On a Mean Value Theorem for the Second Moment of the Riemann Zeta-Function¹

by

Kai Yuen LEE and Kai Man TSANG¹

(Received June 30, 2011)

Dedicated to Professor Akio Fujii on the occasion of his happy retirement

Abstract. Let E(T) be the error term in the mean square formula for the Riemann zeta-function on the critical line. In this paper, a smooth-weighted mean value formula for $E(T)^2$ over the interval [0, P] is obtained in which the error term is $O(P \log^2 P)$. As a corollary, it is proved that the classical mean-value formula for $E(T)^2$ over [0, P] has an error term which is $\Omega_{-}(P \log^2 P)$.

1. Introduction and statement of results

A central problem in classical analytic number theory concerns the 2k-th moments

$$I_k(T) = \int_0^T \left| \zeta \left(\frac{1}{2} + it \right) \right|^{2k} dt$$

of the Riemann zeta-function on the critical line. Evaluation of $I_k(T)$ is a notoriously difficult problem and asymptotic formula for $I_k(T)$ has been obtained only for k = 1 and 2. Recent developments on random matrix theory have led to many exciting conjectures on the form of the main term for $I_k(T)$.

Let

$$E(T) = \int_0^T \left| \zeta \left(\frac{1}{2} + it \right) \right|^2 dt - T \left(\log \frac{T}{2\pi} + 2\gamma - 1 \right)$$

be the error term in the formula for $I_1(T)$. Hardy-Littlewood [2] first proved that $E(T) = o(T \log T)$, and Ingham [6] improved this to $E(T) \ll T^{3/4+\varepsilon}$. This bound has been gradually sharpened by many authors in the last eighty years. However, the best result to-date of Huxley [4], [5] that $E(T) \ll T^{131/416}$ is still a long way from the conjectured best bound $E(T) \ll T^{\frac{1}{4}+\varepsilon}$.

On the other hand, Heath-Brown [3] applied a classical formula of Atkinson [1] to prove that

$$\int_0^P E(T)^2 dT = c P^{3/2} + O(P^{5/4} \log^2 P)$$
(1.1)

¹The work described in this paper was substantially supported by a grant from the Research Grants Council of the Hong Kong Special Administrative Region China HKU 7042/04P.

where $c = \frac{2}{3}(2\pi)^{-1/2} \sum_{n=1}^{\infty} d(n)^2 n^{-3/2}$ and d(n) is the divisor function. The rather large *O*-term in Atkinson's formula does not allow much improvement in the above *O*-term in (1.1).

Let

$$F(T) = \int_0^T E(t)^2 dt - cT^{3/2}.$$

In [9] Meurman developed a smoothened version of Atkinson's formula with a much sharper error term (see §2 (2.1)) and thereby obtained the improved estimate $F(P) \ll P \log^5 P \ln(1.1)$. Subsequently Meurman's bound has been further sharpened to $P \log^4 P$ and $P \log^3 P \log \log P$, by Pressimann [11] and by Lau-Tsang [8] respectively. Further improvement on this, to $P \log^3 P$, say, would be difficult and would require some novel techniques.

Estimations for F(T) are also related to bounds for E(t) and $\zeta(1/2 + it)$. Indeed one can deduce an upper bound for E(t) from a bound for F(T) as follows.

First we notice that for z > y > 0,

$$E(z) - E(y) = I_1(z) - I_1(y) - (z - y) \left(\log \frac{v}{2\pi} + 2\gamma \right) \quad \text{for some } v \in [y, z]$$

$$\geq -2(z - y) \log z.$$

Thus, E(t) can only decrease slowly, at a rate $\ll \log t$.

Now suppose T > 0 is large and let

$$M = \max_{T/2 < t \le T} |E(t)| = |E(\tau)| \text{ for a } \tau \in [T/2, T].$$

Obviously, we may assume that $M > T^{1/4+\epsilon}$. If $E(\tau)$ is positive, then

$$E(t) \ge \frac{1}{2}E(\tau) = \frac{1}{2}M$$
 for $t \in \left[\tau, \tau + \frac{M}{6\log T}\right]$.

Similar argument works in the case that $E(\tau)$ is negative. Thus, writing $w_{\pm} = \tau \pm \frac{M}{6 \log T}$, we have

$$\frac{M^2}{8}(w_+ - w_-) \le \int_{w_-}^{w_+} E(t)^2 dt \ll (w_+ - w_-)\sqrt{T} + F(w_+) - F(w_-)$$

and we deduce from this

$$F(T) \ll T^b \log^c T \Longrightarrow M \ll T^{\frac{d}{3}} \log^{\frac{c+1}{3}} T$$
.

It is also possible to get an upper bound for $\zeta(\frac{1}{2} + it)$ from E(t). Indeed, by an inequality of Heath-Brown,

$$\left|\zeta\left(\frac{1}{2}+it\right)\right|^{2} \ll \log t \int_{t-\log^{2} t}^{t+\log^{2} t} \left|\zeta\left(\frac{1}{2}+iu\right)\right|^{2} du + \log t$$
$$= \log t (I_{1}(t+\log^{2} t) - I_{1}(t-\log^{2} t)) + \log t$$

On a Mean Value Theorem for the Second Moment of the Riemann Zeta-Function

$$= (\log t)O(\log^3 t) + (\log t)(E(t + \log^2 t) - E(t - \log^2 t)) + \log t.$$

Hence,

$$E(T) \ll T^d \log^e T \Longrightarrow \zeta\left(\frac{1}{2} + it\right) \ll t^{\frac{d}{2}} \log^{\frac{e+1}{2}} t.$$

Given the enormous difficulties in reducing the bound for F(T) further, we are prompted to consider adding a smooth weight to the mean square of E(T), in the hope of getting a sharper asymptotic formula. In the paper, we shall prove the following main result.

THEOREM 1. Suppose the weight function $\omega(t)$ is continuous with piecewise continuous and bounded derivative. Furthermore assume $\omega(t)$ is supported on $\left[\frac{1}{4}, 1\right]$ with $\omega(1/4) = \omega(1) = 0$. Then

$$\int_0^P \omega\left(\frac{T}{P}\right) E(T)^2 dT = \frac{3c}{2} \left(\int_0^1 \sqrt{t} \ \omega(t) \ dt\right) P^{3/2} - 6\pi^{-2} \left(\int_0^1 \omega(t) \ dt\right) P \log^2 P \log \log P + O(P \log^2 P).$$
(1.2)

As an immediate consequence we deduce fron Theorem 1 the following.

EOREM 2. We have

$$\int_{0}^{P} F(T)dT = -3\pi^{-2}P^{2}\log^{2}P\log\log P + O(P^{2}\log^{2}P).$$

In particular,

Тн

$$F(T) = \Omega_{-}(T \log^2 T \log \log T).$$

REMARKS 1. The dominance of the main term over the error term in Theorem 2 is very thin, by only log log *P*. It is therefore crucial to suppress the error term estimates in our argument to $O(P \log^2 P)$ and the key for the success is that ω is continuous with $\omega(1/4) = \omega(1) = 0$. 2. Let

$$\Delta(x) = \sum_{n \le x} d(n) - x \log x - (2\gamma - 1)x$$

be the error term in the dirichlet divisor problem. This is a well-known companion of E(T) and they share many similar properties. However, Lau-Tsang [7] has proved that

$$\int_{0}^{P} \omega\left(\frac{x}{P}\right) \Delta(x) \, dx = c_1 \left(\int_{0}^{1} \sqrt{t} \, \omega(t) \, dt\right) P^{3/2} - \left(8\pi^2\right)^{-1} \left(\int_{0}^{1} \omega(t) \, dt\right) P \log^2 P + c_2 P \log P + O(P)$$

for some constants c_1 and c_2 . The second main terms in this and (1.2) are of different orders of magnitude and thus a fundamental difference between $\Delta(x)$ and E(T) is exhibited. This appears to be the first result of such a nature in the literature.

2. Notation and some preliminary results

Throughout this paper $P \ge 100$ is our main parameter and we set $U = P^{1/4}$. The variable x always lies in $\left[\frac{1}{2}\sqrt{2\pi P}, \sqrt{2\pi P}\right]$ and hence x is of order \sqrt{P} . Integrations with respect to x are over $\left[\frac{1}{2}\sqrt{2\pi P}, \sqrt{2\pi P}\right]$ or its sub-intervals. The letters h, m, n denote positive integers $\ll P$ whereas ε denotes an arbitrarily small positive number. We will also invoke freely the well-known upper bound $d(n) \ll_{\varepsilon} n^{\varepsilon}$.

