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Abstract. Let E(T) be the error term in the mean square formula for the Riemann
zeta-function on the critical line. In this paper, a smooth-weighted mean value formula for
E(T)? over the interval [0, P] is obtained in which the error term is O (P log2 P). Asa
corollary, it is proved that the classical mean-value formula for £ (T)2 over [0, P] has an
error term which is £2_ (P log2 Ploglog P).

1. Introduction and statement of results

A central problem in classical analytic number theory concerns the 2k-th moments

T 1 2k
1(T) =/ ;<—+it)
0 2

dt
of the Riemann zeta-function on the critical line. Evaluation of [;(T") is a notoriously
difficult problem and asymptotic formula for I} (7") has been obtained only for k = 1 and
2. Recent developments on random matrix theory have led to many exciting conjectures on
the form of the main term for I4 (7).

Let
T T
E(T) =f ;(—+ir) di — T(log—+2y _ 1)
0 2 27
be the error term in the formula for /1 (7). Hardy-Littlewood [2] first proved that E(T) =
o(T log T), and Ingham [6] improved this to E(T) <« T3/4+¢_ This bound has been gradu-
ally sharpened by many authors in the last eighty years. However, the best result to-date of
Huxley [4], [5] that E(T) <« T131/416 is still a long way from the conjectured best bound
E(T) <, T,
On the other hand, Heath-Brown [3] applied a classical formula of Atkinson [1] to
prove that

2

P
/ E(T)*dT = cP3? + 0(P>*10g” P) (1.1)
0
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[e¢)

where ¢ = %(277)_1/ 2 > d (n)2n=3/% and d(n) is the divisor function. The rather large
n=1

O-term in Atkinson’s formula does not allow much improvement in the above O-term in

(L.1).
Let

T
F(T):/ E@t)%dt — cT>/?.
0

In [9] Meurman developed a smoothened version of Atkinson’s formula with a much
sharper error term (see §2 (2.1)) and thereby obtained the improved estimate F(P) <
Plog’ P in(1.1). Subsequently Meurman’s bound has been further sharpened to P log* P
and P log’ P loglog P, by Pressimann [11] and by Lau-Tsang [8] respectively. Further
improvement on this, to P log® P, say, would be difficult and would require some novel
techniques.

Estimations for F(T) are also related to bounds for E(#) and ¢(1/2 4 it). Indeed one
can deduce an upper bound for E(¢) from a bound for F(T') as follows.

First we notice that for z > y > 0,

E@Q—-Ey)=h@—-LO)—(z —y)(log% +2y) for some v € [y, z]

>—-2(z—y)logz.

Thus, E () can only decrease slowly, at a rate < logz.
Now suppose T > 0 is large and let

M= max |E@®)|=|E(r)] fora tel[T/2,T].
T/2<t<T

Obviously, we may assume that M > T1/4+€_If E(7) is positive, then

E(t)>lE() lM for t e + M
—E(r)=< T, T .
-2 2 6logT

M

Similar argument works in the case that E(7) is negative. Thus, writing wy+ = v+ CloaT’
0g

we have

2 v
M?(uu_ —w_) < / E()?dt < (wy —w_)VT + F(wy) — F(w_)

w—

and we deduce from this
F(T) < T?1og° T — M « T5 log

It is also possible to get an upper bound for {(% + it) from E(¢). Indeed, by an
inequality of Heath-Brown,
1 4i
—+iu
3 2

1 2 t+log? ¢
'§<—+it> <<10gt/
2 ‘
=logr (I, (t +log?t) — I)(t —log? 1)) + log

el
3

T.

2
du + logt

—log2 t
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= (log)O(log> 1) + (log 1)(E(t + log* 1) — E(t — log’ 1)) + log 1 .

Hence,
dy..e [ d o etl
E(T)<Tog T = §<§+zt> Lt2log 2 t.

Given the enormous difficulties in reducing the bound for F(T') further, we are pro-
mpted to consider adding a smooth weight to the mean square of E(7T), in the hope of
getting a sharper asymptotic formula. In the paper, we shall prove the following main
result.

THEOREM 1. Suppose the weight function w(t) is continuous with piecewise con-
tinuous and bounded derivative. Furthermore assume w(t) is supported on [%, 1] with
w(1/4) = w(1) = 0. Then

P 1
/ w<1>E(T)2dT = 3—C</ Vi o) dt) p3/?
0 P 2 \Jo

1
—6n_2</ a)(t)dt)PlogzPloglogP
0

+ O(Plog’ P). (1.2)
As an immediate consequence we deduce fron Theorem 1 the following.

