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Abstract. We prove uniqueness theorems for L-functions from the (extended) Sel-
berg class. Moreover, we generalize asymptotic formulae for certain discrete moments of
Dirichlet L-functions at the zeros of another Dirichlet L-function L(s, χ) due to Fujii to
roots of L(s, χ) = c, where c is an arbitrary complex number.
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1. Introduction and Statement of the Main Results

The famous five value theorem of Rolf Nevanlinna states that any two non-constant
meromorphic functions which share five distinct values are identical. Here two meromor-
phic functions f and g are said to share a value c ∈ C ∪ {∞} if the sets of preimages of
c under f and under g are equal, for short f−1(c) := {s ∈ C : f (s) = c} = g−1(c).
Furthermore, f and g are said to share the value c counting multiplicities (CM) if the lat-
ter identity of sets holds and if the roots of the equations f (s) = c and g(s) = c have
the same multiplicities; if there is no restriction on the multiplicities, f and g are said
to share the value c ignoring muliplicities (IM). Since the functions f (s) = exp(s) and
g(s) = exp(−s) share the four values 0,±1,∞, the number five in Nevanlinna’s statement
is best possible. If multiplicities are taken into account, Nevanlinna proved that any two
meromorphic functions f and g that share four distinct values c1, . . . , c4 CM are identical
or can be transformed into one another by a Moebius transformation M in such a way that
g ≡ M ◦ f andM fixes two of the points cj while the other two are interchanged. Also the
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number four of values shared CM is best possible. For more results of this type we refer to
[9, 19, 31].

In [27] (resp. Chapter 7 in [28]), Steuding investigated how many values L-functions
can share. In this special case better estimates are possible than those which Nevanlinna’s
theorems provide (since there is additional information about the functions available). Us-
ing Nevanlinna theory it was shown that distinct L-functions do not share any finite com-
plex value CM; here the notion of an L-function L(s) is according to the extended Selberg
class S� which consists, roughly speaking, of all Dirichlet series L(s) = ∑∞

n=1 a(n)n
−s

with coefficients a(n) � nε which possess a meromorphic continuation of finite order to
the whole complex plane with a possible single pole at s = 1, and satisfy a functional
equation of Riemann type; the precise definition of S� is given in Section 2. Examples of
such L-functions are the Riemann zeta-function ζ(s), Dedekind zeta-functions to number
fields, Dirichlet and Hecke L-functions attached to characters, L-functions associated with
modular forms, as well as certain Epstein zeta-functions built from quadratic forms. The
precise formulation of the uniqueness theorem mentioned above is as follows:

THEOREM A. If two elements of the extended Selberg class S� share a complex
value c �= ∞ CM, then they are identical.

It should be noticed that the normalization assumption a(1) = 1 in Theorem 7.11 from
[28] can be removed by the method explained in Section 7.2 of [28].

Concerning values which are shared IM, recently Bao Qin Li [17] has shown the fol-
lowing result.

THEOREM B. If two elements of the extended Selberg class S� with constant coeffi-
cient a(1) = 1 satisfy the same functional equation and share two complex values IM, then
they are identical.

It is an interesting question to which extent an L-function can share values with an
arbitrary meromorphic function. In this direction, Bao Qin Li [16] has shown the following
uniqueness result.

THEOREM C. Let a, b ∈ C be two distinct values and let f be a meromorphic
function in C with finitely many poles. If f and a non-constant L-function L ∈ S� share a
CM and b IM, then f ≡ L.

In particular, this implies that if f is meromorphic in C and shares one value CM, a
second value IM and the value ∞ IM with a non-constant L-function L, then f ≡ L [16,
Corollary 2]. (Note that s = 1 is the only possible pole for an L-function; see Section 2.)
This gives a partial answer to the following question by C.C. Yang mentioned in [16]:

QUESTION. If f is meromorphic in C and f shares two distinct values a, b ∈ C :=
C ∪ {∞} CM and a value c ∈ C \ {a, b, 0} IM with the Riemann zeta-function ζ , can we
conclude that f ≡ ζ?

If any one of the values a, b, c is ∞, Theorem C gives an affirmative answer to this
question. The following result deals with the case a, b, c �= ∞.



Uniqueness Theorems for L-Functions 17

THEOREM 1. Let f be meromorphic in C and L ∈ S� be a non-constantL-function
such that f and L share the values a, b ∈ C CM and the value c ∈ C IM. Then f ≡ L.

This theorem will be proved in Section 3 by means of Nevanlinna theory. It turns out
that the proof (which is similar to Bao Qin Li’s proof of Theorem C) does not fully exploit
the various properties of L-functions (at least not explicitly); it just uses the knowledge
about the growth of the characteristic function of L-functions (Lemma 6). Therefore, the
proof remains valid for a larger class of meromorphic functions, leading to the following
result.

THEOREM 2. Let a, b, c, d ∈ C be distinct. Let f and g be meromorphic non-
constant functions in C which share the values a, b CM and the value c IM and such that f
or g assumes the value d only finitely many times. Assume that f has finite non-zero order
and that one of the following two conditions is satisfied.