The formula we use for E(T) is the following smoothened version of Atkinson's formula in [1] as developed by Meurman [9]:

For $x \in \left[\frac{1}{2}\sqrt{2\pi P}, \sqrt{2\pi P}\right]$ and $a \asymp \sqrt{P}$, we have

$$\sqrt{\frac{\pi}{x}}E\left(\frac{x^2}{2\pi}\right) = \sum_{1} -\sum_{2} +\sqrt{\frac{\pi^3}{x}} + O\left(\frac{\log x}{x}\right)$$
(2.1)

where

$$\sum_{n \le (a+U)^2} \left\{ \sum_{n \le (a+U)^2} (-1)^n \eta_n d(n) n^{-3/4} e_n \cos f_n \right\},$$
(2.2)

$$\sum_{2} = \sqrt{\frac{\pi}{x}} \sum_{n \le Z(x,a)} \xi_n d(n) n^{-1/2} \ell_n^{-1} \cos g_n ,$$

$$\eta_n = \eta_n(a) = 1 - \max\left(0, \frac{\sqrt{n} - a}{U}\right) ,$$

$$e_n = e_n(x) = \left(1 + \frac{\pi^2 n}{x^2}\right)^{-1/4} \left(\frac{x}{\pi \sqrt{n}} \operatorname{arsinh} \frac{\pi \sqrt{n}}{x}\right)^{-1} ,$$

$$f_n = f_n(x) = \frac{x^2}{\pi} \operatorname{arsinh} \frac{\pi \sqrt{n}}{x} + \sqrt{\pi^2 n^2 + nx^2} - \frac{\pi}{4} ,$$

$$g_n = g_n(x) = \frac{x^2}{\pi} \log \frac{x}{2\pi \sqrt{n}} - \frac{x^2}{2\pi} + \frac{\pi}{4} ,$$

$$\ell_n = \ell_n(x) = \log \frac{x}{2\pi \sqrt{n}} ,$$

$$\operatorname{arsinh} z = \log(z + \sqrt{1 + z^2}) ,$$

$$\xi_n = \xi_n(x, a) = \max\left\{\min\left(1, \frac{1}{U}\left(\left(\frac{x}{2\pi}\right)^2 \frac{1}{\sqrt{n}} - \sqrt{n} - a\right)\right), 0\right\}$$
(2.3)

$$Z(x,u) = \left(\sqrt{\left(\frac{x}{2\pi}\right)^2 + \frac{u^2}{4} - \frac{u}{2}}\right)^2 .$$
 (2.4)

Let

$$\mathcal{N}(n,a) = 2\pi \sqrt{n + a\sqrt{n}}.$$

Then $n \leq Z(x, a)$ if and only if $\mathcal{N}(n, a) \leq x$.

We first collect a list of estimates for these functions that will be used in the sequel.

LEMMA 1. Let $x \in \left[\frac{1}{2}\sqrt{2\pi P}, \sqrt{2\pi P}\right]$ and $m < n \ll P$. We have the following. (i) $0 \le \eta_n$, $\xi_n \le 1$, $0 < e_n$, $\ell_n^{-1} \ll 1$. (ii) $e'_n(x) \ll nx^{-3}$, $\left(\ell_n^{-1}\right)' \ll x^{-1}$.

- (iii) $f'_{n}(x) = \frac{2x}{\pi} \operatorname{arsinh} \frac{\pi \sqrt{n}}{x}, \ g'_{n}(x) = \frac{2x}{\pi} \log \frac{x}{2\pi \sqrt{n}}.$ (iv) $\xi'_{n}(x,a) = x (2\pi^{2}U\sqrt{n})^{-1} \text{ for } \mathcal{N}(n,a) \le x \le \mathcal{N}(n,a+U) \text{ and } \xi'_{n}(x,a) =$ 0 otherwise.

(v)
$$f'_n(x) - f'_m(x) \gg \sqrt{n} - \sqrt{m}, \quad \left(f''_n(x) - f''_m(x)\right) \left(f'_n(x) - f''_m(x)\right)^{-1} \ll nx^{-3};$$

 $g'_n(x) - g'_m(x) = -\frac{x}{\pi} \log \frac{n}{m}, \quad \left(g''_n(x) - g''_m(x)\right) \left(g'_n(x) - g'_m(x)\right)^{-1} = x^{-1}.$
(vi) $Z(x, q) \simeq P \text{ and } 0 \subset Z(x, q) = Z(x, q + U) \simeq Ux$

(vi) $Z(x, a) \approx P$ and $0 < Z(x, a) - Z(x, a + U) \approx Ux$.

Proof. These estimates are straightforward from the respective definitions. For instance, for $n \leq Z(x, a)$,

$$\frac{x}{2\pi\sqrt{n}} \ge \sqrt{1 + \left(\frac{\pi a}{x}\right)^2} + \frac{\pi a}{x}$$

and hence $\ell_n(x)^{-1} \ll 1$.

LEMMA 2. Let
$$y \ge 1$$
. Then uniformly for $1 \le h \le y^{\frac{15}{14}-\varepsilon}$, we have
 $\Psi_h(y) = \sum_{m \le y} d(m)d(m+h) = 6\pi^{-2} \int_0^{y/h} m(u;h)du + O(y^{3/4}).$

He

ere
$$m(u; h) = \sigma(h) \log u \log(u+1)$$

$$+ \left\{ \sigma(h)(2\gamma - 2\frac{\zeta'}{\zeta}(2) - \log h) + 2\sigma'(h) \right\} \log(u(u+1)) \\ + \sigma(h) \left\{ (2\gamma - 2\frac{\zeta'}{\zeta}(2) - \log h)^2 - 4\left(\frac{\zeta'}{\zeta}\right)'(2) \right\} \\ + 4\sigma'(h) \left(2\gamma - 2\frac{\zeta'}{\zeta}(2) - \log h \right) + 4\sigma''(h)$$
(2.5)

and

$$\sigma(h) = \sum_{d|h} d, \ \sigma'(h) = \sum_{d|h} d\log d, \ \sigma''(h) = \sum_{d|h} d\log^2 d.$$
(2.6)

Proof. This is adapted from Theorem 1 of [10].

LEMMA 3. Suppose $1/2 \le y < z$ and $1 \le h \le z^{\frac{15}{14}-\varepsilon}$. Then

$$\sum_{y < m \le z} d(m)d(m+h) \ll \frac{\sigma(h)}{h}(z-y)\log^2 z + z^{3/4}.$$

Proof. If y > z/2, then by Lemma 2

$$\sum_{y < m \le z} d(m)d(m+h) = 6\pi^{-2} \int_{y/h}^{z/h} m(u;h)du + O(z^{3/4})$$
$$\ll \frac{\sigma(h)}{h}(z-y)\log^2 z + z^{3/4}.$$

If $y \le z/2$, by Lemma 2 again,

$$\sum_{y < m \le z} d(m)d(m+h) \le \sum_{m \le z} d(m)d(m+h) \ll \frac{\sigma(h)}{h} z \log^2 z + z^{3/4}.$$

LEMMA 4. Let $y \ge 1/2$. Then

$$\Psi_0(y) := \sum_{n \le y} d(n)^2 = \pi^{-2} y \log^3 y + O(y \log^2 y) \,.$$

Proof. This is a well-known result.

LEMMA 5. For
$$y > 1/2$$
, we have
(i) $\sum_{n>y} d(n)^2 n^{-3/2} = 2\pi^{-2} y^{-1/2} \log^3 y + O(y^{-1/2} \log^2 y)$.
(ii) $\sum_{m < n \le y} \frac{d(m)d(n)}{m^{\alpha}n^{\beta}(n-m)^2} \ll y^{1-\alpha-\beta}\log^2 y$ for $\alpha < 1$ and $\alpha + \beta < 1$.

Proof. (i) follows from Lemma 4 by partial summation.