THEOREM 2. We have
P
/ F(T)dT = —37"2P?log? Ploglog P 4+ O(P*log® P).
0

In particular,
F(T) = 2_(T log*> T loglog T) .

REMARKS 1. The dominance of the main term over the error term in Theorem 2
is very thin, by only loglog P. It is therefore crucial to suppress the error term estimates
in our argument to O (P log? P) and the key for the success is that w is continuous with
w(1/4) =w(l) =0.

2. Let
A(x) =) d(n) — xlogx — 2y — )x
n<x
be the error term in the dirichlet divisor problem. This is a well-known companion of E (7')
and they share many similar properties. However, Lau-Tsang [7] has proved that

P 1
fo w(%)A(x)dx:cl</o ﬁw(t)dt>P3/2

1
- (8712)_1</ (1) dt>P10g2 P +cPlogP + O(P)
0

for some constanst ¢; and ¢»>. The second main terms in this and (1.2) are of different orders
of magnitude and thus a fundamental difference between A(x) and E(T') is exhibited. This
appears to be the first result of such a nature in the literature.
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2. Notation and some preliminary results

Throughout this paper P > 100 is our main parameter and we set U = P!/% . The
variable x always lies in [§+/27 P, v/27 P | and hence x is of order +/P. Integrations with
respect to x are over [%\/ 2w P, A/ 2nP] or its sub-intervals. The letters &, m, n denote
positive integers << P whereas ¢ denotes an arbitrarily small positive number. We will also
invoke freely the well-known upper bound d(n) <, n®.

The formula we use for E(T) is the following smoothened version of Atkinson’s for-
mula in [1] as developed by Meurman [9]:

For x € [%«/ZnP, V27 P and a < v/ P, we have

b4 x? 73 log x
J;E(E):ZI—ZZwL\/;jLO( . ) 2.1

where
Zl = Y (=D)'nudm)n"*e, cos fy . (2.2)
n<(a+U)?
i3 _1/2.—
> =\ﬁ > Edmn e cos gy,
: * n<Z(x,a)
Nn =nu(a) =1 — max <09 ﬁU_ a) s

2

—1/4 -1
Tn x . Tma/n
ep=ep(x) = <1 + 7) (nﬁ arsinh ;/_) ,

2

In=Ja(x) = x—arsinhnﬁ-}-\/m_%’
T

@ =10 X
= x) = — _r -,
In = 9n . anﬁ s 1
x
=1L =1lo ,
n n(x) gznﬁ

arsinhz =log(z + v 1 + z2),
2
§n=En(x,a)=maX{min (ll(<i> —ﬁ—a)), 0} 2.3)
U 2

Z(x,u) = (iﬂ)2 L1 (2.4)

Sl -
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N, a) =2mn+an.

Thenn < Z(x, a) if and only if N'(n, a) < x.
We first collect a list of estimates for these functions that will be used in the sequel.
LEMMA 1. Letx € [%\/ 2w P, ~/ 271P] andm < n K P. We have the following.
() O<m, & <1,0<e £ <1
(i) e, (x) <nx3, (6,1) < xl.

Let

2w m 2 x
(i) f,(x) = - arsinh P gn(x) = - log i
(V) &(x.a)=x(2r2Uyn)"" for N(n.a) <x < N(.a+U) and &(x.a)=

0 otherwise.
V) F1) = fo () > i — m, (£ = FL)(f100) — fa0)) T < nx3
90 = g1y () = = Zlog 1 (g7(0) = g5 (0) (g4 ) = g1y (0) " =x
i) Z(x,a) < Pand0 < Z(x,a)— Z(x,a+U) < Ux.
Proof. These estimates are straightforward from the respective definitions. For in-
stance, forn < Z(x, a),
X

2w /n

wa\2 ma
- i+ ()
X X

and hence £, (x)~! « 1.

LEMMA 2. Lety > 1. Then uniformly for 1 < h < y%_s, we have

/h
W (y) = Y _ dm)d(m + h) = 61> /Oy m(u; hydu + 0 (y¥/*).