(1) The order of f is not an integer.
(2) The order of f is an integer and f has maximal type1.

Then f ≡ g .

This is a variation on another result of R. Nevanlinna [20, Satz 6] who had shown that
two meromorphic functions of finite non-integer order which share three values CM have
to coincide. For extensions of Nevanlinna’s result see also [31, Section 2.3]; in particular,
by [31, Theorem 2.25] the condition that three values are shared CM can be replaced by the
condition that two values are shared CM and that for a third value c which is not a Borel
exceptional value of f each zero of f − c of multiplicitym is a zero of g − c of multiplicity
at least m. The proof of Theorems 1 and 2 will be given in Section 3.

Next we investigate the distribution of values of pairs of L-functions. It is expected
that primitive L-functions of the Selberg class S cannot share any complex value. Here
S ⊂ S� is, roughly speaking, the subset of all L which possess an Euler product; for the
precise definition of S we refer again to Section 2. A function L ∈ S is said to be primitive
if any factorization within S is trivial. Examples of primitive functions are the Riemann
zeta-function, Dirichlet L-functions associated with a primitive character, and L-functions
attached to elliptic curves. We do not want to recall basic results about the Selberg class nor
explain its arithmetical relevance but stress that any L-function in S has a factorization into
primitive elements and that this factorization is unique if the deep Selberg orthogonality
conjecture is true; another consequence of the latter conjecture is the unsolved Artin con-
jecture that all Artin L-functions have an analytic continuation to C \ {1}. A good source
for further reading is the monograph of M. R. Murty & V. K. Murty [18] from which we
quote that if it could be shown that for any family of primitive L-functions L1, . . . ,Lk in S
there exist complex numbers s1, . . . , sk such that Lj (s�) = 0 if and only if j = �, then the
factorization into primitive elements would be unique. We note that ζ(s) and ζ(s)2 have
the same zeros and the same pole. On the contrary, elements of the extended Selberg class
S� may share a complex value: for instance, if L ∈ S�, then any constant multiple λL with
λ ∈ C also belongs to the extended Selberg class S�, hence L and λL share their zeros and
poles CM provided that λ �= 0.

1For the definition of functions of maximal type see Section 3.
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Concerning primitiveL-functions sharing a complex value, we shall prove the follow-
ing uniqueness theorem for the subset of degree one elements of the Selberg class:

THEOREM 3. If two elements of the Selberg class S, both of degree one, share a
complex value c ∈ C IM, then they are identical.

The proof of this theorem relies on a joint universality property of Dirichlet L-
functions associated with non-equivalent characters and will be given in Section 4. As
Kaczorowski & Perelli [12] proved, the degree one elements of the Selberg class S are Rie-
mann’s zeta-function ζ(s), Dirichlet L-functions associated with primitive characters and
shifts thereof, i.e., L(s + iθ, χ), where θ is an arbitrary real number and χ is a primitive
character. All degree one functions are primitive elements in S.

Recall the definition of Dirichlet L-function. Given a Dirichlet character χ mod q
(i.e., a group homomorphism from the group of prime residue classes modulo q to C

∗,
extended to Z by setting χ(n) = 0 for all n which are not coprime with q), the associated
Dirchlet L-function is defined by

L(s, χ) =
∞∑
n=1

χ(n)

ns
=
∏
p

(
1 − χ(p)

ps

)−1

,

where the product is taken over all prime numbers p. Both, the Dirichlet series and the Euler
product converge in the half-plane Re s > 1 and define an analytic function. The Riemann
zeta-function may be considered as the DirichletL-function to the unique character χ0 mod
1. By analytic continuation, L(s, χ) extends to a meromorphic function in the complex
plane with a single pole at s = 1 if χ is a principle character (i.e., χ(n) = 1 for all n
coprime with some q). A character that is not induced by a character of smaller modulus
is said to be primitive; principle characters are not considered as primitive. Of special
interest are Dirichlet L-functions associated with primitive characters χ , since any non-
principle character χ mod q is induced by a uniquely determined primitive character and
the corresponding L-functions differ from one another by a finite Euler product with non-
trivial factors only for the prime divisors of q which extends to an entire function with
a very regular value-distribution. In a similar way the L-function attached to a principle
character χ mod q equals ζ(s) times a finite Euler product.

Specializing on Dirichlet L-functions, we may also follow a different approach which
seems to be of independent interest. Here we obtain more subtle information on the value
distribution of Dirichlet L-functions by considering certain discrete moments:

THEOREM 4. Let χ mod q and ψ mod Q be distinct primitive characters and, for
fixed c ∈ C, denote the solutions of L(s, χ) = c in the right half-plane by ρχ = βχ + iγχ .
Then, as T → ∞,∑

0<γχ<T

L(ρχ ,ψ) = α1
T

2π
log T + α0

T

2π
+O

(
T exp(−b1(log T )

1
4 −ε)

)
, (1)

where b1 > 0 is an absolute constant and the constants αj = αj (c, χ,ψ) for j = 0, 1
depend on c as well as on the characters χ mod q and ψ mod Q, and are given by the
formulae (30) and (31) below. The statement is also true if either χ or ψ is equal to
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the principal character χ0 mod 1 (in which case the corresponding L-function equals the
Riemann zeta-function).

