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1. Introduction

Extending Vinogradov’s celebrated three prime theorem, Akio Fujii [4] proved that
for any fixed integer g ≥ 2, every sufficiently large odd integer can be written as the sum
of three numbers, each of which is the product of g prime numbers. More precisely, he [4]
showed that for any given positive real numbers δ1, . . . , δg satisfying δ1 + · · · + δg = 1,
every sufficiently large odd integer n can be written as n = x1 + x2 + x3, where for j = 1,
2 and 3, the xj takes the shape

xj = pj,1pj,2 . . . pj,g with primes pj,k ≤ nδk for 1 ≤ k ≤ g .(1)

In fact, he essentially established an asymptotic formula for the number of the latter repre-
sentations. As Balog and Sárközy [2] pointed out, this work of Fujii [4] has relation with a
problem posed by Erdös on representations of integers by sums of numbers without large
prime factors. Such numbers are commonly called smooth numbers.

The methods of Fujii [4] may be quite easily altered to show, for example, that every
large even integer n can be written as n = 2x1 + x2 + x3 with the same constraint on
xj as in (1). Thus it is immediately derived from the above work of Fujii [4] that for any
ε > 0, every sufficiently large integer n, regardless of its parity, can be written as the sum
of three natural numbers, each of which has no prime factor exceeding nε . Later, Balog and
Sárközy [2] sharpened this conclusion, replacing the last nε by exp(3

√
log n log log n).

Further, Fujii [5] investigated additive problems of Waring’s type for smooth numbers.
Amongst others, concerning sums of cubes, on which we concentrate in this short note, he
established that every sufficiently large odd integer n can be written as n = x3

1 +x3
2 +· · ·+

x3
9 , where each xj takes a shape similar to (1), but with the restriction pj,k ≤ nδk/3 for

the prime factors (see Theorem 3 and Corollary 3 of [5]). Again, for large even n, Fujii’s
argument may lead, with trivial modifications, to the existence of the xj of the same shape
satisfying n = (2x1)

3 + x3
2 + · · · + x3

9 , so essentially it follows form Corollary 3 of [5] that
for any ε > 0, every sufficiently large n, of either parity, can be written as the sum of nine
cubes of natural numbers, each of which has no prime factor exceeding nε . This conclusion
was refined by Harcos [6], who showed the assertion with exp(c

√
log n log log n) for some

positive absolute constant c, in place of nε . Brüdern and Wooley [3] further improved
Harcos’s result by reducing the number of summands. Namely, they [3] showed that every
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sufficiently large n is the sum of eight cubes of natural numbers that have no prime factor
exceeding exp(c

√
log n log log n) with some positive absolute constant c.

The purpose of this article is to discuss the corresponding problem for sums of seven
cubes. Hereafter, for an integer m ≥ 2, we denote the largest prime factor of m by P(m),
and we seek for an upper bound for P(x1x2 . . . x7) in terms of n, with which every suffi-
ciently large integer n admits the representation

n = x3
1 + x3

2 + x3
3 + x3

4 + x3
5 + x3

6 + x3
7 .(2)

Our result here in this direction is substantially weaker than the aforementioned results,
with respect to the smoothness of the variables, and we aim to show that every large n is
written in the form (2) with P(x1 . . . x7) ≤ nσ/3 for a smaller σ . Note that Linnik’s seven
cube theorem means of course that σ = 1 is admissible in the latter statement.

If we would be allowed to leave one variable aside in the representation (2), then we
may make the remaining six variables satisfactorily smooth. In fact, it may be deduced from
a deep theorem of Wooley ([9], Theorem 1.2) that every large n can be written in the form
(2) with P(x2x3 . . . x7) ≤ exp(c

√
log n log log n) for some c > 0. But still considerable

technical efforts are required to obtain a significant bound for the largest prime factor of all
the seven variables, substantially better than P(x1x2 . . . x7) ≤ n1/3. Such a bound appeared
first in the previous work of the author [7] as a by-product of his research on sums of seven
cubes of almost primes. On putting

ξ =
√

2833 − 43

41
and σ0 = 1 − 4(5 − 16ξ − ξ2)

8ξ + 21
,(3)

Theorem 5 of [7] asserts that for any σ > σ0, every sufficiently large n can be written in
the form (2) with natural numbers xj (1 ≤ j ≤ 7) satisfying P(x1x2 . . . x7) ≤ nσ/3. We
remark that

σ0 = (53672
√

2833 − 2784931)/85977

is slightly smaller than 0.835239, and also that the above ξ comes from the currently best
estimate for the sixth moment of a cubic smooth Weyl sum due to Wooley ([10], Theorem
1.2). In this note we reduce the lower limit for the admissible value of σ by the factor e−1/2.