Here m(u; h) = o(h)logulog(u + 1)

+ {o(h)(Zy - 2%(2) —logh) + 20’(h)} log(u(u + 1))

+a(h){(2y - 2%(2) ~logh)? — 4<§/) (2)}

¢
+40'(h) <2y - 2%(2) — log h) + 40" (h) (2.5)
and
o(h)y=> d. o'(h)=> dlogd, o"(h) = dlog*d. (2.6)
d\h d\h dlh

Proof. This is adapted from Theorem 1 of [10].
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LEMMA 3. Suppose1/2 <y <zandl <h < Z%_S. Then

h
> dmydm+h) < ?(Z —ylog?z 4 23/4.
y<m=<z
Proof. Ify > z/2, then by Lemma 2
z/h
> dm)d(m +h) = 671_2/ m(u; hydu + 03/
y<m<z y/h
o(h) 3/4

< (z—y)10g22+z

h
If y < z/2, by Lemma 2 again,
Y dmyd(m+h) <Yy dmyd(m+h) <
y<m=z m=z
LEMMA 4. Lety > 1/2. Then
Wo(y) =Y _d(n)* =rx"2ylog’ y+ O(ylog’ y).

n=<y

o(h)

-~ 3/4
7 Z .

logzz +z

Proof. This is a well-known result.

LEMMA 5. Fory > 1/2, we have
M Y dmn 2 =272 log y + 0~ log? y).

n>y
d(m)d
(ii) Z L(n)z <y Plog’y for a <1 and a+ B < 1.
Ly menf(n — m)

Proof. (i) follows from Lemma 4 by partial summation.
(ii) First, the part of the sum in which m < n/2 is clearly « yl_o‘_ﬁ . For
2 <m <n <y,write h = n — m. Then this part of the sum is

2
_ d(m)d(m + h)
2
K)o
h<y m=y
By Lemma 3 and partial summation, the inner sum over m is

o(h)
n

< 1= Jog? y.

Summation of this over 4 then leads to the bound in (ii).

LEMMA 6. Let Hi(t), Hy(), ..., H-(t) be piecewise monotonic functions defined
on an interval I and let F(t) be a real differentiable function such that F'(t) is monotonic
with |F'(t)] > m > O fort € I. Then

,
'/Hl(t)Hz(t) o He ) FDdr| < am™! Hmax [H; ()| .
i tel
f -
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Proof. This is Lemma 2 in [3].

It is technically more convenient to work with \/7 E %‘— 1nstead of E(T). Bya
simple change of variable

P T 5 p V2P T $2\\ 2
/ a)(—)E(T) dT = —2/ y(x) ( —E(—)) dx
0 P 4 Jo X 27

2 2
y(x) = x—w( a ) 2.7

where

P 27 P
which is supported on [§+/27 P, +/27 P] and y (3327 P) = y (/27 P) = 0.

Furthermore, it is easily verified that
y(x) <1, y'(x) <xP~! and /y(x)dx < ~P. (2.8)
Then by (2.1),

- / ( )E(T)2dT =5+ b —2L+ 27371, — 27315

+ O(log P), (2.9)
where
V2rP 2
I =/0 y(x) Zl dx, (2.10)
V2zP 2
12=/0 y(x) Zz dx, 2.11)

V27 P
13=f0 yy, ) dx,
V27 P
I4=/0 " (o Z dx ,
,5:/0 varp y(x)Z i

The O-term in (2.9) encompasses five terms, including
I x 7y (x)|log x| > ldx fori = 1, 2. We bound these by applying Cauchy-Schwarz’s in-
equality together with (2.8) and the bounds [ |y (x)] Z% dx < +/Pand [ |y(x)] Z% dx <
log P, which we shall establish in Lemmas 7 and 8 respectively. We shall estimate /; and
I, asymptotically in §§3, 4 and bound I3, I4 and I5 in §8§5, 6. In the course of our estima-
tions, we can allow O-terms only up to the order of log? P.
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3. The integral /;

LEMMA 7. We have

V2w P
9 1 3 5
I =,/—c y(x)dx — —log’(a+ U)
8 0 v

/””P y(x) ( . m@+U)
X E— arsmh _—
0

-1
) dx + O(log’ P). (3.1
X X

In the following, all integrations with respect to x are over the interval [O, N2 P].
But since  (x) is supported on [ §+/27 P, ~/27 P |, the lower limit of integration is indeed

% 27 P and x is of order /P.
From (2.2) and (2.10), by squaring the sum ) ; and then interchanging the integration
and summations, we can write

1 _ [
where
Si= ) ﬂﬁd(”)zn_yz/egy(x)dx’ (3.3)
n<(a+U)?