Here the summation is taken only over those c-points ρχ which have non-negative
real-part. This is due to the fact that there are, for example, infinitely many zeros of L(s, χ)
on the negative real axis; however, since each of which is related to a pole of the Gamma-
factor in the functional equation (12), these zeros are of minor interest than those inside the
critical strip 0 ≤ Re s ≤ 1; the situation for general c �= 0 is not much different.

It should be mentioned that Theorem 4 extends previous results due to Fujii [2, 3, 5]
who proved under assumption of the respective Riemann hypothesis the following asymp-
totic formulae: ∑

|γ |≤T
L(ρ, χ) = T

π
log T +O(T ) ,

where the summation is taken over the nontrivial zeros ρ = β + iγ of the Riemann zeta-
function ζ(s) (which is covered as case c = 0 and χ = χ0 mod 1), as well as∑

|γχ |≤T
ζ(ρχ ) = T

π
log T +O(T ) ,

where the summation is over the zeros ρχ = βχ + iγχ of a Dirichlet L-function L(s, χ) to
a primitive character χ (the case c = 0 and ψ = χ0 mod 1 above), and, finally,

∑
|γχ |≤T

L(ρχ ,ψ) =

1 − 1

ϕ([q,Q])
∑

amod [q,Q]
(a,[q,Q])=1

(χψ)(a)


 T

π
log T +O(T ) , (2)

where χ mod q and ψ mod Q are (not necessarily distinct) primitive characters, the sum-
mation is over the nontrivial zeros ρχ = βχ + iγχ of L(s, χ) (the case c = 0 with
χ,ψ �= χ0 mod 1), and [ , ] and ( , ) denote the least common multiple and the great-
est common divisor, respectively. Actually, Fujii obtained much stronger error terms than
those given above, however, applying a slightly different method Steuding [26] succeeded
in establishing the above formulae unconditionally at the expense of the weaker error terms
stated above. There are some more results of this flavour in the literature; for example, Fu-
jii’s work on the Hurwitz zeta-function [4] and Steuding’s variation [25], as well as further
work [7] of Garunkštis et al. to mention only a few.

We may use Theorem 4 for another proof of the fact that distinct DirichletL-functions
do not share a complex value c; however, there is a certain technical obstacle to deduce
Theorem 3 completely which is related to the arithmetical nature of the coefficients αj .
The details and the proof of Theorem 4 are given in Section 5. We start, however, with the
precise definition of the Selberg class and some preliminaries.
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2. The (extended) Selberg Class

In 1989, Selberg introduced a rather general class S consisting of all functions which
have a representation as Dirichlet series

L(s) =
∑
n

a(n)

ns

and satisfy
(i) Ramanujan hypothesis: a(n) � nε for any ε > 0, where the implicit constant

may depend on ε.
(ii) Analytic continuation: there exists a non-negative integer k such that (s −

1)kL(s) is an entire function of finite order.
(iii) Functional equation: L(s) satisfies a functional equation of type

ΛL(s) = ωΛL(1 − s),

where

ΛL(s) := L(s)Qs
f∏
j=1

Γ (λj s + µj)

with positive real numbers Q,λj , and complex numbers µj , ω with Reµj ≥ 0
and |ω| = 1.

(iv) Euler product: L(s) satisfies

L(s) =
∏
p

Lp(s) , where Lp(s) = exp

( ∞∑
k=1

b(pk)

pks

)

with suitable coefficients b(pk) satisfying b(pk) � pkθ for some θ < 1
2 .

The extended Selberg class S� is defined as the set of all functions L satisfying (i)–(iii).
Usually, a function is said to be an L-function if it possesses an Euler product represen-
tation; however, it appears that Ssharp contains interesting examples of functions which
do not have an Euler product, and in some aspects it is worthwhile to study the extended
Selberg class.

The degree of L ∈ S� is defined by dL = 2
∑f

j=1 λj ; although the data of the
functional equation is not unique, the degree is well-defined as follows from an asymptotic
formula for the number Nc(T ) of c-points ρ = β + iγ of L ∈ S� with β ≥ 0 and |γ | ≤ T ,
namely,

Nc(T ) = dL
π
T log

T

e
+ T

π
log(λQ2)+O(logT ) . (3)

For c �= 1 this is Theorem 7.7 from [28]; by technical refinement one can prove the above
formula also for the case c = 1 (as indicated in Section 7.2 from [28]). The quantity λ

is defined by λ = ∏f

j=1 λ
2λj
j . It is worth noticing that the main term in the asymptotic

formula is independent of c.
The Selberg class is of particular interest with respect to its structure. Both, S and

