler
product of L(f, s) with its convergence condition and the assumption on the gamma factor
γ (f, s). By the assumptions of Theorem 2.3 (1), a well-known theorem of Landau (see
[20, §5 of Chap. II], for example) and formula (4.3) imply thatΘf,ω(s) has no poles in the
right-half plane �(s) > 1/2 for every ω0 < ω < 1/2.

Suppose that there exists a zero ρ of Λ(f, s) such that 1/2 + ω0 < �(ρ) � 1 and
|�(ρ)| > 0. We take some T > |�(ρ)| > 0. Then the set

ZT :=
{
s ∈ C

∣∣∣∣ Λ(f, s) = 0,
1

2
+ ω0 < �(s) � 1, |�(ρ)| < T

}
is non-empty and finite. Therefore we may assume that �(ρ) is minimal in ZT by replacing
ρ by another zero in ZT if necessary.

Obviously it is possible to take (0 �) ω0 < ω < 1/2 such that

1

2
+ ω0 <

1

2
+ ω < �(ρ) < 1

2
+ ω + (ω − ω0) . (4.11)



On Monotonicity of Certain Weighted Summatory Functions Associated with L-Functions 221

For such ω, we put s̃ := ρ − ω. ThenΛ(f, s̃ + ω) = Λ(f, ρ) = 0 with

1

2
< �(s̃) < 1

2
+ ω − ω0 . (4.12)

This impliesΛ(f, s̃ − ω) = 0, since |�(ρ)| > 0 and Θf,ω(s) has no poles on �(s) > 1/2.
By the functional equation, Λ(f, 1 − s̃ + ω) = ε(f )Λ(f, s̃ − ω) = 0. Hence 1 − s̃ + ω is
a zero of Λ(f, s) having a nonzero imaginary part. For this zero, (4.12) implies

1

2
+ ω0 < �(1 − s̃ + ω) <

1

2
+ ω (< 1) .

This contradicts the choice of ρ by (4.11). �

5. On the latter half of Theorem 2.3 and Theorem 2.4

In this section, we prove Theorem 2.3 (2-a), (2-b), and Theorem 2.4. We start from
the preparation of lemmas.

LEMMA 5.1. Let k ∈ N. Suppose that cf,ω(n) = O(ψf,ω(n)) for some positive
valued arithmetic function ψf,ω. If c > 0 and T > 0 are sufficiently large, we have

h
〈k〉
f,ω(x) = 1

2πi

∫ c+iT

c−iT
Θf,ω(s)

(s − 1/2)k
xs−

1
2 ds +O

(
xc− 1

2

T k+dω(c − 1 − ω)r

)

+O

(
ψf,ω(2x) x1/2 log x

T k+dω

)
+O

(
ψf,ω(x)

T k+dω
√
x

)
for x > 1 with x 	∈ Z.

Proof. By the Stirling formula (3.1), in any vertical strip of finite width, there exists
T0 � 1 such that

γ (f, s − ω)

γ (f, s + ω)
= (2π)dω|t|−dωe− πidω

2 sgn(t)(1 +O(|t|−1)) for |t| � T0. (5.1)

By (4.7) and the summability of |g〈0〉
f,ω(x)| on (ε, 1), g〈k〉

f,ω belongs to C1(0, 1) and is of
locally bounded variation. Therefore the Mellin inversion formula of (4.9) holds for 0 <
x < 1 and c > 1 + ω ([18, Theorem 28]):

g〈k〉
f,ω(x) = 1

2πi

∫ c+i∞

c−i∞
1

(s − 1/2)k

[
(s − ω)(s − ω − 1)

(s + ω)(s + ω − 1)

]r
γ (f, s − ω)

γ (f, s + ω)
x−s ds .

Note that we may understand as T � T0, since we assumed that T is sufficiently large. By
(5.1), we have

1

2πi

∫ c+i∞

c+iT
1

(s − 1/2)k

[
(s − ω)(s − ω − 1)

(s + ω)(s + ω − 1)

]r
γ (f, s − ω)

γ (f, s + ω)
x−s ds

= x−c(2π)dω−1e−
πidω

2

∫ ∞

T

t−dω

(c − 1/2 + it)k
(1 +O(|t|−1)) x−it dt

= x−c(2π)dω−1e−
πidω

2

∫ ∞

T

ik tk−dω

((c − 1/2)2 + t2)k
x−it dt +O

(
x−cT −k−dω) .
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The function tk−dω/((c − 1/2)2 + t2)k in the integral of the right-hand side decreases
monotonically if |t| > T1 for some T1 > 0. Therefore∣∣∣∣

∫ ∞

T

tk−dω

((c − 1/2)2 + t2)k
x−it dt

∣∣∣∣ � 4

log x

T k−dω

((c − 1/2)2 + T 2)k

by the first derivative test (see [5, §2.1], for example) if T � max{T0, T1}. Hence

g〈k〉
f,ω(x) = 1

2πi

∫ c+iT

c−iT
1

(s − 1/2)k

[
(s − ω)(s − ω − 1)

(s + ω)(s + ω − 1)

]r
γ (f, s − ω)

γ (f, s + ω)
x−s ds

+O

(
1

xc

1

T k+dω

)
+O

(
1

xc log x

1

T k+dω

)
.