(ii) First, the part of the sum in which $m \le n/2$ is clearly $\ll y^{1-\alpha-\beta}$. For $\frac{n}{2} < m < n \le y$, write h = n - m. Then this part of the sum is

$$\ll \sum_{h \leq y} h^{-2} \sum_{m \leq y} \frac{d(m)d(m+h)}{m^{\alpha+\beta}}$$

By Lemma 3 and partial summation, the inner sum over m is

$$\ll \frac{\sigma(h)}{h} y^{1-\alpha-\beta} \log^2 y.$$

Summation of this over h then leads to the bound in (ii).

LEMMA 6. Let $H_1(t), H_2(t), \ldots, H_r(t)$ be piecewise monotonic functions defined on an interval I and let F(t) be a real differentiable function such that F'(t) is monotonic with $|F'(t)| \ge m > 0$ for $t \in I$. Then

$$\left| \int_{I} H_{1}(t) H_{2}(t) \cdots H_{r}(t) e^{iF(t)} dt \right| \leq 4m^{-1} \prod_{i=1}^{r} \max_{t \in I} |H_{i}(t)|.$$

Proof. This is Lemma 2 in [3].

It is technically more convenient to work with $\sqrt{\frac{\pi}{x}}E\left(\frac{x^2}{2\pi}\right)$ instead of E(T). By a simple change of variable

$$\int_0^P \omega\left(\frac{T}{P}\right) E(T)^2 dT = \frac{P}{\pi^2} \int_0^{\sqrt{2\pi P}} \gamma(x) \left(\sqrt{\frac{\pi}{x}} E\left(\frac{x^2}{2\pi}\right)\right)^2 dx$$

where

$$\gamma(x) = \frac{x^2}{P} \omega\left(\frac{x^2}{2\pi P}\right),\tag{2.7}$$

which is supported on $\left[\frac{1}{2}\sqrt{2\pi P}, \sqrt{2\pi P}\right]$ and $\gamma\left(\frac{1}{2}\sqrt{2\pi P}\right) = \gamma(\sqrt{2\pi P}) = 0$. Furthermore, it is easily verified that

$$\gamma(x) \ll 1, \ \gamma'(x) \ll x P^{-1} \quad \text{and} \quad \int \gamma(x) dx \ll \sqrt{P} \,.$$
 (2.8)

Then by (2.1),

$$\frac{\pi^2}{P} \int_0^P \omega \left(\frac{T}{P}\right) E(T)^2 dT = I_1 + I_2 - 2I_3 + 2\pi^{3/2} I_4 - 2\pi^{3/2} I_5 + O(\log P), \qquad (2.9)$$

where

$$I_1 = \int_0^{\sqrt{2\pi}P} \gamma(x) \sum_{1}^2 dx , \qquad (2.10)$$

$$I_2 = \int_0^{\sqrt{2\pi P}} \gamma(x) \sum_{2}^{2} dx , \qquad (2.11)$$

$$I_{3} = \int_{0}^{\sqrt{2\pi P}} \gamma(x) \sum_{1} \sum_{2} dx ,$$
$$I_{4} = \int_{0}^{\sqrt{2\pi P}} \frac{\gamma(x)}{\sqrt{x}} \sum_{1} dx ,$$
$$I_{5} = \int_{0}^{\sqrt{2\pi P}} \frac{\gamma(x)}{\sqrt{x}} \sum_{2} dx .$$

The O-term in (2.9) encompasses five terms, including

 $\int x^{-1} |\gamma(x)| \log x |\sum_i |dx|$ for i = 1, 2. We bound these by applying Cauchy-Schwarz's inequality together with (2.8) and the bounds $\int |\gamma(x)| \sum_1^2 dx \ll \sqrt{P}$ and $\int |\gamma(x)| \sum_2^2 dx \ll \log^3 P$, which we shall establish in Lemmas 7 and 8 respectively. We shall estimate I_1 and I_2 asymptotically in §§3, 4 and bound I_3 , I_4 and I_5 in §§5, 6. In the course of our estimations, we can allow *O*-terms only up to the order of $\log^2 P$.

3. The integral I_1

LEMMA 7. We have

$$I_{1} = \sqrt{\frac{9\pi}{8}} c \int_{0}^{\sqrt{2\pi P}} \gamma(x) dx - \frac{1}{\pi} \log^{3}(a+U)^{2} \\ \times \int_{0}^{\sqrt{2\pi P}} \frac{\gamma(x)}{x} \left(\operatorname{arsinh} \frac{\pi(a+U)}{x} \right)^{-1} dx + O(\log^{2} P) .$$
(3.1)

In the following, all integrations with respect to x are over the interval $[0, \sqrt{2\pi P}]$. But since $\gamma(x)$ is supported on $\left[\frac{1}{2}\sqrt{2\pi P}, \sqrt{2\pi P}\right]$, the lower limit of integration is indeed $\frac{1}{2}\sqrt{2\pi P}$ and x is of order \sqrt{P} .

From (2.2) and (2.10), by squaring the sum \sum_{1} and then interchanging the integration and summations, we can write

$$I_1 = \frac{1}{2}S_{11} + S_{12}^- + \frac{1}{2}S_{12}^+$$
(3.2)

where

$$S_{11} = \sum_{n \le (a+U)^2} \eta_n^2 d(n)^2 n^{-3/2} \int e_n^2 \gamma(x) dx , \qquad (3.3)$$

$$S_{12}^{-} = \sum_{m < n \le (a+U)^2} (-1)^{n+m} \eta_m \eta_n d(m) d(n) (mn)^{-3/4} \int e_m e_n \gamma(x) \cos(f_n - f_m) dx \quad (3.4)$$

and

$$S_{12}^{+} = \sum_{m,n \le (a+U)^2} (-1)^{n+m} \eta_m \eta_n d(m) d(n) (mn)^{-3/4} \int e_m e_n \gamma(x) \cos(f_n + f_m) dx ,$$

corresponding to the diagonal terms and the cross terms. The two main terms in (3.1) come

from S_{11} , and S_{12}^{\pm} will be bounded by $\log^2 P$. The function η_n equals to 1 for $n \le a^2$ and then tapers to 0 at $n = (a + U)^2$. If we change η_n to 1 for $a^2 < n \le (a + U)^2$, the error in S_{11} thus induced is

$$\ll \sum_{a^2 < n \le (a+U)^2} d(n)^2 n^{-3/2} \int \gamma(x) dx \ll \sqrt{P} \sum_{a^2 < n \le (a+U)^2} n^{\varepsilon - 3/2} \ll P^{-1/4+\varepsilon},$$

which is acceptable. So, writing for brevity $A = (a + U)^2$ which is of order P, we have from (3.3)

$$S_{11} = \sum_{n \le A} d(n)^2 n^{-3/2} \int e_n^2 \gamma(x) dx + O(P^{-1/4+\varepsilon})$$

= $\sum_{n \le A} d(n)^2 n^{-3/2} \int \gamma(x) dx - \sum_{n \le A} d(n)^2 n^{-3/2} \int (1 - e_n^2) \gamma(x) dx + O(P^{-1/4+\varepsilon})$

By Lemma 5,

$$\sum_{n \le A} d(n)^2 n^{-3/2} = \sqrt{\frac{9\pi}{2}} c - \frac{2}{\pi^2} A^{-1/2} \log^3 A + O(P^{-1/2} \log^2 P) .$$

Thus, on noting that $\int \gamma(x) dx \ll \sqrt{P}$,

$$S_{11} = \sqrt{\frac{9\pi}{2}} c \int \gamma(x) dx - 2\pi^{-2} A^{-1/2} \log^3 A \int \gamma(x) dx - \sum_{n \le A} d(n)^2 n^{-3/2} \int (1 - e_n^2) \gamma(x) dx + O(\log^2 P) .$$
(3.5)

For the last sum, we use Stieltjes integration to obtain

$$\sum_{n \le A} d(n)^2 n^{-3/2} \int (1 - e_n^2) \gamma(x) dx = \int \left(\int_0^A u^{-3/2} (1 - e_u^2) d\Psi_0(u) \right) \gamma(x) dx \,. \tag{3.6}$$

By Lemma 4, the inner integral is equal to

$$\pi^{-2} \int_0^A u^{-3/2} (1 - e_u^2) (\log^3 u + 3\log^2 u) du + u^{-3/2} (1 - e_u^2) O(u \log^2 u) \Big|_0^A - \int_0^A O(u \log^2 u) \frac{d}{du} (u^{-3/2} (1 - e_u^2)) du.$$