S� are multiplicatively closed which gives rise to the notions of divisibility and primitivity
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as mentioned in the introduction. The only element of degree zero in S is the function
constant 1 whereas the set of degree zero elements in the extended class S� consists of all
constant functions and certain Dirichlet polynomials. There are no elements in S� of degree
0 < d < 1. As already mentioned above, the degree one elements of the Selberg class S
are, as shown by Kaczorowski & Perelli [12], given by ζ(s) and L(s+ iθ, χ), where θ is an
arbitrary real number and χ is a primitive character. The case of degree one in the extended
class S� is more delicate. Here Kaczorowski & Perelli [12] proved that any element in
L ∈ S� of degree one has a unique representation of the form

L(s) =
∑

χmod q

Pχ (s + iθ)L(s + iθ, χ∗) ,

where θ is a real number and the summation is over all characters χ mod q and χ∗ denotes
the unique primitive or principal character which induces χ mod q , and Pχ is a Dirichlet
polynomial of degree zero in S�. Recently, Kaczorowski & Perelli [13] succeeded in prov-
ing that S� contains no element of degree 1 < d < 2. Unfortunately, the characterization
of degree two elements in S or even in S� is incomplete.

Excellent references for the theory of the (extended) Selberg class are [10, 21]. Be-
sides, Kaczorowski et al. [11] also considered the modified class S̄� where the conjugation
in the axiom on the functional equation is dropped; this class is relevant with respect to
Hecke’s theory of modular forms and associated Dirichlet series. Most of our results can
easily be applied to this class too. We want to remark that there is no proper definition of
an L-function. There have been a few attempts to define an axiomatic setting for arithmeti-
cally relevant L-functions; the (extended) Selberg class seems to be the most promising
approach so far.

3. Nevanlinna Theory–Proof of Theorem 1 & 2

Our proof of Theorems 1 and 2 is based on Nevanlinna theory. For the convenience
of the reader, we recall the standard notations and main results as far as they are relevant
for our purposes. (For more details we refer to [9].) We denote the proximity function
of a meromorphic function f by m(r, f ) and its counting functions by N(r, f ) (counting
multiplicities) and N(r, f ) (ignoring multiplicities). Then for its Nevanlinna characteristic
T (r, f ) := m(r, f )+N(r, f ) the First Fundamental Theorem

T (r, f ) = T

(
r,

1

f

)
+O(1)

holds, and for the sums and products of meromorphic functions f1, . . . , fp without poles
at the origin we have the estimates

U


r, p∏

j=1

fj


 ≤

p∑
j=1

U(r, fj ), U


r, p∑

j=1

fj


 ≤

p∑
j=1

U(r, fj )+ logp

for U(r, .) = m(r, .), N(r, .), N(r, .), T (r, .). Furthermore, T (r, .) is monotonically
increasing.
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The order �(f ) of a function f meromorphic in C is defined as

�(f ) := lim sup
r→∞

log+ T (r, f )
log+ r

.

(Here, log+ x := max {log x; 0} for x > 0 and log+ 0 := 0.) If f is a non-vanishing entire
function of finite order, then f has the form f = ep with a polynomial p, and we have
�(f ) = deg(p) and T (r, f ) = O(r�(f )); in particular, �(f ) is an integer.

For a meromorphic function f in C of finite order �(f ), the type τ (f ) is defined as

τ (f ) := lim sup
r→∞

T (r, f )

rρ(f )
.

If τ (f ) = ∞, we say that f has maximal type.
One of the main insights in Nevanlinna theory is the Second Fundamental Theorem.

It has the following extension which is the main tool of our proof. Here, by S(r, f ) we
denote an arbitrary term which is o(T (r, f )) as r → ∞, r �∈ E where E ⊆ [0,∞[ is a set
of finite Lebesgue measure; if f has finite order, one can choose E = ∅.

LEMMA 5. If f is meromorphic in C and non-constant and ϕ1, ϕ2, ϕ3 are three
distinct functions meromorphic in C, then the estimate

T (r, f ) ≤
3∑
j=1

N

(
r,

1

f − ϕj

)
+

3∑
j=1

{
O(T (r, ϕj ))+ S(r, ϕj )

}
+ S(r, f )

holds.

Proof. This is a slight variation of the Second Fundamental Theorem for small func-
tions [9, Theorem 2.5] whose proof can be easily adopted. We omit the details. •

Another crucial observation is the following asymptotic estimate for the Nevanlinna
characteristic of L-functions [28, Theorem 7.9].

LEMMA 6. Every L-function L of degree d satisfies

T (r,L) = d

π
· r log r +O(r) .

The proof of Theorem 2 makes use of several ideas of Bao-Qin Li’s proof of Theorem
C, and in fact it would have been possible to stick even closer to his reasoning. However,
we prefer to replace the crucial part of his proof by a different argument based on Lemma
5.