By (2.12), (4.1), and (4.10), we have

h
〈k〉
f,ω(x) = 1

2πi

∫ c+iT

c−iT
Θf,ω(s)

(s − 1/2)k
xs−

1
2 ds

+O

(
xc−1/2

T k+dω
∞∑
n=1

|ψf,ω(n)|
nc

)
+O

(
xc−1/2

T k+dω
∞∑
n=1

|ψf,ω(n)|
nc| log(n/x)|

)

since c is large. Sums in the error terms are estimated by a standard way (see [19, §3.12],
for example), and then we obtain the desired formula. �

LEMMA 5.2. Let 0 < ω < 1/2. Assume that the GRH of L(f, s) is valid. Then we
have |Θf,ω(s)| < 1 for �(s) > 1/2, and |Θf,ω(s)| = 1 for �(s) = 1/2.

Proof. Recall that ε(f ) ∈ {±1} by the self-duality of L(f, s). Applying Theorem 4
of [9] to ξ(f, s), we obtain |Θf,ω(s)| < 1 for �(s) > 1/2. Using the functional equation
ξ(f, s) = ε(f )ξ(f, 1 − s) in (4.1), we obtain |Θf,ω(s)| = 1 on �(s) = 1/2. �

LEMMA 5.3. Assume that the Ramanujan-Petersson conjecture and the GRH for
L(f, s). For any ε > 0 we have

L(f, σ + it) 




|t|dε if σ � 1/2 , |t| → ∞ ,

|t|d( 1
2 −σ+ε) if σ < 1/2 , |t| → ∞ ,

where the implied constant depends on f and ε. We can take ε = 0 if σ > 1 or σ < 0.
Moreover

1

L(f, σ + it)

 |t|dε (|t| → ∞)

in the right-half plane σ � 1/2 + ε.

Proof. For 0 � σ � 1, the estimate for L(f, s) is a consequence of Corollary 5.20 of
[6] and the Phragmen-Lindelöf convexity principle. We have L(f, σ + it) 
 1 for σ > 1
by the absolute convergence of the Dirichlet series, and L(f, σ + it) 
 |t|d(1/2−σ) for
σ < 0 by the functional equation and the Stirling formula (3.1). The estimate for L(f, s)−1

is a consequence of Theorem 5.19 of [6]. �
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Proof of Theorem 2.3 (2-a). Let 0 < ω < 1/2, 0 < δ < ω, and T � max{T0, T1},
where T0 and T1 are positive real numbers appeared in the proof of Lemma 5.1.

We consider the positively oriented closed path consisting of the vertical line from
c − iT to c + iT , the horizontal line from c + iT to 1/2 + iT , the vertical line from
1/2 + iT to 1/2 + iδ, the counter-clockwise left-half circle Cδ of radius δ around s = 1/2,
the vertical line from 1/2−iδ to 1/2−iT , and the horizontal line from 1/2−iT to c−iT . In
the interior of the closed pathΘf,ω(s)/(s − 1/2)k has no poles except for the pole of order
k (� 2) at s = 1/2, since Θf,ω(s) has no poles in the right-half plane �(s) > 1/2 − ω by
the GRH for L(f, s) and Θf,ω(1/2) = ε(f ) ∈ {±1} by the functional equation of Λ(f, s).
Thus the residue theorem gives

1

2πi

∫ c+iT

c−iT
Θf,ω(s)

(s − 1/2)k
xs−

1
2 ds = Pk(log x)

+ 1

2πi

(
−
∫
Cδ

+
∫ 1/2+iT

1/2+δ
+
∫ 1/2−iδ

1/2−iT
+
∫ c+iT

1/2+iT
−
∫ c−iT

1/2−iT

)
Θf,ω(s)

(s − 1/2)k
xs−

1
2 ds ,

(5.2)

where Pk is the polynomial of degree k − 1 with real coefficients such that

Pk(log x) = Res
s=1/2

(
Θf,ω(s)

(s − 1/2)k
xs−

1
2

)
.

The leading term of Pk(log x) is

Θf,ω(1/2)(log x)k−1 = ε(f )(log x)k−1 .