Since $1 - e_u^2 \ll ux^{-2}$ and $\frac{d}{du} (u^{-3/2}(1 - e_u^2)) \ll u^{-3/2}x^{-2}$, we find that

$$\int_{0}^{A} u^{-3/2} (1 - e_{u}^{2}) d\Psi_{0}(u)$$

$$= \pi^{-2} \int_{0}^{A} u^{-3/2} (1 - e_{u}^{2}) \log^{3} u \, du + O(A^{1/2} x^{-2} \log^{2} A)$$

$$= \frac{2}{\pi x} \int_{0}^{A} \log^{3} u \frac{d}{du} \left(\frac{-x}{\pi \sqrt{u}} + \left(\operatorname{arsinh} \frac{\pi \sqrt{u}}{x} \right)^{-1} \right) du + O(\sqrt{P} x^{-2} \log^{2} P)$$

$$= \left\{ \frac{-2}{\pi^{2} \sqrt{A}} + \frac{2}{\pi x} \left(\operatorname{arsinh} \frac{\pi \sqrt{A}}{x} \right)^{-1} \right\} \log^{3} A + O(P^{-1/2} \log^{2} P).$$

Putting this back to (3.6) then yields

$$\sum_{n \le A} d(n)^2 n^{-3/2} \int (1 - e_n^2) \gamma(x) dx = \frac{-2}{\pi^2 \sqrt{A}} \log^3 A \int \gamma(x) dx$$
$$+ \frac{2}{\pi} \log^3 A \int \frac{\gamma(x)}{x} \left(\operatorname{arsinh} \frac{\pi \sqrt{A}}{x} \right)^{-1} dx$$
$$+ O(\log^2 P) \,.$$

Hence from (3.5), we deduce that

$$S_{11} = \sqrt{\frac{9\pi}{2}} c \int \gamma(x) dx - \frac{2}{\pi} \log^3 A \int \frac{\gamma(x)}{x} \left(\operatorname{arsinh} \frac{\pi \sqrt{A}}{x} \right)^{-1} dx + O(\log^2 P) \,. \tag{3.7}$$

We now handle S_{12}^{\pm} , the sums involving the cross terms, and proceed to show that

 $S_{12}^{\pm} \ll \log^2 P$. Applying integration by parts once and noting that $\gamma(x)$ vanishes at the upper and S_{12} is that the integral inside the double sum in (3.4) is lower integration limits, we find that the integral inside the double sum in (3.4) is

$$\int e_m e_n \gamma(x) \cos(f_n - f_m) dx = -\int \frac{d}{dx} \left\{ \frac{e_m e_n \gamma(x)}{f'_n - f'_m} \right\} \sin(f_n - f_m) dx.$$
(3.8)

The derivative inside the integral is equal to

$$\left(e'_{m}e_{n}\gamma + e_{m}e'_{n}\gamma + e_{m}e_{n}\gamma' - e_{m}e_{n}\gamma \frac{f''_{n} - f''_{m}}{f'_{n} - f'_{m}}\right)(f'_{n} - f'_{m})^{-1}$$

which is $\ll P^{-1/2}(\sqrt{n}-\sqrt{m})^{-1}$, by Lemma 1 and (2.8). Hence applying Lemma 6, the integral in (3.8) is

$$\ll P^{-1/2}(\sqrt{n}-\sqrt{m})^{-1}\max_{x}|f'_{n}-f'_{m}|^{-1}\ll P^{-1/2}(\sqrt{n}-\sqrt{m})^{-2}.$$

Thus,

$$\begin{split} S_{12}^{-} &\ll P^{-1/2} \sum_{m < n \le A} d(m) d(n) (mn)^{-3/4} (\sqrt{n} - \sqrt{m})^{-2} \\ &\ll P^{-1/2} \sum_{m < n \le A} d(m) d(n) m^{-3/4} n^{1/4} (n-m)^{-2} \\ &\ll \log^2 P \,, \end{split}$$

by Lemma 5 (ii) with $\alpha = 3/4$, $\beta = -1/4$. The estimation of S_{12}^+ is easier and has the same bound. Combining these, (3.7) and (3.2), we complete the proof of Lemma 7.

4. The integral *I*₂

LEMMA 8. We have

$$I_{2} = \pi^{-1} \log^{3} P \int_{0}^{\sqrt{2\pi P}} \frac{\gamma(x)}{x} \left(\operatorname{arsinh} \frac{\pi(a+U)}{x} \right)^{-1} dx$$
$$-6\pi^{-1} \left(\int_{\frac{1}{2}\sqrt{2\pi P}}^{\sqrt{2\pi P}} \frac{\gamma(x)}{x} dx \right) \log^{2} P \log \log P + O(\log^{2} P)$$

The argument of proof of Lemma 8 is along the same line as Lemma 7. From (2.11) we have

$$I_2 = \frac{1}{2}S_{21} + S_{22}^- + \frac{1}{2}S_{22}^+$$
(4.1)

where

$$S_{21} = \pi \int \left(\sum_{n \le Z(x,a)} d(n)^2 n^{-1} \ell_n^{-2} \xi_n^2 \right) x^{-1} \gamma(x) dx , \qquad (4.2)$$
$$S_{22}^- = \pi \sum_{n \ge 1} d(m) d(n) (mn)^{-1/2}$$

$$\sum_{m < n \le Z(\sqrt{2\pi P}, a)} \sum_{m < n \le Z(\sqrt{2\pi P}, a)} \sum_{m < n \le Z(\sqrt{2\pi P}, a)} \int_{\mathcal{N}(n, a)}^{\sqrt{2\pi P}} (\ell_m \ell_n)^{-1} \xi_m \xi_n x^{-1} \gamma(x) \cos(g_n - g_m) dx , \qquad (4.3)$$

$$S_{22}^+ = \pi \sum_{m, n \le Z(\sqrt{2\pi P}, a)} d(m) d(n) (mn)^{-1/2} \sum_{m < n \le Z(\sqrt{2\pi P}, a)} d(m) d(n) (mn)^{-1/2} \sum_{m < n \le Z(\sqrt{2\pi P}, a)} (\ell_m \ell_n)^{-1} \xi_m \xi_n x^{-1} \gamma(x) \cos(g_n + g_m) dx .$$

The two main terms in I_2 comes from the diagonal terms in S_{21} , which is quite straightforward to estimate. The bounding of S_{22}^- , however, is a lot more difficult than S_{12}^- in §3. First we can shorten the sum inside S_{21} to $\sum_{n \le Z(x,a+U)}$ with an error

$$\ll \int \sum_{Z(x,a+U) < n \le Z(x,a)} d(n)^2 n^{-1} x^{-1} |\gamma(x)| dx$$
$$\ll P^{\varepsilon} U \sqrt{P} P^{-1} \int x^{-1} |\gamma(x)| dx \ll P^{-1/4+\varepsilon},$$

by the observation that $Z(x, a) - Z(x, a + U) \ll U\sqrt{P}$ in Lemma 1 (vi) and $U = P^{1/4}$. For $n \leq Z(x, a + U)$, $\xi_n = 1$ and we are led to evaluating the sum

$$\sum_{n \le Z(x,a+U)} d(n)^2 n^{-1} \ell_n^{-2}$$

inside S₂₁. By Lemma 4 and Stieltjes integration,

$$\begin{split} &\sum_{n \le Z(x, a+U)} d(n)^2 n^{-1} \ell_n^{-2} \\ &= \int_{1^-}^{Z(x, a+U)} u^{-1} \ell_u(x)^{-2} d\Psi_0(u) \\ &= \pi^{-2} \int_{1}^{Z(x, a+U)} u^{-1} \ell_u(x)^{-2} (\log^3 u + 3\log^2 u) du \\ &- \int_{1}^{Z(x, a+U)} O(u \log^2 u) \frac{d}{du} (u^{-1} \ell_u(x)^{-2}) du + O(\log^2 P) \\ &= \frac{16}{\pi^2} \log^3 \frac{x}{2\pi} \left(\log \frac{x}{2\pi \sqrt{Z(x, a+U)}} \right)^{-1} - \frac{48}{\pi^2} \log^2 \frac{x}{2\pi} \log \log \frac{x}{2\pi} + O(\log^2 P) \\ &= \frac{16}{\pi^2} \log^3 \frac{x}{2\pi} \left(\operatorname{arsinh} \frac{\pi(a+U)}{x} \right)^{-1} - \frac{48}{\pi^2} \log^2 \frac{x}{2\pi} \log \log \frac{x}{2\pi} + O(\log^2 P) . \end{split}$$