Proof of Theorem 2. It is an easy consequence from the First Fundamental Theo-
rem that Moebius transformations leave the Nevanlinna characteristic invariant (up to some
additive constant); in particular, they do not affect the order and type of a meromorphic
function. Furthermore, if f and g share a value α CM (IM) and if M is a Moebius trans-
formation, then M ◦ f and M ◦ g share the value M(α) CM (IM). Therefore, after post-
composition with an appropriate Moebius transformation we may assume b = ∞, hence
a, c, d ∈ C.
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The Second Fundamental Theorem and the value sharing properties of g and f yield

T (r, g) ≤N(r, g)+N

(
r,

1

g − a

)
+N

(
r,

1

g − c

)
+ S(r, g)

=N(r, f )+ N

(
r,

1

f − a

)
+N

(
r,

1

f − c

)
+ S(r, g)

≤ 3T (r, f )+ S(r, g) .

From this estimate it is almost clear that �(g) ≤ �(f ). To be precise, however, an estimate
for T (r, g) is required which holds for all r > 0 without the exceptional set involved in the
term S(r, g). As in the proof of Theorem 1 in [16], this is done by the following standard
argument: Let some ε > 0 be fixed. By the last estimate and the definitions of S(r, g) and
�(f ), there exists a set E ⊂ [0,∞[ of finite Lebesgue measure such that

T (r, g) ≤ 4T (r, f ) ≤ r�(f )+ε for all r > 0 with r �∈ E . (4)

Let some r > 0 be given. Then there exists some r0 ∈ [r, r + |E| + 1] with r0 �∈ E, so by
the monotonicity of T (r, g) we deduce that

T (r, g) ≤ T (r0, g) ≤ r
�(f )+ε
0 ≤ (r + |E| + 1)�(f )+ε .

Since this holds for all r > 0, we conclude that �(g) ≤ �(f ) + ε. This holds for all
ε > 0 which gives �(g) ≤ �(f ) (< ∞). By interchanging the role of f and g we obtain
�(g) = �(f ).

Since f has finite order, the exceptional sets in the definition of S(r, f ) can be chosen
to be empty. Therefore the same reasoning leading to (4) (with interchanged roles of f and
g) shows the existence of some r0 > 0 such that

T (r, f ) ≤ 4T (r, g) for all r > r0 .

This shows that if f has maximal type (as in case (2)), also g has maximal type.
Now w.l.o.g. we may assume that g is the function which assumes the value d only

finitely many times.
Since f and g share the values a and ∞ CM, the function

F := g − a

f − a

is entire and non-vanishing. Furthermore, �(F ) ≤ max {�(f ), �(g)} = �(f ). So F must
have the form F = eP where P is a polynomial of degree at most q := ��(f )� (the largest
integer not exceeding ρ(f )). Therefore

T (r, F ) = O(rq) .

In view of the assumptions on the order and type of f , this means that the growth of F is
slower (in the sense of Nevanlinna theory) than the growth of f and g . This is the crucial
argument in the proof.

Now we assume f �≡ g . Then F �≡ 1. Since g and f share c IM, for each s ∈ C with
g(s) = c we have F(s) = 1. This means

N

(
r,

1

g − c

)
≤ N

(
r,

1

F − 1

)
≤ T (r, F )+O(1) = O(rq) . (5)
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(Here, of course, it is crucial that F �≡ 1.) Now we consider the function

h := a + (c − a) · F .
Let some s ∈ C with g(s) = h(s) be given. Then we have

f (s) = a + g(s) − a

F(s)
= a + h(s)− a

F(s)
= a + c − a = c ,

hence g(s) = c. This shows

N

(
r,

1

g − h

)
≤ N

(
r,

1

g − c

)
= O(rq) . (6)

Furthermore, since g assumes the value d only finitely many times, we also know

N

(
r,

1

g − d

)
= O(log r). (7)

We want to apply the Second Fundamental Theorem for small functions (Lemma 5) with
ϕ1 = c, ϕ2 = h and ϕ3 = d . For this, we have to make sure that ϕ1, ϕ2, ϕ3 are distinct. By
assumption we have c �= d , and F �≡ 1 implies h �≡ c.

Let us assume that h ≡ d . Then F is constant. If there would be some s0 ∈ C with
f (s0) = c, then we would have f (s0) = c = g(s0), hence F(s0) = 1, and we would obtain
F ≡ 1, a contradiction. So f and hence g omit the value c. Keeping in mind that g − d has
only finitely many zeros, we conclude that G := g−d

g−c is an entire function of finite order

with finitely many zeros, hence that it has a representation G = Q1e
Q2 where Q1,Q2 are

polynomials and deg(Q2) = �(G) ≤ �(g), i.e. deg(Q2) ≤ q . This yields

T (r, g) = T (r,G) ≤ C · rq +O(log r) (8)

for some constant C > 0. In particular, we have �(g) ≤ q . If �(f ) is not an integer,
i.e. q < �(f ) = �(g), this is an immediate contradiction. If �(f ) is an integer, i.e.
q = �(f ) = �(g) > 0, we deduce τ (g) ≤ C. But in this case, by assumption we have
τ (f ) = ∞, hence τ (g) = ∞ as shown above, again a contradiction.