THEOREM. Let σ0 be defined by (3). Then for any σ > σ0e
−1/2, every sufficiently

large integer n can be written in the form (2) with natural numbers xj (1 ≤ j ≤ 7)

satisfying P(x1x2 . . . x7) ≤ nσ/3.

Note that σ0e
−1/2 is slightly smaller than 0.506598.

The Theorem is proved by adding an idea of Balog [1] to the basic work of [7]. This
idea of Balog may be regarded as a kind of the switching principle, or the reversal role
technique, in the sieve theory.

2. Notation and the strategy

Throughout the paper, we adopt the following notation and conventions.
We write e(α) = exp(2πiα), and the letter p, with a subscript also, denotes prime

numbers. The letter � denotes primes congruent to 2 modulo 3.
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The constants ξ and σ0 are defined at (3), and σ denotes any given real number sat-
isfying σ > σ0e

−1/2, as in the statement of the Theorem. Then there is a positive ε such
that

σ > (σ0 + 9ε)eε−1/2,(4)

and we fix such an ε with ε < 10−3 once for all, within this paper. All the implicit constants,
involved in the symbols �, � and O , may depend at most on ε.

With this ε, Theorem 1.2 of Wooley [10] assures the existence of a small positive η

such that for any U > 1, one has∫ 1

0

∣∣∣∣
∑

1≤x≤2U

e(x3α)

∣∣∣∣
2∣∣∣∣

∑
1≤z≤2U
P(z)≤U3η

e(z3α)

∣∣∣∣
4

dα � U3+ξ+ε .(5)

We fix an η < 10−3 having the latter property, and to facilitate the later argument, we
suppose that (2η)−1 is an integer, without loss of generality. Note that we may take this η,
depending only on ε.

Let n be an integer which shall be supposed to be large in terms of the ε, and put

X = 1

2
n1/3 , D = X1−σ0−9ε , M = X(14ξ−1)/(8ξ+21) .

It may be understood from our minor arc estimate (see (10) below) that these choices of D

and M are optimal. And it may be helpful to record that 1 − σ0 and (14ξ − 1)/(8ξ + 21)

are approximately 0.16476 and 0.10836, respectively.
Next, for any U > 1, we define

A∗(U) = {l ∈ N : U1−2η < l ≤ U1−η, ∀p|l, 2U2η < p ≤ U3η} ,

imitating the methods of Harcos [6] and Brüdern and Wooley [3], which shows its utility
when we evaluate major arc contribution. In accordance with the notation of [7], we also
define the sets

A = {lm : l ∈ A∗(X/M), 1 ≤ lm ≤ 2X/M} ,

AM = {�x : M < � ≤ 2M, x ∈ A, X < �x ≤ 2X} ,

B = {lm : l ∈ A∗(X), X < lm ≤ 2X} .

When l ∈ A∗(X/M) and 1 ≤ lm ≤ 2X/M , one has m ≤ 2(X/M)2η, while every prime
factor of l exceeds 2(X/M)2η. Thus we find that every x ∈ A can be written uniquely as
x = lm with l ∈ A∗(X/M). Similarly, every z ∈ B may be written uniquely as z = lm

with l ∈ A∗(X). Moreover we may notice that

∀x ∈ A , P (x) ≤ (X/M)3η , and ∀z ∈ B , P (z) ≤ X3η .

We also have P(y) ≤ 2M for all y ∈ AM .
Then we define R1(n) to be the number of representations of n in the form

n = (p1x1)
3 + (p2x2)

3 + y3
1 + y3

2 + y3
3 + z3

1 + z3
2 ,(6)
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where

D < pj ≤ 2D ,
X

pj

< xj ≤ 2X

pj

, yk ∈ AM , zj ∈ B ,(7)

for j = 1, 2, and k = 1, 2, 3, and in addition, P(x1) ≤ Xσ . We may provide an asymptotic
formula for R1(n), being based on the minor arc estimate contained essentially in Lemma
5 of [7], as we shall show indeed in the sequel. Then by the fact that R1(n) > 0 for every
large n, one obtains a conclusion which is tantamount to Theorem 5 of [7] referred after
(3).

To prove the Theorem, we estimate the number, say R2(n), of the representations of n

in the form (6) where the variables satisfy (7) and additional conditions P(x1) ≤ Xσ and
P(x2) > Xσ . Further we write R3(n) for the number of the representations of n in the form
(6) where the variables satisfy (7) and P(x2) > Xσ .