Then from (4.2), we get

$$S_{21} = \frac{16}{\pi} \int \left(\log^3 \frac{x}{2\pi}\right) \left(\operatorname{arsinh} \frac{\pi(a+U)}{x}\right)^{-1} \frac{\gamma(x)}{x} dx$$
$$- \frac{48}{\pi} \int \left(\log^2 \frac{x}{2\pi} \log \log \frac{x}{2\pi}\right) \frac{\gamma(x)}{x} dx + O(\log^2 P) \,. \tag{4.4}$$

Define

$$\mathcal{H}_0(y) = \int_{\frac{1}{2}\sqrt{2\pi P}}^{y} \left(\operatorname{arsinh} \frac{\pi(a+U)}{x} \right)^{-1} \frac{\gamma(x)}{x} dx \text{ for } y \in \left[\frac{1}{2}\sqrt{2\pi P}, \sqrt{2\pi P} \right].$$

Then the first term on the right hand side of (4.4) is equal to

$$\frac{16}{\pi} \mathcal{H}_0(\sqrt{2\pi P}) \log^3 \sqrt{\frac{P}{2\pi}} - 3 \int \frac{\mathcal{H}_0(x)}{x} \log^2 \frac{x}{2\pi} dx$$
$$= \frac{2}{\pi} \mathcal{H}_0(\sqrt{2\pi P}) \log^3 \frac{P}{2\pi} + O(\log^2 P),$$

since $\mathcal{H}_0(y) \ll \log y - \log \frac{1}{2}\sqrt{2\pi P} \ll 1$. Define

$$\mathcal{H}_1(y) = \int_{\frac{1}{2}\sqrt{2\pi P}}^{y} x^{-1} \gamma(x) dx \quad \text{for } y \in \left[\frac{1}{2}\sqrt{2\pi P}, \sqrt{2\pi P}\right]$$

The second term on the right hand side of (4.4) is equal to

$$-\frac{48}{\pi} \int \log^2 \frac{x}{2\pi} \log \log \frac{x}{2\pi} d\mathcal{H}_1(x)$$

= $-\frac{48}{\pi} \mathcal{H}_1(\sqrt{2\pi P}) \log^2 \sqrt{\frac{P}{2\pi}} \log \log \sqrt{\frac{P}{2\pi}}$
+ $\frac{48}{\pi} \int \mathcal{H}_1(x) \frac{d}{dx} \left\{ \log^2 \frac{x}{2\pi} \log \log \frac{x}{2\pi} \right\} dx$
= $-12\pi^{-1} \mathcal{H}_1(\sqrt{2\pi P}) \log^2 P \log \log P + O(\log^2 P)$.

Putting these back to (4.4), we deduce that

$$S_{21} = \frac{2}{\pi} \mathcal{H}_0(\sqrt{2\pi P}) \log^3 \frac{P}{2\pi} - \frac{12}{\pi} \mathcal{H}_1(\sqrt{2\pi P}) \log^2 P \log \log P + O(\log^2 P).$$
(4.5)

We come now to the estimation of the cross terms in S_{22}^- . If we follow the same argument of S_{12}^- , we would obtain the bound $O(\log^3 P)$, which just misses the target by a factor of log *P*. In order to save a factor of log *P*, we need to utilize the oscillation of the sine function; more precisely, we shall use

$$\sum_{h=1}^{P} \frac{\sin \alpha h}{h} \ll 1$$

instead of

$$\sum_{h=1}^{P} \frac{|\sin \alpha h|}{h} \ll \log P$$

to obtain the necessary saving. Thus the bounding of S_{22}^- is more delicate than that of S_{12}^- . First using an integration by parts for the integral in (4.3), and noting that $\xi_n(x)\gamma(x)$ vanishes at both the upper and lower limits of the integration, we have

$$\int_{\mathcal{N}(n,a)}^{\sqrt{2\pi P}} \xi_m \xi_n (\ell_m \ell_n)^{-1} x^{-1} \gamma(x) \cos(g_n - g_m) dx$$
$$= -\int_{\mathcal{N}(n,a)}^{\sqrt{2\pi P}} \sin(g_n - g_m) \frac{d}{dx} \left\{ \xi_m \xi_n (\ell_m \ell_n)^{-1} x^{-1} \gamma(x) (g'_n - g'_m)^{-1} \right\} dx \,. \tag{4.6}$$

The derivative inside the integral is equal to

$$\pi \left(\xi_m \xi_n\right)' \left(x^2 \ell_m \ell_n \log \frac{m}{n}\right)^{-1} \gamma(x) + \pi \xi_m \xi_n \frac{d}{dx} \left\{ \left(x^2 \ell_m \ell_n \log \frac{m}{n}\right)^{-1} \gamma(x) \right\}.$$

By the estimates in Lemma 1 and (2.8), the second term here is $\ll P^{-3/2} \log \frac{n}{m}$. When this is substituted back to the integral in (4.6) and on applying Lemma 6, we get a term $O(P^{-2} |\log \frac{m}{n}|^{-2})$. The contribution of this to S_{22}^- is

$$\ll P^{-2} \sum_{m < n \le Z(\sqrt{2\pi P}, a)} d(m)d(n)(mn)^{-1/2} \left(\log \frac{m}{n}\right)^{-2}$$
$$\ll P^{-2} \sum_{n \le Z(\sqrt{2\pi P}, a)} d(m)n^{-1/2} \sum_{m \le n/2} d(m)m^{-1/2} + P^{-2} \sum_{\substack{n \le Z(\sqrt{2\pi P}, a) \\ n/2 < m < n}} \frac{d(m)d(n)m}{(n-m)^2}$$

 $\ll \log^2 P$,

by Lemma 5 (ii). Thus

$$S_{22}^{-} = -\pi^2 \int \left\{ \sum_{m < n \le Z(x,a)} \frac{d(m)d(n)}{\sqrt{mn}} \left(\log \frac{n}{m} \right)^{-1} \frac{\left(\xi_m \xi_n\right)'}{\ell_m \ell_n} \sin\left(\frac{x^2}{2\pi} \log \frac{n}{m}\right) \right\} \frac{\gamma(x)}{x^2} dx$$
$$+ O(\log^2 P) \,.$$

Denote the double sum inside the above integral by $\sigma(x)$, that is

$$\sigma(x) = \sum_{\substack{m < n \le Z(x,a) \\ n = m \le U}} \frac{d(m)d(n)}{\sqrt{mn}} \left(\log\frac{n}{m}\right)^{-1} \frac{\left(\xi_m \xi_n\right)'}{\ell_m \ell_n} \sin\left(\frac{x^2}{2\pi}\log\frac{n}{m}\right)$$
$$= \sum_{\substack{m < n \le Z(x,a) \\ n = m \le U}} + \sum_{\substack{m < n \le Z(x,a) \\ n = m > U}} = \sigma_1(x) + \sigma_2(x), \quad \text{say.}$$

In the estimation of $\sigma_1(x)$, we make use of the fact that $\xi'_n(x) \neq 0$ if and only if Z(x, a + U) < n < Z(x, a). Furthermore, from Lemma 1 (vi), $Z(x, a) - Z(x, a + U) \approx$ $Ux \simeq U\sqrt{P}$. Hence $\sigma_1(x)$ is really a short sum over a range of length $\simeq U\sqrt{P}$ and m, n are of order *P*. Write $h = n - m \le U$. Then first order approximations give

$$\left(\sqrt{mn}\log\frac{n}{m}\ell_{m}\ell_{n}\right)^{-1}\sin\left(\frac{x^{2}}{2\pi}\log\frac{n}{m}\right) = h^{-1}\ell_{n}^{-2}\left(\sin\frac{x^{2}h}{2\pi n} + O\left(\frac{h^{2}}{n}\right)\right)$$
$$= h^{-1}\ell_{n}^{-2}\sin\frac{x^{2}h}{2\pi n} + O(hP^{-1}). \quad (4.7)$$

For $m < n \le Z(z, a)$, careful scrutiny of the definition of ξ_n in (2.3) shows that