So= Y (D" nunad(md(n)(mn) = / emeny (x) cos(f — fu)dx (3.4)
m<n<(a+U)?2
and
Sh= X O namdondmom ™ [ eenycos(fy + furdx.
m,n<(a+U)?
corresponding to the diagonal terms and the cross terms. The two main terms in (3.1) come
from Si1, and S7; will be bounded by log? P.
The function 7, equals to 1 forn < a? and then taperstoQatn = (a + U )2, If we

change 7, to 1 for a?<n< (a + U)z, the error in S;; thus induced is

< Y den / yodr < VP Y ntI  prie
a?<n<(a+U)? a?<n<(a+U)?
which is acceptable. So, writing for brevity A = (a + U)? which is of order P, we have

from (3.3)

Siu=Y dmn"? f ey (x)dx + O(P~1/4F%)

n<A

= dnyn? f y(x)dx =Y d(n)*n3"? /(1 — D)y (x)dx + O(P~V/4Fe)

n<A n<A
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By Lemma 5,
2
Y dnyn N = | ;c — S A 10g A+ 0P 10g P).
T
n<A

Thus, on noting that [ y (x)dx < VP,

9
Sy = /_”c/y(x)dx—2n—2A—1/210g3A/y(x)dx

— > dm?*n™? / (1 = ep)y (x)dx + O(log” P). (3.5)

n<A

For the last sum, we use Stieltjes integration to obtain

A
> dmny’n 3/2/(1 2)y(x)dx—/(/ u—3/2(1—e},)d%(u)>y(x)dx. (3.6)
0

n<A

By Lemma 4, the inner integral is equal to

A
71_2/ u=32(1 — e2)(log® u + 3log? u)du
0

A

A
d
+u (1 - e2)O(ulog? u) —/ 0(ulog2u)d—(u—3/2(1—ef,))du.
o Jo u

Since 1 — €2 < ux~2 and A (u=3/2(1 — €2)) < u=*/2x~2, we find that
A
/ w321 — e2)dWy(u)
0

A
:n_Z/ u_3/2(1_65)10g3udu+0(A1/2x—210g2A)
0

X TJu

—2 2 < arsinh T
= in
7'[2«/—
Putting this back to (3.6) then yields

> dmnyn? /(1 — Dy (x)dx =

n<A

2 4 d (- B
= log? L ( nlg <arsinh nﬁ) ) du+ O(VPx~2log* P)
0 u X

—1
A
) } log> A+ 0P~ ?10g? P).

\/_log A/y(x)dx

-1
2 VA
+ Z log? A/ M(arsinh T ) dx
i x X

+ 0(log? P).
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Hence from (3.5), we deduce that

~1
9 2 JA
S :,/Tnc/y(x)dx . —log3A/ w(arsinh ”—) dx + O(log® P). (3.7)
T X X

We now handle Sliz, the sums involving the cross terms, and proceed to show that
S35 < log? P.

Applying integration by parts once and noting that y (x) vanishes at the upper and
lower integration limits, we find that the integral inside the double sum in (3.4) is

/€m€)1]/(x)COS(ﬁ.l — fu)dx = _/ d {emen)/(x)

E m} Sin(f;1 — fm)dx . (38)
The derivative inside the integral is equal to

17 _ 4
<e;ne,,y +eme,y + emeny’ — emen)/%) o= fo)™!
n m

which is « P~V2(/n — /m)~!, by Lemma 1 and (2.8). Hence applying Lemma 6, the
integral in (3.8) is

< P72 =y max | fy = fr 17t < PTA (Y= V)72

Thus,
Sp < P72 Y7 dmyd () (mm) 7 — )
m<n<A
< P~1/? Z d(m)d(m)ym = *n*(n — m)™?
m<n<A
< log2 P,

by Lemma 5 (ii) with e = 3/4, 8 = —1/4.
The estimation of Sfrz is easier and has the same bound. Combining these, (3.7) and
(3.2), we complete the proof of Lemma 7.

4. The integral I,

LEMMA 8. We have

L=n"" log3 P/
0

VI y(x)
—6r~! ﬁ —dx log2 Ploglog P + 0(10g2 P).
V2P X

The argument of proof of Lemma 8 is along the same line as Lemma 7. From (2.11) we
have

VMPNM(. n(a+U))‘1
_— arsmh _— dx
X

1 _ 1
3521 + 85, + =S5 4.1)

=
2 2
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where
S =1 / < )3 d(n)zn—lz;2s,$>x—1y(x>dx, 42
n<Z(x,a)
L= Z d(m)d(n)(mn)~'/?
m<n<Z(~/2n P,a)
V27 P
< / Ol Emnx ™y () COS(gn — gun)dlx . 43)
N(n,a)

Sh=m Y. dm)dmn)(mn)~'?
m,n<Z(«/2m P,a)

V2w P
|

Conln)  EmEnx ™1y (x) cos(gn + gm)dx .
N(max(n,m),a)

The two main terms in /> comes from the diagonal terms in S»1, which is quite straightfor-
ward to estimate. The bounding of S,,, however, is a lot more difficult than S|, in §3.