Now note first that trivially one has R2(n) < R3(n). So if we could show that

R1(n) > R3(n) ,(8)

then we see that R1(n) > R2(n), which obviously means that n can be written in the form
(6) with the variables satisfying (7), P(x1) ≤ Xσ and P(x2) ≤ Xσ . Thus the Theorem
follows from (8) at once.

We remark that in the above strategy, some additional minor efforts allow us to replace
the variables pj , yk and zj for j = 1, 2 and k = 1, 2, 3, by suitable numbers having no
prime factor exceeding exp(c

√
log n log log n) with some c > 0, although such modifica-

tions have no impact on the statement of the Theorem. Here we adopt the above setting for
the ease of reference to [7].

3. The circle method and minor arc estimates

In order to show (8) by the circle method, we introduce several exponential sums.
When d is a natural number and C is a finite set of integers, we write

f (α; d) =
∑

X/d<x≤2X/d

e(d3x3α) , g(α; C) =
∑
x∈C

e(x3α) ,

f1(α; d) =
∑

X/d<x≤2X/d
P (x)≤Xσ

e(d3x3α) , f3(α; d) =
∑

X/d<x≤2X/d
P (x)>Xσ

e(d3x3α) .

For ν = 1 and 3, we also put

Fν(α) =
∑

D<p≤2D

fν(α; p) ,

and then observe, by the orthogonality, that

Rν(n) =
∫ 1

0

∑
D<p≤2D

f (α; p)Fν(α)g(α;AM)3g(α;B)2e(−nα)dα .
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To evaluate the last integral, we adopt the same Hardy-Littlewood dissection as in [7].
Let P be the set of real numbers α ∈ [0, 1) such that there exist coprime integers q and a

satisfying

|α − a/q| ≤ (log X)500X−3 , 1 ≤ q ≤ (log X)500 , 0 ≤ a ≤ q ,(9)

and write p = [0, 1) \ P. Then the contribution of the minor arcs p to the integral repre-
senting Rν(n) may be swiftly handled by reference to the upper bound for E contained in
Lemma 5 of [7]. In fact, on writing

I =
∫ 1

0
|g(α;A)|6dα and Jν =

∫ 1

0
|Fν(α)2g(α;B)4|dα ,

for ν = 1 and 3, and on checking the requirement

max{X1/10,X1/9D−1/3} < M ≤ (X/D)1/7 ,

we may obtain the estimate
∑

D<d≤2D

∣∣∣∣
∫

p
f (α; d)Fν(α)g(α;AM)3g(α;B)2e(−nα)dα

∣∣∣∣
� X3/4+εM3/4D1/4J 1/2

ν (X3/2 + (MI)1/2 + (XI)1/3M3/2D1/4)

+ X4(log X)−50 ,

(10)

by (4.20) of [7] (see also (4.27)–(4.29), (4.39), (4.40) and (4.42) of [7]). Here only one
comment may be in order; on this derivation, we make Fν(α) play the role of g(α;B1) in
[7], and this change has an actual effect only on estimating T2 which should read

T2 =
∫ 1

0
|g(α;AM)2Fν(α)2g(α;B)4|dα ,

in the current context. But, by orthogonality, T2 is equal to the number of solutions of the
equation

y3
1 + (p1x1)

3 + z3
1 + z3

2 = y3
2 + (p2x2)

3 + z3
3 + z3

4 ,

subject to yj ∈ AM , D < pj ≤ 2D, X/pj < xj ≤ 2X/pj and zk ∈ B for j = 1, 2 and
1 ≤ k ≤ 4. Since every natural number less than 2X has at most O(1) prime divisors in
the interval (D, 2D], we still have

T2 �
∫ 1

0
|g(α; N ∩ [1, 2X])|8dα � X5 ,

as is claimed in [7], by virtue of a theorem of Vaughan. Thus we may confirm the estimate
(10).

Then, by (5), together with the above remark concerning Fν(α), we have I �
(X/M)3+ξ+ε and Jν � X3+ξ+ε , for ν = 1 and 3. Consequently, a modicum of straight-
forward computation may deduce from (10) that∫

p

∑
D<p≤2D

f (α; p)Fν(α)g(α;AM)3g(α;B)2e(−nα)dα
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� X4+2ε

(
X

− 5−16ξ−ξ2

8ξ+21 D1/4 + X
− 2(5−16ξ−ξ2)

8ξ+21 D1/2
)

+ X4(log X)−50 ,

whence we thus far conclude, for ν = 1 and 3, that

Rν(n) =
∫

P

∑
D<p≤2D

f (α; p)Fν(α)g(α;AM)3g(α;B)2e(−nα)dα

+ O(X4(log X)−50) .