(i)
$$(\xi_m \xi_n)' = \xi'_m \xi_n + \xi_m \xi'_n = 0 \text{ for } n > Z(x, a) \text{ or } n < Z(x, a+U);$$
 (4.8)

(ii)
$$\left(\xi_m\xi_n\right)' = \frac{d}{dx}\left\{U^{-2}\left(n^{-1/2}\left(\frac{x}{2\pi}\right)^2 - \sqrt{n} - a\right)\left(m^{-1/2}\left(\frac{x}{2\pi}\right)^2 - \sqrt{m} - a\right)\right\}$$

$$= -(\pi U)^{-2}x\left(1 + \frac{a}{\sqrt{n}} - \frac{x^2}{4\pi^2 n}\right) + O(hP^{-1})$$
(4.9)

for $Z(x, a + U) + U < n \le Z(x, a)$;

(iii)
$$(\xi_m \xi_n)' \le |\xi_m'| + |\xi_n'| \ll \frac{x}{U\sqrt{m}}$$
 for $Z(x, a+U) < n \le Z(x, a)$. (4.10)

In view of (4.8), we now further split the sum $\sigma_1(x)$ into

$$\sigma_1(x) = \sum_{h \le U} \sum_{\substack{Z(x, a+U)+U \le n \le Z(x, a) \\ m=n-h}} + \sum_{h \le U} \sum_{\substack{Z(x, a+U) \le n \le Z(x, a+U)+U \\ m=n-h}} = \sigma_{11}(x) + \sigma_{12}(x), \quad \text{say.}$$

Estimating crudely by invoking Lemma 1 (i) and (4.10), we have

$$\sigma_{12}(x) \ll \sum_{h \le U} \sum_{Z(x,a+U) < n < Z(x,a+U) + U} \frac{d(n-h)d(n)}{n} \left(\frac{h}{n}\right)^{-1} U^{-1} \ll P^{\varepsilon}.$$
 (4.11)

For $\sigma_{11}(x)$, we use (4.7) and (4.9) to deduce that

$$\sigma_{11}(x) = -\frac{x}{\pi^2 U^2} \sum_{h \le U} h^{-1} \sum_{Z(x,a+U)+U < n \le Z(x,a)} \times d(n-h)d(n) \left(1 + \frac{a}{\sqrt{n}} - \frac{x^2}{4\pi^2 n}\right) \ell_n^{-2} \sin \frac{x^2 h}{2\pi n} + O\left(P^{-1} \sum_{h \le U} h \sum_{n \sim P} d(n-h)d(n)U^{-1}\right) + O\left(P^{-1} \sum_{h \le U} \sum_{n \sim P} d(n-h)d(n)\right)$$

$$= -\frac{x}{\pi^2 U^2} \sum_{h \le U} h^{-1} \int_{Z(x,a+U)+U}^{Z(x,a)} \left(1 + \frac{a}{\sqrt{u}} - \frac{x^2}{4\pi^2 u}\right) \ell_u^{-2} \sin \frac{x^2 h}{2\pi u} d\Psi_h(u) + O(UP^\varepsilon) \,.$$

By Lemma 2, the integral inside the summation is equal to

$$\frac{6}{\pi^2}h^{-1}\int_{Z(x,a+U)+U}^{Z(x,a)} \left(1+\frac{a}{\sqrt{u}}-\frac{x^2}{4\pi^2 u}\right)\ell_u^{-2}\sin\frac{x^2h}{2\pi u}m\left(\frac{u}{h};h\right)du$$

On a Mean Value Theorem for the Second Moment of the Riemann Zeta-Function

$$+ O\left(u^{3/4} \left(1 + \frac{a}{\sqrt{u}} - \frac{x^2}{4\pi^2 u}\right)\Big|_{Z(x,a+U)+U}^{Z(x,a)}\right) \\ - \int_{Z(x,a+U)+U}^{Z(x,a)} O\left(u^{3/4}\right) \frac{d}{du} \left\{ \left(1 + \frac{a}{\sqrt{u}} - \frac{x^2}{4\pi^2 u}\right) \ell_u^{-2} \sin \frac{x^2 h}{2\pi u} \right\} du$$

The last two terms are $\ll \sqrt{P}$ since $Z(x, a) - Z(x, a + U) \ll U\sqrt{P} = P^{3/4}$, and

$$\left(1 + \frac{a}{\sqrt{u}} - \frac{x^2}{4\pi^2 u}\right) = u^{-1}(\sqrt{u} - \sqrt{Z(x,a)})(\sqrt{u} + a + \sqrt{Z(x,a)})$$
$$\ll P^{-1}(u - Z(x,a)) \ll P^{-1}\sqrt{P}U = P^{-1/4}.$$
(4.12)

Thus,

$$\sigma_{11}(x) = \frac{-6x}{\pi^4 U^2} \sum_{h \le U} h^{-2} \int_{Z(x,a+U)+U}^{Z(x,a)} \left(1 + \frac{a}{\sqrt{u}} - \frac{x^2}{4x^2 u}\right) \ell_u^{-2} \sin \frac{x^2 h}{2\pi u} m\left(\frac{u}{h}; h\right) du + O\left(\sqrt{P} \log P\right).$$
(4.13)

We claim

$$\sum_{h \le U} \sin\left(\frac{x^2}{2\pi u}h\right) h^{-2} m\left(\frac{u}{h};h\right) \ll \log^2 P \,. \tag{4.14}$$

Note that if we disregard the oscillation of the sine function and use the trivial bound $|\sin \frac{x^2h}{2\pi u}| \leq 1$, the above sum would be $\ll \log^3 P$, which would miss our target by a factor of log *P*.

Write $\beta = \frac{x^2}{2\pi u}$ for brevity. In view of (2.5) and (2.6), the sum $\sum_{h \le U} \sin(\beta h) h^{-2} m\left(\frac{u}{h}; h\right)$ is a combination of finitely many sums of the form

$$(\log u)^{i} \sum_{r \le U} \frac{(\log r)^{j}}{r^{2}} \sum_{d \le \frac{U}{r}} \frac{\sin(\beta r d)}{d} \log^{k} d$$

where $i, j, k \ge 0$ and $i + j + k \le 2$. The inner sum over d is $\ll 1$ and hence

$$\sum_{h\leq U}\sin(\beta h)h^{-2}m\left(\frac{u}{h};h\right)\ll \log^2 u\,.$$

This proves (4.14). Back substitution into (4.13) and in view of (4.12) then leads to the bound $\sigma_{11}(x) \ll \sqrt{P} \log^2 P$. This together with (4.11) confirms the bound

$$\sigma_1(x) \ll \sqrt{P} \log^2 P$$

and so the contribution of $\sigma_1(x)$ to S_{22}^- is $\ll \sqrt{P} \log^2 P \int x^{-2} \gamma(x) dx \ll \log^2 P$. It remains to handle $\sigma_2(x)$, whose contribution to S_{22}^- is

$$-\pi^2 \sum_{m < n \leq Z(\sqrt{2\pi P}, a) \atop n - m > U} \frac{d(m)d(n)}{\sqrt{mn}} \int \left(\xi_m \xi_n\right)' \frac{\gamma(x)}{x^2 \ell_m \ell_n} \left(\log \frac{n}{m}\right)^{-1} \sin\left(\frac{x^2}{2\pi}\log \frac{n}{m}\right) dx$$

$$\ll \sum_{\substack{m < n \le Z(\sqrt{2\pi P}, a) \\ n-m > U}} \frac{d(m)d(n)}{\sqrt{mn}} \max_{x \in [\frac{1}{2}\sqrt{2\pi P}, \sqrt{2\pi P}]} \left| (\xi_m \xi_n)' \left(x^3 \ell_m \ell_n \log^2 \frac{n}{m} \right)^{-1} \gamma(x) \right|$$

$$\ll P^{-1} U^{-1} \sum_{\substack{m < n \le Z(\sqrt{2\pi P}, a) \\ n-m > U}} \frac{d(m)d(n)}{m\sqrt{n}} \left(\log \frac{n}{m} \right)^{-2}, \qquad (4.15)$$

by applying Lemma 6 together with the estimates Lemma 1 (i), (2.8) and (4.10). The part of this sum for which m < n/2 is easily seen to be $\ll P^{1/2+\varepsilon}$. For n/2 < m < n, the sum is

$$\ll \sum_{\substack{n/2 < m < n - U \\ n \le \mathbb{Z}(\sqrt{2\pi P}, a)}} \frac{d(m)d(n)}{m\sqrt{n}} \left(\frac{n}{n - m}\right)^2$$
$$\ll \sum_{h \ge U} h^{-2} \sum_{m \le \mathbb{Z}(\sqrt{2\pi P}, a)} \sqrt{m} d(m)d(m + h)$$
$$\ll \sum_{h \ge U} h^{-3}\sigma(h) P^{3/2} \log^2 P + \sum_{h \ge U} h^{-2} P^{5/4},$$

by invoking Lemma 3. Plainly $\sum_{h\geq U} h^{-3}\sigma(h)$ is $\ll U^{-1}$. All in all, the expression in (4.15) is $\ll \log^2 P$, and whence

$$S_{22}^- \ll \log^2 P$$
 .