First we can shorten the sum inside S»; to > with an error
n<Z(x,a+U)

<</ > dm)*n~"x Ny (x)|dx

Z(x,a+U)<n<Z(x,a)
< PfuvVpPP! /x_lly(x)ldx < pl/ArE

by the observation that Z(x,a) — Z(x,a + U) K U+/P inLemma 1 (vi) and U = P!/4.
Forn < Z(x,a+ U), &, =1 and we are led to evaluating the sum

> dmynTle?
n<Z(x,a+U)
inside S>1. By Lemma 4 and Stieltjes integration,

Z dn)*n=1e;?

n<Z(x,a+U)

Z(x,a+U)
= / w0, () T2d W ()

Z(x,a+U)
= 77_2/ w1, (x) 2o’ u + 3log® u)du
1

Z(x,a+U) d
—~ f O (ulog u)d—(u_lﬁu(x)_z)du + O(log” P)
1 u

16 5 x X
= —log’ —| log -—F—————
T 2w 2/ Z(x,a+ U)

-1
16 U 48
= — log’ 2 (arsinh ma+U) — —log? * loglog = + 0(log® P).
w2 27 27

-1
48
- — log2 l loglog - + 0(log2 P)
2 27 27

T2 2 X
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Then from (4.2), we get

-1
S = —/ 1 g arsinh 7r(a+U)) J/(x)dx
X X
- — <log —loglog —) &dx—i-O(log P). 4.4)
b4 2w

Define

y
Ho(y) =/ (arsinh ulChs U)> J/(x)dx for ye I:l\/27TP, «/277P:|.

Wy x 2

Then the first term on the right hand side of (4.4) is equal to

16 P
;Ho(«/ZnP)log3,/— —3/ Hot) Zidx
X

= —Ho(«/ )log + 0(10g P,

since Ho(y) < logy — log 7«/277P < 1.
Define

Y 1
Hi(y) =/ xly(x)dx for ye [—\/27TP,\/27TP] .
1\/27P 2
The second term on the right hand side of (4.4) is equal to

48
——/log2 iloglog id?—ll()c)
14 2 2

48 P P
——Hi(V2rn P) 10g2,/ —loglog,/ —
b4 2 2w

48 d X X
- — 1} log? — loglog —
+ - /Hl(x)dx{ og o og ogzn }dx
= —127""H(v/27 P) log? P loglog P + O(log® P).

Putting these back to (4.4), we deduce that

2 P 12
So1 = —Ho(v27 P)log? o —H (V27 P)log? Ploglog P + O(log’> P). (4.5)
T T T

We come now to the estimation of the cross terms in S,,. If we follow the same
argument of §,,, we would obtain the bound O (log? P), which just misses the target by a
factor of log P. In order to save a factor of log P, we need to utilize the oscillation of the
sine function; more precisely, we shall use

XP: sinah
h

h=1
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instead of
P

| sin /|
> < log P
h
h=1
to obtain the necessary saving. Thus the bounding of §,, is more delicate than that of S|,.
First using an integration by parts for the integral in (4.3), and noting that &, (x)y (x)
vanishes at both the upper and lower limits of the integration, we have

N2 P
/ EmEn(Lmln) ' x 7y (x) cos(gn — gm)dx
N(n,a)
V27 P d
=- / sin(g: = gn) = {En (L) 5Ty g, — g ax. @)
N (n,a) dx

The derivative inside the integral is equal to
—1 -1

n(smsn)’<xzzmen log %) y(x)+nsmsn%{(x2emen log%) y(x)}.

By the estimates in Lemma 1 and (2.8), the second term here is < P~3/%log . When
this is substituted back to the integral in (4.6) and on applying Lemma 6, we get a term

O(P~|log ’_2). The contribution of this to S5, is

-2
&« P2 3 d(m)d(n)(mn)_l/z(log %)

m<n<Z(~/2n P,a)
_ _ _ _ d(m)d(n)m
2 1/2 1/2 2
<P 30 dennTR Y deom PP T S
n<Z(27P.,a) m=n/2 nSZ/(Z«/m,a)
< log2 P,

by Lemma 5 (ii). Thus

B d(m)d(n) n\ " Eng) L (x2 n\ |y
522:_712/{ > W(l"gz> Cnln Sm(EIOgZﬂ?dx

m<n<Z(x,a)

+0(log? P).
Denote the double sum inside the above integral by o (x), that is

d(m)d(n) n\ &) . (x2
W= 2 W(logi) Ol Sm(ﬂlogg)

m<n<Z(x,a)

= Z + Z =o01(x) +o2(x), say.