By Lemma 5.2 the fourth and fifth integrals in the right-hand side of (5.2) are estimated as(∫ c+iT

1/2+iT
−
∫ c−iT

1/2−iT

)
Θf,ω(s)

(s − 1/2)k
xs−

1
2 ds 
 T −k

∫ c

1/2
xσ− 1

2 dσ 
 xc−1/2

T k log x
. (5.3)

By Lemma 5.1, (5.2), and (5.3), we obtain

h
〈k〉
f,ω(x) = Pk(log x)+

(
−
∫
Cδ

+
∫ 1/2+i∞

1/2+δ
+
∫ 1/2−iδ

1/2−i∞

)
Θf,ω(s)

(s − 1/2)k
xs−

1
2 ds

=: Pk(log x)− I1 + I2 + I3

(5.4)

say, by tending T → ∞ for fixed x � 1. Here the integrals I2 and I3 are absolutely inte-
grable, since |Θf,ω(s)| = 1 on the line �(s) = 1/2 by Lemma 5.2 and k � 2. Therefore,

I2 + I3 = o(1) (x → ∞)

as a function of x by the Riemann-Lebesgue lemma ([18, Theorem 1]). In addition, we
have

I1 

∫ π/2

0
x−δ cos θ dθ 
 1

log x
(x → ∞) .

Hence we obtain

h
〈k〉
f,ω(x) = ε(f )(log x)k−1(1 +O((log x)−1)

)
.

In particular h〈k〉
f,ω does not change sign for large x > 0. �
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Proof of Theorem 2.3 (2-b). It is sufficient to prove the case k = 1 only, since the
other cases are proved by a similar way with the above.

Let 0 < ω < 1/2, 0 < δ < ω, and T � max{T0, T1}. We consider the positively
oriented rectangle with vertices at c + iT , 1/2 − δ + iT , 1/2 − δ − iT and c − iT . In
this rectangle Θf,ω(s)/(s − 1/2) has no poles except for the simple pole at s = 1/2 with
residue ε(f ) by a similar reason with the above proof. Thus the residue theorem gives

1

2πi

∫ c+iT

c−iT
Θf,ω(s)

s − 1/2
xs−

1
2 ds

= ε(f )+ 1

2πi

(∫ 1/2−δ+iT

1/2−δ−iT
+
∫ c+iT

1/2−δ+iT
−
∫ c−iT

1/2−δ−iT

)
Θf,ω(s)

s − 1/2
xs−

1
2 ds

= ε(f )+ I1 + I2 − I3 ,

(5.5)

say. Recall that d = 1. By Lemma 5.3 and the Stirling formula (3.1), we have

I1 
 x−δ
∫ T

−T
|t|δ+ε
1 + |t| dt 
 (x/T )−δT ε , (5.6)

and

I2 − I3 
 T ε
∫ 1/2+ω

1/2

(x/T )σ− 1
2

|σ − 1/2 + iT | dσ + T −ω+ε)
∫ c

1/2+ω
xσ− 1

2

|σ − 1/2 + iT | dσ


 (x/T )ω − 1

T 1−ε log(x/T )
+ xc− 1

2

T 1+ω−ε log x
.

(5.7)

By Lemma 5.1, (5.5), (5.6), and (5.7), we obtain

h
〈1〉
f,ω(x) = ε(f )+O

(
(x/T )−δT ε

)+O

(
(x/T )ω − 1

T 1−ε log(x/T )

)
+O

(
xc− 1

2

T 1+ω−ε log x

)

+O

(
xc− 1

2

T 1+ω(c − 1 − ω)r

)
+O

(
ψf,ω(2x) x1/2 log x

T 1+ω

)
+O

(
ψf,ω(x)

T 1+ω√
x

)
.

By the Ramanujan-Petersson conjecture we have λf (n) 
ε n
ε and µf (n) 
ε n

ε . There-
fore we can take c = 1 + ω + ε and ψf,ω(x) 
 xε . Hence we have

h
〈1〉
f,ω(x) = ε(f )+O

(
(x/T )−δT ε

)+O

(
(x/T )ω − 1

T 1−ε log(x/T )

)
+O

(
x

1
2 +ω+ε

T 1+ω−ε log x

)

+O

(
x

1
2 +ω+ε

T 1+ω

)
+O

(
x1/2+ε log x

T 1+ω

)
+O

(
xε

T 1+ω√
x

)
.

By taking T = xA for some ((1/2)+ ω + ε)/(1 + ω − ε) < A < δ/(δ + ε) (roughly, for
some 2/3 < A < 1 by 0 < ω < 1/2), we obtain

h
〈1〉
f,ω(x) = ε(f )+O(x−B) (x → ∞)

for some small B > 0. In particular h〈1〉
f,ω does not change sign for large x > 0. �
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Proof of Theorem 2.4. The first half of Theorem 2.4 is obvious by the proof of The-
orem 2.4 (2-a). In fact, the integrand of integrals I2 and I3 in (5.4) is L2, and hence I2 + I3
belongs to L2((1,∞), x−1dx). In addition, as already found, I1 in (5.4) also belongs to
L2((1,∞), x−1dx).