In a similar but much easier manner, one shows that $S_{22}^+ \ll \log^2 P$. In view of (4.1) and (4.5), this completes the proof of Lemma 8.

5. The integral I₃

We come now to the estimation of I_3 , for the cross term $\sum_1 \sum_2$. The oscillating factors $\cos f_n(x)$ in \sum_1 and $\cos g_n(x)$ in \sum_2 are almost in phase when *m* and *n* are close to $(a + U)^2$ and Z(x, a) respectively. But the totality of all such cases is small and we shall use a special trick to utilize this observation.

LEMMA 9. We have

$$I_3 \ll \log^2 P$$
.

The trick is that we transform a small tail section of \sum_2 into a small tail section of \sum_1 by noting that the parameter *a* in (2.1), apart from having order of \sqrt{P} , still has some degree of freedom. More precisely, we use the formula (2.1) twice, first with value *a* and then with *a* replaced by a + 2U (but keeping the same *U*). Thus, by writing

$$r_n(x) = (-1)^n d(n) n^{-3/4} e_n(x) \cos f_n(x) ,$$

$$s_n(x) = d(n) n^{-1/2} \ell_n(x)^{-1} \cos g_n(x) ,$$

for brevity and noting that they are independent of a, we have, by (2.1)

$$\sum_{n \le (a+U)^2} \eta_n(a) r_n(x) - \sqrt{\frac{\pi}{x}} \sum_{n \le Z(x,a)} \xi_n(a) s_n(x) + O(x^{-1} \log x)$$
$$= \sqrt{\frac{\pi}{x}} E\left(\frac{x^2}{2\pi}\right) = \sum_{n \le (a+3U)^2} \eta_n(a+2U) r_n(x)$$
$$- \sqrt{\frac{\pi}{x}} \sum_{n \le Z(x,a+2U)} \xi_n(a+2U) s_n(x) + O(x^{-1} \log x) \,.$$

Here, instead of η_n and ξ_n we have to write $\eta_n(a)$ and $\xi_n(a)$, to indicate their dependence on the parameter *a*. Then

$$\sqrt{\frac{\pi}{x}} \left\{ \sum_{n \le Z(x,a)} \xi_n(a) s_n(x) - \sum_{n \le Z(x,a+2U)} \xi_n(a+2U) s_n(x) \right\}$$

= $-\sum_{n \le (a+3U)^2} \eta_n(a+2U) r_n(x) + \sum_{n \le (a+U)^2} \eta_n(a) r_n(x) + O(x^{-1}\log x).$

We may therefore express

$$\sum_{1} \sum_{2} = \sum_{1} \sqrt{\frac{\pi}{x}} \sum_{n \le Z(x, a+2U)} \xi_{n}(a+2U) s_{n}(x)$$
$$- \sum_{1} \left\{ \sum_{n \le (a+3U)^{2}} \eta_{n}(a+2U) r_{n}(x) - \sum_{n \le (a+U)^{2}} \eta_{n}(a) r_{n}(x) + O(x^{-1} \log x) \right\}$$
$$= \sum_{1} \sum_{2}^{*} - \sum_{1} \sum_{1}^{*} + O\left(x^{-1} \log x \left| \sum_{1} \right| \right), \quad say,$$

where

$$\sum_{2}^{*} = \sqrt{\frac{\pi}{x}} \sum_{n \le Z(x, a+2U)} \xi_{n}(a+2U) s_{n}(x)$$

is similar to the original \sum_{2} , but with a tail section removed and $\xi_n(a)$ changed to $\xi_n(a + 2U)$, and

$$\sum_{1}^{*} = \sum_{n \le (a+3U)^{2}} (\eta_{n}(a+2U) - \eta_{n}(a))r_{n}(x).$$

We see that \sum_{1}^{*} has the same shape as \sum_{1} , but with the new smoothening factor $\eta_{n}(a + 2U) - \eta_{n}(a)$ which has support on the very short interval $[a^{2}, (a + 3U)^{2}]$. So \sum_{1}^{*} is a short sum of length $\approx aU$, having the same oscillating factor as \sum_{1} . Similar to the estimation of I_{1} in Lemma 7, we see that the contribution of the cross terms in

$$\int \gamma(x) \sum_{1} \sum_{1}^{*} dx$$

is $\ll \log^2 P$, while the diagonal terms yield the contribution

$$\sum_{a^2 < n \le (a+2U)^2} (\eta_n (a+2U) - \eta_n (a))^2 d(n)^2 n^{-3/2} \int e_n^2 \gamma(x) dx$$
$$\ll \sqrt{P} \sum_{a^2 < n \le (a+3U)^2} d(n)^2 n^{-3/2} \ll P^{-1/4+\varepsilon}.$$

Furthermore, by Cauchy-Schwarz's inequality and the bound for $\int \sum_{1}^{2} \gamma(x) dx$ in Lemma 7, we find that

$$\int x^{-1} \log x \left| \sum_{1} \right| \gamma(x) dx \ll \log P$$

which is again sufficient. To finish the proof of Lemma 9, it remains to establish that

$$I_{31} = \int \sum_{1} \sum_{2}^{*} \gamma(x) dx \ll \log^2 P \, .$$

The estimation of this follows the same argument of S_{22}^{\pm} in §4. More precisely, after interchanging the integration and summation, we have

$$I_{31} = S_{31}^+ + S_{31}^-$$

where

$$S_{31}^{\pm} = \frac{\sqrt{\pi}}{2} \sum_{m \le (a+U)^2} \sum_{n \le Z(\sqrt{2\pi P}, a+2U)} \frac{(-1)^m d(m) d(n)}{m^{3/4} \sqrt{n}} \eta_m(a)$$
$$\int_{\mathcal{N}(n, a+2U)}^{\sqrt{2\pi P}} e_m \xi_n(a+2U) \ell_n^{-1} x^{-1/2} \gamma(x) \cos(g_n \pm f_m) dx \,. \tag{5.1}$$

As before, S_{31}^- is the more difficult one and we shall prove

$$S_{31}^{\pm} \ll P^{-1/4+\varepsilon}$$
. (5.2)

By the same argument of S_{22}^- and noting that $\xi_n(a + 2U)\gamma(x)$ vanishes at the upper and lower limits of the integration, we obtain, after an integration by parts,

$$\int_{\mathcal{N}(n,a+2U)}^{\sqrt{2\pi P}} = \int_{\mathcal{N}(n,a+2U)}^{\sqrt{2\pi P}} \sin(g_n - f_m) \frac{d}{dx} \Big\{ e_m \xi_n (a+2U) \ell_n^{-1} x^{-1/2} \gamma(x) \big(g'_n - f'_m \big)^{-1} \Big\} dx \,.$$

By Lemma 6, this is

$$\ll \max |g'_n - f'_m|^{-1} \left| \frac{d}{dx} \Big\{ e_m \xi_n (a + 2U) \ell_n^{-1} x^{-1/2} \gamma(x) \big(g'_n - f'_m \big)^{-1} \Big\}$$

where the maximum is over $x \in \left[\max(\mathcal{N}(n, a + 2U), \frac{1}{2}\sqrt{2\pi P}), \sqrt{2\pi P}\right]$. We will show in a moment that

$$|g'_n - f'_m|^{-1} \ll U^{-1}$$
 and $|g''_n - f''_m| \ll 1$ (5.3)

for x in the above range. Then, in view of Lemma 1 (i)–(iv) and (2.8) the integral in (5.1)is

$$\ll U^{-1} \sqrt{\frac{x}{n}} |g'_n - f'_m|^{-2} + x^{-1/2} |g''_n - f''_m| |g'_n - f'_m|^{-3}$$
$$\ll U^{-3} \sqrt{\frac{x}{n}} + x^{-1/2} U^{-3} \ll P^{-1/2} n^{-1/2} + P^{-1} \ll P^{-1/2} n^{-1/2}$$