m<n<Z(x,a) m<n<Z(x,a)
n—m<U n—m>U

In the estimation of o;(x), we make use of the fact that &, (x) # O if and only if
Z(x,a+U) <n < Z(x, a). Furthermore, from Lemma 1 (vi), Z(x,a) — Z(x,a + U) <
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Ux = U~/P. Hence o, (x) is really a short sum over a range of length =< UP and m,n
are of order P. Write h = n — m < U. Then first order approximations give

n - x2 n L —2 x2h h?
(«/mn log —€m€n> sin (—log —) =h""¢, (sin— + 0(—))
m 2 m 2nn n

=h7'¢ 2 sin Xh +o0(hP7Y. @7
" 2mn ' '

Form < n < Z(z, a), careful scrutiny of the definition of &, in (2.3) shows that

() (5m&n) = &b + Em&, =0forn > Z(x,a)orn < Z(x,a+U); (4.8)
.. ! - d ) —1/2 X 2 —-1/2 X 2
@) (8n6) = 4 (U2 (7 2(5) - vi—a)(m () - v
) a x2 1
=—(xU) x<1+ﬁ—4ﬂ—2n>+0(hp ) 4.9)
for Z(x,a+U)+U <n < Z(x,a);
Qi) (Endn) < |&0] + |8} < —Uf/E for Z(x,a+U) <n < Z(x,a). (4.10)

In view of (4.8), we now further split the sum o7 (x) into

o)=Y > +> > =o011(x) +o12(x), say.

h<U Z(x,a+U)+U<n<Z(x,a) h<U Z(x,a+U)<n=<Z(x,a+U)+U

m=n—h m=n—h
Estimating crudely by invoking Lemma 1 (i) and (4.10), we have
-1
din —h)dn) (h 1
— - U Pe. 4.11
o1(x) K E E - - < (4.11)

h<U Z(x,a+U)<n<Z(x,a+U)+U
For o11(x), we use (4.7) and (4.9) to deduce that

o) ===z Y b 3

h<U Z(x,a+U)+U<n<Z(x,a)
a x2 5. x*h
Xd(n — h)d(n)(l =+ ﬁ — 47'[2n>£n sin E
+ 0(13—1 dShY dn - h)d(n)U—1> + 0<P_1 Y din- h)d(n))
h<U n~P h<U n~P

Z(x,a) 2 Zh
X a X X
=—— 3 p! 14+ —— 072 sin —— d¥ oUP?).

U L (1 5~ g )7 sn 5 v+ 0w

By Lemma 2, the integral inside the summation is equal to

6 Z(x,a) 2 2/’1
—zh‘lf <1+i— a )e;zsinx—m<5;h>du
T Z(x,a+U)+U Ju  Artu 2ru \h
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2 Z(x,a)
3/4 a X
+o(w 1+ = -
Vu o Aru )0 aiyau

Z(x,a) d 2 2,
—f 0(u3/4)—{(1+i S )e;zsinx—}du.
Z(x,a+U)+U du Ju  4rcu 2mu

The last two terms are < /P since Z(x,a) — Z(x,a + U) < U/P = P3/*, and

2
(1_}_1— al ):u_l(\/——\/Z(x,a))(\/ﬁ—i-a+\/Z(x,a))

Ju  4nlu
<P 'u—-2Zx,a) < P'WPU=P V4 (412
Thus,
—6x Z(x,a) a x2 x2h u
o11(x) = —F— h_Z/ (l—i—— — >ﬁ_zsin —m(—;h)du
74U? hSZU Z(x,a+U)+U \/E 4x2y ) ¢ 2mu h
+ OWPlogP). (4.13)
We claim
x2 u
: -2 2
D sin( ——h | m( i h ) < log® P. (4.14)
2mu h
h=<U

Note that if we disregard the oscillation of the sine function and use the trivial bound
’sin %’ < 1, the above sum would be < log® P, which would miss our target by a factor
of log P.