Therefore, h �≡ d . So ϕ1, ϕ2, ϕ3 are distinct, indeed. Furthermore,

T (r, h) = T (r, F )+O(1) = O(rq) .

Now Lemma 5 and (5), (6) and (7) yield

T (r, g)≤N
(
r,

1

g − c

)
+N

(
r,

1

g − h

)
+ N

(
r,

1

g − d

)
+O(T (r, h))+ S(r, h)+ S(r, g)

≤O(rq)+O(log r)+ S(r, g) .

Here we have used that h has finite order, so S(r, h) = o(T (r, h)) for all r > 0 with-
out an exceptional set. The same argument holds for g , so we conclude that T (r, g) =
O(rq)+O(log r). With the same reasoning as in (8), this gives a contradiction. Therefore,
f ≡ L. •

Proof of Theorem 2. By Lemma 6, L has order 1 and maximal type. Furthermore, L
has at most one pole. So Theorem 1 is a special case of Theorem 2. •
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4. Joint Universality–Proof of Theorem 3

Now we shall show how to distinguish L-functions by using a remarkable simulta-
neous approximation property. In 1975 Voronin [29] proved, roughly speaking, that any
non-vanishing analytic function can be uniformly approximated by certain shifts of the
Riemann zeta-function, and in a sequel [30] he extended this result to a simultaneous ap-
proximation theorem for a family of Dirichlet L-functions associated with non-equivalent
characters. Here two characters are said to be non-equivalent if they are not induced by
the same character. The precise formulation of the latter phenomenon, also called joint
universality, is as follows:

LEMMA 7. Let χ1, . . . , χ� be pairwise non-equivalent Dirichlet characters,
K1, . . . ,K� be compact subsets of the strip 1

2 < Re s < 1 with connected complements.
Further, for each 1 ≤ j ≤ �, let fj (s) be a continuous non-vanishing function on Kj which
is analytic in the interior of Kj . Then, for any ε > 0,

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : max

1≤j≤� max
s∈Kj

|L(s + iτ, χj )− fj (s)| < ε
}
> 0 .

A proof of this theorem can also be found in [14], Chapter 7, and [28], Chapters 1 and
12, respectively.

Proof of Theorem 3. In view of the characterization of degree one elements of the
Selberg class S (see Section 2) we need to consider two shifted DirichletL-functions L(s+
iθj , χj ) associated with either primitive characters or the principal character mod 1, where
the θj are real numbers and θj = 0 if χj ≡ χ0 mod 1. Now assume that L(s + iθ1, χ1)

and L(s + iθ2, χ2) share a complex value c. If χ1 = χ2, then L(s + iθ1, χ1) = c whenever
L(s + iθ2, χ1) = c, and it follows that either θ1 = θ2 or the c-points of L(s, χ1) are
periodically distributed with period i(θ1 − θ2) which is absurd. Therefore, we may assume
that χ1 �= χ2; hence, being primitive, they are non-equivalent.

Now suppose c �= 0 and that c′ is another non-zero complex number different from c.
We shall show the existence of some complex number s′ such that

L(s′ + iθ1, χ1) = c �= L(s′ + iθ2, χ2) .

For this purpose let K be the closed disk centered at 3
4 of radius r ∈ (0, 1

4 ). Moreover,
define target functions by setting f1(s) = c + λ(s − iθ1 − 3

4 ) and f2(s) = c′ on sets Kj ,
where

Kj = K + iθj := {s + iθj : s ∈ K} (9)

and λ is a positive real number for which λr < |c|. By the latter condition f1(s) does not
vanish on K1. Thus, an application of Lemma 7 with 0 < ε < min{λr, |c − c′|} yields a
real number τ such that

max
1≤j≤2

max
s∈Kj

|L(s + iτ, χj )− fj (s)| < ε . (10)

We first deduce that

max
s∈K

|L(s + iθ1 + iτ, χ1)− f1(s + iθ1)| < ε .
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Since the absolute value of f1(s + iθ1) − c = λ(s − 3
4 ) on the boundary of K equals λr

which is strictly larger than ε, it follows that

max
s∈∂K

|L(s + iθ1 + iτ, χ1)− c − {f1(s + iθ1)− c}|
< ε < min

s∈∂K
|f1(s + iθ1)− c| ,

and an application of Rouché’s theorem gives the existence of a c-point of L(s + iθ1, χ1)

inside K + iτ := {s + iτ : s ∈ K}. Secondly, we deduce from (10) that

max
s∈K

|L(s + iθ2 + iτ, χ2)− c′| < ε .

Consequently, L(s + iθ2, χ2) does not assume the value c in K + iτ since ε < |c − c′|.
This already shows that L(s + iθ1, χ1) and L(s + iθ2, χ2) do not share any complex value
c �= 0.