We prove the latter half of Theorem 2.4. By (4.3), we have∫ ∞

1
Rf,ω(x) x

1
2 −s dx

x
= Θf,ω(s)− ε(f )

s − 1/2

for s ∈ C with large �(s) > 0. By Rf,ω ∈ L2((1,∞), x−1dx) and Theorem 10 of [20,
Chap. II], we find that (Θf,ω(s) − ε(f ))/(s − 1/2) has no poles in the right-half plane
�(s) > 1/2. Then, by the argument of the proof of Theorem 2.3 (1), we arrive at the
desired conclusion. �
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[ 5 ] A. Ivić, The Riemann zeta-function, Dover Publications Inc., Mineola, NY, 2003, Theory and applica-

tions, Reprint of the 1985 original [Wiley, New York; MR0792089 (87d:11062)]. MR 1994094
[ 6 ] H. Iwaniec and E. Kowalski, Analytic number theory, American Mathematical Society Colloquium Pub-

lications, vol. 53, American Mathematical Society, Providence, RI, 2004. MR 2061214 (2005h:11005)
[ 7 ] J. Kaczorowski and A. Perelli, On the structure of the Selberg class. I. 0 � d � 1, Acta Math. 182 (1999),

no. 2, 207–241. MR 1710182 (2000h:11097)
[ 8 ] S. Knapowski and P. Turán, Über einige Fragen der vergleichenden Primzahltheorie, Number Theory and

Analysis (Papers in Honor of Edmund Landau), Plenum, New York, 1969, pp. 157–171. MR 0272729
(42 #7610)

[ 9 ] J. C. Lagarias and M. Suzuki, The Riemann hypothesis for certain integrals of Eisenstein series, J. Num-
ber Theory 118 (2006), no. 1, 98–122. MR 2220265 (2007c:11099)

[ 10 ] E. Landau, Über einige ältere Vermutungen und Behauptungen in der Primzahltheorie, Math. Z. 1 (1918),
no. 2–3, 213–219. MR 1544293

[ 11 ] H. L. Montgomery and R. C. Vaughan, Multiplicative number theory. I. Classical theory, Cambridge
Studies in Advanced Mathematics, vol. 97, Cambridge University Press, Cambridge, 2007. MR 2378655
(2009b:11001)

[ 12 ] N. K. Nikolski, Operators, functions, and systems: an easy reading. Vol. 1, Mathematical Surveys
and Monographs, vol. 92, American Mathematical Society, Providence, RI, 2002, Hardy, Hankel, and
Toeplitz, Translated from the French by Andreas Hartmann. MR 1864396 (2003i:47001a)

[ 13 ] N. K. Nikolski, Operators, functions, and systems: an easy reading. Vol. 2, Mathematical Surveys
and Monographs, vol. 93, American Mathematical Society, Providence, RI, 2002, Model operators and
systems, Translated from the French by Andreas Hartmann and revised by the author. MR 1892647
(2003i:47001b)

[ 14 ] F. Oberhettinger, Tables of Mellin transforms, Springer-Verlag, New York, 1974. MR 0352890 (50 #5376)
[ 15 ] G. Pólya, Verscheidene Bemerkungen zur Zahlentheorie, Jahresbericht der deutschen Math.-Vereinigung

28 (1919), 31–40.



226 M. SUZUKI

[ 16 ] M. Ram Murty, Some remarks on the Riemann hypothesis, Cohomology of arithmetic groups, L-functions
and automorphic forms (Mumbai, 1998/1999), Tata Inst. Fund. Res. Stud. Math., vol. 15, Tata Inst. Fund.
Res., Bombay, 2001, With appendices by Nathan Ng, pp. 180–196. MR 1986103 (2004c:11160)

[ 17 ] M. Suzuki, A canonical system of differential equations arising from the Riemann zeta-function, (2011),
prepublication.

[ 18 ] E. C. Titchmarsh, Introduction to the theory of Fourier integrals, third ed., Chelsea Publishing Co., New
York, 1986. MR 942661 (89c:42002)

[ 19 ] E. C. Titchmarsh, The theory of the Riemann zeta-function, second ed., The Clarendon Press Oxford Uni-
versity Press, New York, 1986, Edited and with a preface by D. R. Heath-Brown. MR 882550 (88c:11049)

[ 20 ] D. V. Widder, The Laplace Transform, Princeton Mathematical Series, v. 6, Princeton University Press,
Princeton, N. J., 1941. MR 0005923 (3,232d)

Graduate School of Mathematical Sciences
The University of Tokyo
3–8–1 Komaba Meguro-ku Tokyo, 153–8914,
Japan
e-mail: msuzuki@ms.u-tokyo.ac.jp