2

Write 8 = Zx— for brevity. In view of (2.5) and (2.6), the sum
Tu

> sin(Bh)h~2m(%; h) is a combination of finitely many sums of the form
h=<U

. (logr)/ sin(Brd) .
1
(logu)' Y > > T log'd
r<vu df%
where i, j,k > 0andi + j 4+ k < 2. The inner sum over d is < 1 and hence
3 sin(ﬂh)h_zm(%; h) < logu.
h<U
This proves (4.14). Back substitution into (4.13) and in view of (4.12) then leads to the
bound o011 (x) K VP log2 P. This together with (4.11) confirms the bound
o1(x) < VPlog’ P,

and so the contribution of o7 (x) to 55, is K \/Flog2 P fx‘zy(x) dx K log2 P.
It remains to handle o7 (x), whose contribution to S,, is

d(m)d(n X n Cx n
N [y 2O () (e
m<n<Z (21 P,a) mn Xmtn m T m

n—m>U
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« Y dede
m<n<z S5 a) vmn xe[ /2P 2P

-1
(gmgn)/<x3emen 10g2 %) 7 (x)

n—m>U
-2
d(m)d
<P vt Y Ldfm(logﬁ), (4.15)
mi/n m
I

by applying Lemma 6 together with the estimates Lemma 1 (i), (2.8) and (4.10). The part
of this sum for which m < n/2 is easily seen to be « P!/?>*¢_ Forn/2 < m < n, the sum
is

dmydm) ([ n \°
< n/2<m2<:n—u m/n (n—m)

n<Z(«/27 P,a)

<Y hr Y Jmdmydm +h)
h=U m<Z(J2rxP,a)
<Y o) PP log? P+ Y R P,
h>U h>U
by invoking Lemma 3. Plainly ) h=30(h) is <« U~'. Allin all, the expression in (4.15)
h=U
is K log2 P, and whence
S5, < log” P
In a similar but much easier manner, one shows that S;rz < log2 P. In view of (4.1) and
(4.5), this completes the proof of Lemma 8.

5. The integral I3

We come now to the estimation of I3, for the cross term ) ; Y ,. The oscillating
factors cos f, (x) in ), and cos g,(x) in ) _, are almost in phase when m and n are close
to(a+U )2 and Z(x, a) respectively. But the totality of all such cases is small and we shall
use a special trick to utilize this observation.

LEMMA 9. We have
TR log2 P.

The trick is that we transform a small tail section of ) , into a small tail section of
>, by noting that the parameter « in (2.1), apart from having order of /P, still has some
degree of freedom. More precisely, we use the formula (2.1) twice, first with value a and
then with a replaced by a 4+ 2U (but keeping the same U). Thus, by writing

ra(x) = (=1)"dm)n~> e, (x) cos f(x).
su(0) =dmn~" 24, (x) ™" cos g (x),
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for brevity and noting that they are independent of a, we have, by (2.1)

T -1
> nn(a)rn(»o—\/; Y &@su(x) + O logx)

n<(a+U)? n<Z(x,a)
2
T X
= —E(—)= Y. @ +2U)m ()
x \2rm
n=(a+3U)?

T
—\/j Z En(a +2U)sp(x) + O(x ' logx).
* n<Z(x,a+2U)

Here, instead of 1, and &, we have to write 1, (a) and &,(a), to indicate their dependence
on the parameter a. Then

4
\/;{ Y L@si0) - Y sn(a+zu>sn<x)}
n<Z(x,a) n<Z(x,a+2U)

=— Y m@+20r@+ Y nu@r(x)+ 0" logx).
n<(a+3U)2 n<(a+U)?
We may therefore express

22 =2 \/§ Y a@+20s0

n<Z(x,a+2U)

—Z{ Yo m@+20r0) - Y nn<a)rn(x)+0<x‘llogx)}
1

n<(a+3U)2 n<(a+U)?

X EE s

where

ZZ=\/§ S g+ 2050

n<Z(x,a+2U)
is similar to the original ) _,, but with a tail section removed and &, (a) changed to &, (a +
2U), and
*
2= 2 m@+20) = @),
n<(a+3U)2

We see that Y] has the same shape as ), but with the new smoothening factor 7, (a +
2U) — 0, (a) which has support on the very short interval [a?, (a+3U)?]. So Y"1 is a short
sum of length < aU, having the same oscillating factor as ) ;. Similar to the estimation of
I; in Lemma 7, we see that the contribution of the cross terms in

/V(X)X:l Zde
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is < log? P, while the diagonal terms yield the contribution

D (m@+2U) = nu(@)’dn)y’n™? / ery (x)dx

a?<n<(a+2U)?

<VP Y AT« P
a?<n<(a+3U)?

Furthermore, by Cauchy-Schwarz’s inequality and the bound for [ Z% y (x)dx in Lemma

7, we find that
-1
I
/x ogx E 1

which is again sufficient. To finish the proof of Lemma 9, it remains to establish that

*
Iz = / Zl Zz y(x)dx K log2 P.