Since Dirichlet L-functions are expected to have no zeros to the right of the critical
line 1

2 + iR, universality is not an appropriate tool to discuss the remaining case of a shared
value c = 0.

Let us assume that L(s + iθ1, χ1) and L(s + iθ2, χ2) share the value c = 0. In view
of the trivial zeros of Dirichlet L-functions on the negative real axis it follows that θ1 = θ2.
Next we may use Fujii’s formula (2) (resp. its unconditional version [26]) to conclude that

lim
T→∞

π

T log T

∑
|γχ1 |≤T

L(ρχ1 , χ2) = 1 − 1

ϕ([q1, q2])
∑

amod [q1,q2 ]
(a,[q1,q2])=1

(χ1χ2)(a) ,

where qi is the modulus of the character χi . It follows from the orthogonality relation for
characters that the right-hand side does not vanish for χ1 �= χ2. Hence L(s + iθ1, χ1) and
L(s + iθ2, χ2) do not share the value 0. This proves Theorem 3. •

As already mentioned in the introduction, it is expected that independent L-functions
cannot share any complex value. However, besides the notion of an L-function it is not
clear what the correct meaning of independence should be. Nevertheless, joint universality
seems to be an interesting approach to this question. We refer to [28], Chapters 12 and 13,
for an overview on joint universality theorems for L-functions. We could have alternatively
used a joint universality theorem due to Sander & Steuding [23] which applies to a family of
Dirichlet series with periodic coefficients and analytic continuation beyond the abscissa of
absolute convergence. This theorem covers indeed the case of the extended Selberg class;
however, since elements in S� may be linearly dependent, they cannot be jointly universal in
general without any restriction. In fact, the joint universality theorem of Sander & Steuding
is conditional subject to a linear independence condition on the target functions.

5. Moments of Dirichlet L-Functions–Proof of Theorem 4

This third approach is related to the use of Fujii’s formula (2) for the case of zeros in
the proof of the Uniqueness Theorem 3 from the previous section.
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We start with some preparation for the proof of Theorem 4. The functional equation
for the Riemann zeta-function in asymmetric form is given by

ζ(s) = ∆(s)ζ(1 − s) , (11)

where
∆(s) := 2(2π)s−1Γ (1 − s) sin πs

2 .

If χ mod q is a primitive character, then L(s, χ) satisfies the functional equation

L(s, χ) = ∆(s, χ)L(1 − s, χ) , (12)

where

∆(s, χ) := τ (χ)(2π)s−1q−sΓ (1 − s)
(

exp
(
πi(s−1)

2

)
+ χ(−1) exp

(
−πi(s−1)

2

))
,

and

τ (χ) :=
∑
amod q

χ(a) exp

(
2πia

q

)

is the Gaussian sum associated with χ . If χ mod q is primitive, then |τ (χ)| = √
q, whereas

τ (χ0) = µ(q) for the principal character χ0 mod q , where µ(q) is the Möbius µ-function.
It is easy to verify that

∆(s, χ) = χ(−1)τ (χ)q−s∆(s)(cot πs2 )
1
2 (1−χ(−1)) . (13)

Note that (12) reduces to (11) for χ mod 1. By Stirling’s formula, for t > 1,

∆′

∆
(s, χ) = ∆′

∆
(1 − s, χ) = − log

tq

2π
+O

(
1

t

)
. (14)

In order to prove Theorem 4 we shall use the following

LEMMA 8. For any Dirichlet character χ there exist positive constants c1 and c2
such that, for σ ≤ 0 and |t| ≥ 2,

|L(σ + it, χ)| > c1|t| 1
2 −σ

(log t)7
.

and

|L(σ + it, χ)| < c2|t| 1
2 −σ log t .

Proof. Let χ0 be a principle character. We start from the well known inequality

L3(σ, χ0)|L4(σ + it, χ)L(σ + 2it, χ2)| ≥ 1

for σ > 1. Let t ≥ 2. For σ > 1 − c3(log t)−1 with a suitable constant c3 > 0, we have the
estimates

L3(σ, χ) � (σ − 1)−3

as σ → 1, and

L(σ + it, χ) � log t (15)
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(see formulae (3.5) and (5.13) in Chapter IV in [22]). Thus, for σ > 1,∣∣∣∣ 1

L(σ + it, χ)

∣∣∣∣ ≤ (L(σ, χ0))
3
4

∣∣∣L(σ + 2it, χ2)

∣∣∣ 1
4 � (log t)

1
4

(σ − 1)
3
4

. (16)

By Cauchy’s integral formula from the bound (15) we deduce, for σ ≥ 1,

L′(σ + it, χ) � (log t)2 .

Then, for σ > 1,

L(1 + it, χ)− L(σ + it, χ) = −
∫ σ

1
L′(u+ it, χ) du � (σ − 1)(log t)2 .

This in combination with (16) leads with the choice σ − 1 = c3(log t)−9 to

|L(1 + it, χ)| � (log t)−7 .