(11)

It is essentially a routine to evaluate the contribution of the major arcs P, and we
execute it in the next section.

4. Contribution of the major arcs

We begin with a simple lemma concerning the set A∗(U).

LEMMA. Under our convention on η (see the comment after (5)), we have∑
l∈A∗(U) l−1 � 1, provided that U is sufficiently large in terms of η (so ultimately, in

terms of ε).

Proof. Recall that (2η)−1 = h, say, is an integer. Then, whenever p1, . . . , ph−1 are
primes in the interval (2U2η, U2η+2η2], one has

U1−2η < (2U2η)h−1 < p1p2 . . . ph−1 ≤ (U2η+2η2
)h−1 < U1−η,

so that p1p2 . . . ph−1 ∈ A∗(U). And it is trivial that each natural number can be written as
the product of (h − 1) primes in at most (h − 1)! ways. These facts reveal that

∑
l∈A∗(U)

l−1 ≥ 1

(h − 1)!
( ∑

2U2η<p≤U2η+2η2

p−1
)h−1

,

and the sum over p on the right hand side is log(1 + η) + O((log U)−1), by Mertens’
theorem. Thus the Lemma follows immediately. �

For integers q and a with q ≥ 1, and a real number β, we define

S(q, a) =
q∑

x=1

e(ax3/q) and v(β) =
∫ 2X

X

e(t3β)dt .

For any q and a with (q, a) = 1, and for any β, we know that

S(q, a) � q2/3 and v(β) � X(1 + X3|β|)−1 .(12)

In fact, the former is Theorem 4.2 of Vaughan [8], and the latter follows by the partial
integration with a trivial bound.
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Now let α ∈ P, and q and a be coprime integers satisfying (9), and write β = α−a/q .
Then, for any integer d , we deduce from Theorem 4.1 of Vaughan [8] that

f (α; d) = q−1S(q, ad3)

∫ 2X/d

X/d

e(d3t3β)dt + O((log X)501) .

Noting further that S(q, ad3) = S(q, a) whenever d is coprime to q , we find in the latter
circumstances that

f (α; d) = (qd)−1S(q, a)v(β) + O((log X)501) .(13)

Accordingly we have the formulae∑
D<p≤2D

f (α; p) = ∆1q
−1S(q, a)v(β) + O(D(log X)501) ,(14)

g(α;Am) =
∑

M<�≤2M

∑
l∈A∗(X/M)

f (α; �l)

= ∆2q
−1S(q, a)v(β) + O

(
M

( X

M

)1−η

(log X)501
)

,(15)

g(α;B) =
∑

l∈A∗(X)

f (α; l)

= ∆3q
−1S(q, a)v(β) + O(X1−η(log X)501) ,(16)

where

∆1 =
∑

D<p≤2D

1

p
, ∆2 =

∑
M<�≤2M

1

�

∑
l∈A∗(X/M)

1

l
, ∆3 =

∑
l∈A∗(X)

1

l
.

As for these quantities, the lower bounds

∆1 � (log X)−1 , ∆2 � (log X)−1 and ∆3 � 1(17)

may be confirmed by our Lemma, Mertens’ theorem and its variant for arithmetic progres-
sions. As regards the upper bounds, our argument needs nothing more than the trivial ones
like ∆j � log X for j = 1, 2 and 3.

Since the measure of P is O((log X)1500X−3), and all the error terms appearing in the
formulae (14)-(16) are O(X1−η/2), it follows simply from these formulae that∫

P

∑
D<p≤2D

f (α; p)Fν(α)g(α;AM)3g(α;B)2e(−nα)dα

= ∆1∆
3
2∆

2
3

∑
q≤(log X)500

q∑
a=1

(a,q)=1

V6(q, a, n)Wν(q, a, n) + O(X4−η/3) ,

(18)

where, for s ∈ N and ν = 1 and 3, we write

Vs(q, a, n) = (q−1S(q, a))se(−an/q) ,
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and

Wν(q, a, n) =
∫ (log X)500X−3

−(log X)500X−3
Fν

(
a

q
+ β

)
v(β)6e(−nβ)dβ .