The estimation of this follows the same argument of S§C2 in §4. More precisely, after inter-
changing the integration and summation, we have

Ly = S5, + 83,

y(x)dx < log P

where
+ AT (=D"d(m)d(n)
S3l - 5 Z Z m3/4ﬁ Tlm(a)
m=(a+U)? n<Z(v/27 P,a+2U)
2 P
/ embna+ 20305 52y () cos(n & fr)dx. (5.1
N (n,a+2U)
As before, S5 is the more difficult one and we shall prove
S35 < plArE (5.2)

By the same argument of S, and noting that &, (¢ + 2U)y (x) vanishes at the upper and
lower limits of the integration, we obtain, after an integration by parts,

/«/27‘[13 /V271P

= 1 d —-1,.-1/2 / \—1
- Sln(gn_fm) emén(a +2U)£n X y(x)(gn_fm) dx.
N (n,a+2U) N (n,a+2U) dx

By Lemma 6, this is

< max|g, = fn|”

d -
entat@+2006 57 2y (g, - 1)

where the maximum is over x € [ max(N'(n, a + 2U), 1+/27 P), ¥/27 P |. We will show
in a moment that

loh — fo] < Ut and gl - £l <1 (5.3)
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for x in the above range. Then, in view of Lemma 1 (i)—(iv) and (2.8) the integral in (5.1)
is

< U_l\/;g,’, — xR = o g = ]

X

< U‘3\/j+ xV2UT « pTV2p 12 4 pl o pT 212
n

Therefore
_ _ d(m)d(n) _
172 1/4+e
Sy <P Z Z o, < P ,
m=(a+U)? n<Z (27 P,a+2U)

and the same bound holds for S3+1. Hence (5.2) is proved.
Finally, we establish the bounds in (5.3). Direct from their definitions (c.f. Lemma 1
(ii1)), we find that

2 V
g = fn= —x(log Y arsinh Z m)
T

Zﬁﬁ X
2x X /m 2m 12, -1
=71 L+ - 5.4
T Og(Znﬁ{ X +( + x2) } ) 5.4
and
2 X nm Jm 22m\ V2
1 " _ .
n — m—;(logznﬁ—ars1nh . +1)+27(1+ = )
Plainly, form < (a + U)? < P < x*and n < Z(x,a + 2U), we have
g — fu < 1.

From (2.4), one verifies directly
172 -1
x [m/m °m
Z{TJF(HX—Z) } =\ Z(x,V/m).
Hence forn < Z(x,a + 2U),
2x
Gy = S = ;(log\/z(x, /m) —1ogﬁ>
2x
2 (1ogy/ Z(x, J/m) —log/Z(x, 2U)
n(og (x, v/m) —log/Z(x,a +2U)
2 d
= = {m = (@+20)) - log\/Z(x, in| _ forsome up € (m. (a+2U)?)

=ug

. 2 o -1/2 ,
(o (2 +2)) arzerm

»>xP ! ((@a+20) =@+ U)?) > U.

This proves (5.3) and our Lemma 9 hence follows.

v
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6. Proofs of Theorem 1 and 2.

The treatments of I4 and I5 are quite straightforward, by integrating term by term of
>, and ), and then applying Lemma 6. We have

L PV s« P V*0gP.

Putting these and the estimates for Iy, I>, I3 from Lemmas 7, 8, 9 into (2.9), we conclude
that

V2n P
_/ ( )E(T)2dT ,/—c/ y(x)dx

—6n_1</x_1y(x)dx> log? P loglog P + O(log® P) .

In view of (2.7), Theorem 1 follows.
To deduce Theorem 2, we notice that for any function ¢ (T')

P
/¢(T)F(T)dT / (/ ¢(t)dt)<E(T)2 T1/2>d
0

Using the function

P P
-2, —<T<—,
4 — T2
T) =
o (T) ’ 5 r<p,
2
0, otherwise ,
and find that
i r 2 3 ip
Q(P)—20(P/2) = P/ a)(;) (E(T) - ECT / )dT
0
where
Y
o) =/Y F(T)dT
7
and 1 1 1
2x - A 9, - ‘x S ~ 9
2 4 — 2
w(x) = 1
) 1—x, —<x=1,
2
0, otherwise .

Then by Theorem 1, we have

Q(P) —20(P/2) = —iPng Ploglog P + O(P%log® P).



On a Mean Value Theorem for the Second Moment of the Riemann Zeta-Function 209

Replacing P by P27/, then multiplying throughout by 2/ and then sum j from O to J
where J = [3log log P], we obtain (by noting the bound F(T) <« T log* T)

9
O(P) = —FPZ log? P loglog P + O(P?log” P).
T

Whence

P o
P 3
/ F(T)dT =) Q<—.> = — = P*log’ Ploglog P + O(P*log* P)
0 =0 27 T

and Theorem 2 follows.
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