Therefore

$$S_{31}^- \ll P^{-1/2} \sum_{m \le (a+U)^2} \sum_{n \le Z(\sqrt{2\pi P}, a+2U)} \frac{d(m)d(n)}{m^{3/4}n} \ll P^{-1/4+\varepsilon},$$

and the same bound holds for S_{31}^+ . Hence (5.2) is proved. Finally, we establish the bounds in (5.3). Direct from their definitions (c.f. Lemma 1 (iii)), we find that

$$g'_{n} - f'_{m} = \frac{2x}{\pi} \left(\log \frac{x}{2\pi\sqrt{n}} - \operatorname{arsinh} \frac{\pi\sqrt{m}}{x} \right)$$
$$= \frac{2x}{\pi} \log \left(\frac{x}{2\pi\sqrt{n}} \left\{ \frac{\pi\sqrt{m}}{x} + \left(1 + \frac{\pi^{2}m}{x^{2}} \right)^{1/2} \right\}^{-1} \right)$$
(5.4)

and

$$g_n'' - f_m'' = \frac{2}{\pi} \left(\log \frac{x}{2\pi\sqrt{n}} - \operatorname{arsinh} \frac{\pi\sqrt{m}}{x} + 1 \right) + 2\frac{\sqrt{m}}{x} \left(1 + \frac{\pi^2 m}{x^2} \right)^{-1/2}.$$

Plainly, for $m \le (a+U)^2 \asymp P \asymp x^2$ and $n \le Z(x, a+2U)$, we have $g_n'' - f_m'' \ll 1$.

$$g_n'' - f_m'' \ll 1$$

From (2.4), one verifies directly

$$\frac{x}{2\pi} \left\{ \frac{\pi \sqrt{m}}{x} + \left(1 + \frac{\pi^2 m}{x^2} \right)^{1/2} \right\}^{-1} = \sqrt{Z(x, \sqrt{m})} \,.$$

Hence for $n \leq Z(x, a + 2U)$,

$$\begin{split} g'_{n} - f'_{m} &= \frac{2x}{\pi} \bigg(\log \sqrt{Z(x, \sqrt{m})} - \log \sqrt{n} \bigg) \\ &\geq \frac{2x}{\pi} \bigg(\log \sqrt{Z(x, \sqrt{m})} - \log \sqrt{Z(x, a + 2U)} \bigg) \\ &= \frac{2x}{\pi} \big\{ m - (a + 2U)^{2} \big\} \frac{d}{du} \log \sqrt{Z(x, \sqrt{u})} \Big|_{u = u_{0}} \quad \text{for some } u_{0} \in (m, (a + 2U)^{2}) \\ &= \frac{x}{2\pi} \bigg(u_{0} \bigg(\bigg(\frac{x}{2\pi} \bigg)^{2} + \frac{u_{0}}{4} \bigg) \bigg)^{-1/2} \big((a + 2U)^{2} - m \big) \\ &\gg x P^{-1} \big((a + 2U)^{2} - (a + U)^{2} \big) \gg U \,. \end{split}$$

This proves (5.3) and our Lemma 9 hence follows.

6. Proofs of Theorem 1 and 2.

The treatments of I_4 and I_5 are quite straightforward, by integrating term by term of \sum_1 and \sum_2 and then applying Lemma 6. We have

$$I_4 \ll P^{-1/4}$$
, $I_5 \ll P^{-1/4} \log P$.

Putting these and the estimates for I_1 , I_2 , I_3 from Lemmas 7, 8, 9 into (2.9), we conclude that

$$\frac{\pi^2}{P} \int_0^P \omega\left(\frac{T}{P}\right) E(T)^2 dT = \sqrt{\frac{9\pi}{8}} c \int_0^{\sqrt{2\pi P}} \gamma(x) dx$$
$$- 6\pi^{-1} \left(\int x^{-1} \gamma(x) dx\right) \log^2 P \log \log P + O(\log^2 P).$$

In view of (2.7), Theorem 1 follows.

To deduce Theorem 2, we notice that for any function $\phi(T)$

$$\int_0^P \phi(T) F(T) \, dT = \int_0^P \left(\int_T^P \phi(t) \, dt \right) \left(E(T)^2 - \frac{3}{2} c T^{1/2} \right) dT \, .$$

Using the function

$$\phi(T) = \begin{cases} -2, & \frac{P}{4} \le T \le \frac{P}{2}, \\ 1, & \frac{P}{2} < T \le P, \\ 0, & \text{otherwise}, \end{cases}$$

and find that

$$Q(P) - 2Q(P/2) = P \int_0^P \omega\left(\frac{T}{P}\right) \left(E(T)^2 - \frac{3}{2}cT^{1/2}\right) dT$$

where

$$Q(Y) = \int_{\frac{Y}{2}}^{Y} F(T) dT$$

and

$$\omega(x) = \begin{cases} 2x - \frac{1}{2}, & \frac{1}{4} \le x \le \frac{1}{2}, \\ 1 - x, & \frac{1}{2} \le x \le 1, \\ 0, & \text{otherwise.} \end{cases}$$

Then by Theorem 1, we have

$$Q(P) - 2Q(P/2) = -\frac{9}{8\pi^2} P^2 \log^2 P \log \log P + O(P^2 \log^2 P).$$

Replacing *P* by $P2^{-j}$, then multiplying throughout by 2^j and then sum *j* from 0 to *J* where $J = [3 \log \log P]$, we obtain (by noting the bound $F(T) \ll T \log^4 T$)

$$Q(P) = -\frac{9}{4\pi^2} P^2 \log^2 P \log \log P + O(P^2 \log^2 P).$$

Whence

$$\int_{0}^{P} F(T)dT = \sum_{j=0}^{\infty} Q\left(\frac{P}{2^{j}}\right) = -\frac{3}{\pi^{2}} P^{2} \log^{2} P \log \log P + O(P^{2} \log^{2} P)$$

and Theorem 2 follows.

References

- [1] F. V. Atkinson, The mean value of the Riemann zeta function, Acta Math. 81 (1949), 353–376.
- [2] G. H. Hardy and J. E. Littlewood, The Riemann zeta-function and theory of the distribution of primes, Acta Math. 41 (1918), 119–196.
- [3] D. R. Heath-Brown, The mean value theorem for the Riemann zeta-function, Mathematika 25 (1978), 177–184.
- [4] M. N. Huxley, Exponential sums and lattice points III, Proc. London Math. Soc., (3) 87 (2003), 591-609.
- [5] M. N. Huxley, Exponential sums and the Riemann zeta-function V, Proc. London Math. Soc. (3) 90 (2005), 1–41.
- [6] A. E. Ingham, Mean-value theorems in the theory of the Riemann zeta-function, Proc. London Math. Soc.
 (2) 27 (1926), 273–300.
- [7] Y. K. Lau and K. M. Tsang, Mean square of the remainder term in the Dirichlet divisor problem, Journal de Théorie des Nombres de Bordeaux 7 (1995), 75–92.
- [8] Y. K. Lau and K. M. Tsang, On the mean square formula of the error term in the Dirichlet divisor problem, Mathematical Proceedings of the Cambridge Philosophical Society, 146 (2009), 277–287.
- [9] T. Meurman, On the mean square of the Riemann zeta-function, Quart. J. Math. Oxford (2), 38 (1987), 337–343.
- [10] Y. Motohashi, The binary additive divisor problem, Ann. Sci. École Norm. Sup. (4) 27 (1994), no. 5, 529–572.
- [11] E. Preissmann, Sur la moyenne quadratique du terme de reste du problème du cercle, C. R. Acad. Sci. paris Sér. I 306 (1988), 151–154.

KAI-MAN TSANG Department of Mathematics University of Hong Kong Pokfulam Road Hong Kong SAR, China e-mail: kmtsang@maths.hku.hk