We next look into F3(α). Noting that Xσ >
√

2X/D, we have

f3(α; p) =
∑

p1>Xσ

f (α; pp1) ,

for any p with D < p ≤ 2D. The last sum is actually finite, because f (α; pp1) vanishes
for p1 > 2X/D. And, on putting X1 = XD−1(log X)−510, the contribution of the primes
p1 > X1 is

�
∑

X1<p1≤2X/D

X

pp1
� X

p
(log X)−1 log log X ,

by Mertens’ theorem. Hence we have

F3(α) =
∑

D<p≤2D

∑
Xσ <p1≤X1

f (α; pp1) + O

( ∑
D<p≤2D

X log log X

p log X

)
,

and therefore, by (13), when q and a are coprime integers satisfying (9), we have

F3(α) = ∆1Ξq−1S(q, a)v(β) + O(∆1X(log X)−1 log log X) ,(19)

where β = α − a/q and

Ξ =
∑

Xσ <p1≤X1

1

p 1
= log

(
log(X/D)

σ log X

)
+ O

(
log log X

log X

)
,

by Mertens’ theorem again. And, by (4), we see that

Ξ = log

(
σ0 + 9ε

σ

)
+ O

(
log log X

log X

)
<

1 − ε

2
.(20)

After we get the formula (19) on F3(α), what remains to execute is completely routine
procedure. We have V6(q, a, n) � q−2 by the former bound in (12), so applying (19) we
see

∑
q≤(log X)500

q∑
a=1

(a,q)=1

V6(q, a, n)W3(q, a, n)

= ∆1Ξ
∑

q≤(log X)500

q∑
a=1

(a,q)=1

V7(q, a, n)

∫ (log X)500X−3

−(log X)500X−3
v(β)7e(−nβ)dβ

+ O

( ∑
q≤(log X)500

q−1∆1X
log log X

log X

∫ ∞

−∞
|v(β)|6dβ

)
,



Note on Sums of Seven Cubes of Smooth Numbers 97

and the last error is O(∆1X
4(log X)−1(log log X)2), by the latter bound in (12). Now we

introduce the familiar singular series and the singular integral associated with sums of seven
cubes, defined respectively by

S(n) =
∞∑

q=1

q∑
a=1

(a,q)=1

V7(q, a, n) , I (n) =
∫ ∞

−∞
v(β)7e(−nβ)dβ .

It follows quite easily from (12) that∫ (log X)500X−3

−(log X)500X−3
v(β)7e(−nβ)dβ = I (n) + O(X4(log X)−3000) ,

and also that
∑

q≤(log X)500

q∑
a=1

(a,q)=1

V7(q, a, n) = S(n) + O((log X)−500/3) .

Moreover, one obtains the familiar bounds

1 � S(n) � 1 , X4 � I (n) � X4 .(21)

Actually, the both upper bounds are immmediate by (12). The lower bound for S(n) is
contained in Theorem 4.6 of Vaughan [8]. As for the lower bound for I (n), one applies
Fourier’s inversion formula, and gets the expression

I (n) =
∫

· · ·
∫

1

37 (u1u2 . . . u6(n − u1 − u2 − · · · − u6))
−2/3du1 . . . du6 ,

where the domain of the integral is defined by X3 ≤ uj ≤ (2X)3 (1 ≤ j ≤ 6) and
X3 ≤ n − u1 − u2 − · · · − u6 ≤ (2X)3. Then, recalling that (2X)3 = n and considering
the contribution of the domain defined by X3 ≤ uj ≤ (7/6)X3 (1 ≤ j ≤ 6), for example,
one may confirm the claimed lower bound for I (n).

We gather these results to compute the right hand side of (18) for ν = 3, and then,
recalling (11) with (17) and (21), we conclude that

R3(n) = ∆2
1∆

3
2∆

2
3S(n)I (n)

(
Ξ + O((log X)−1(log log X)2)

)
.(22)

We next turn to R1(n). From (14), (19) and the trivial formula f1(α; p) = f (α; p) −
f3(α; p), we may deduce a formula for F1(α) corresponding to (19), with 1 − Ξ in place
of Ξ . Then, through the same lines as the case of R3(n) above, we obtain a formula for
R1(n) similar to (22), in which Ξ is replaced by 1 − Ξ . Hence we have

R1(n) − R3(n) = ∆2
1∆

3
2∆

2
3S(n)I (n)

(
1 − 2Ξ + O((log X)−1(log log X)2)

)
.

In view of (20), therefore, the desired inequlity (8) is established, provided that n is suffi-
ciently large in terms of ε. This completes the proof of the Theorem, as we already observed
in §2.
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