The assertion of the lemma follows from the functional equation (12) in combination with
Stirling’s formula. •

Now we are in the position to give the

Proof of Theorem 4. By the calculus of residues,∑
0<γχ≤T

L(ρχ ,ψ) = 1

2πi

∮
L′(s, χ)

L(s, χ)− c
L(s, ψ) ds, (17)

where the integration is taken over a rectangular contour in counterclockwise direction
according to the location of the nontrivial c-points of L(s,ψ), to be specified below. In
view of the Riemann-von Mangoldt-type formula (3) the ordinates of the c-points cannot
lie too dense. For any large T0 we can find a T ∈ [T0, T0 + 1) such that

min
ρχ

|T − γχ | � 1

logT
, (18)

where the minimum is taken over all nontrivial c-points ρχ = βχ + iγχ . It follows from
the partial fraction decomposition of L(s, χ) that

L′

L
(σ + iT , χ) � (log T )2 for − 1 ≤ σ ≤ 2 (19)

(see [1], Chapter 19). Next we shall consider regions free of c-points.
For σ → +∞,

L(σ + it, χ) = 1 + o(1)

uniformly in t . Hence, there are no c-points for sufficiently large σ provided c �= 1. For
the case c = 1 define

m = min{n ≥ 2 : χ(n) �= 0} . (20)

We observe, for σ → +∞,

L(σ + it, χ)− 1 = χ(m)

mσ+it (1 + o(1)) . (21)

Hence, in both cases, c �= 1 and c = 1, there are no c-points of L(s, χ) in the half-plane
Re s > B − 1, where B := log T and T is sufficiently large. Further, define b = 1 + 1

logT .
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Then we may suppose that there are no c-points on the line segments [B + i, B + iT ] and
[1 − b+ i, 1 − b+ iT ] (by varying b slightly if necessary). We also suppose that there are
no c-points on the line [1 − b + i, B + i] (if there is a c-point on this line we always can
slightly shift this line). Moreover, there are only finitely many trivial c-points to the left of
Re s = 1 − b (in analogy to Lemma 4 from [6]).

Hence, in (17) we may choose the counterclockwise oriented rectangular contour R
with vertices B + i, B + iT , 1 − b + iT ,1 − b + i, at the expense of a small error for
disregarding the at most finitely many nontrivial c-points below Im s = 1 and for counting
finitely many trivial c-points to the left of Re s = 1 − b:∑

0<γχ<T

L(ρχ ,ψ) = 1

2πi

∫
R

L′(s, χ)
L(s, χ)− c

L(s, ψ) ds +O(1) .

We may rewrite the integral on the right hand side as

1

2πi

{∫ B+iT

B+i
+
∫ 1−b+iT

B+iT
+
∫ 1−b+i

1−b+iT
+
∫ B+i

1−b+i

}
L′(s, χ)

L(s, χ) − c
L(s, ψ) ds

=
4∑
j=1

Ij ,

say. The integrals I1 and I3 are producing the main term whereas the other integrals con-

tribute to the error term only. By a similar reasoning as in [6], we find I2,I4 � T
1
2 +ε .

We start with the integral I1. First assume c = 1. Rewriting the integrand as a product
of Dirichlet series shows that

L′(B + it, χ)

L(B + it, χ)− c
L(B + it, ψ)= − logm+O

((
m

m+ 1

)B)

= − logm+O
(
T − log m+1

m

)
uniformly in t , wherem is defined by (20). Thus, by interchanging integration and summa-
tion,

I1 = 1

2π

∫ T

1

(
− logm+O

(
T − log m+1

m

))
dt

= − logm · T
2π

+O
(
T 1−log m+1

m

)
.

For c �= 1, we similarly obtain I1 = O
(
T 1−logm

)
. We may rewrite the latter two formulae

as

I1 = −δ[c=1] logm · T
2π

+O
(
T 1−log m+1

m

)
, (22)

where

δ[A] :=
{

1 if A is true ,
0 otherwise .

(23)
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In order to evaluate I3 we apply Lemma 8 which provides the existence of a positive
constant C, depending only on c, such that∣∣∣∣ c

L(s, χ)

∣∣∣∣ < 1
2 for s = 1 − b + it , |t| ≥ C .

Hence, the geometric series expansion

L′(s, χ)
L(s, χ)− c

= L′

L
(s, χ)

{
1 + c

L(s, χ)
+

∞∑
k=2

(
c

L(s, χ)

)k}

is valid for s from [1 − b+ iC, 1 − b+ iT ]. Since integration over [1 − b+ i, 1 − b+ iC]
produces a bounded error, we arrive at

I3 = 1

2πi

∫ 1−b+i

1−b+iT
L′(s, χ)

L(s, χ) − c
L(s, ψ) ds

= 1

2πi

∫ 1−b+iC

1−b+iT

{
L′

L
(s, χ)L(s, ψ) + c

L′

L
(s, χ)

L(s, ψ)

L(s, χ)

+L
′

L
(s, χ)L(s, ψ)

∞∑
k=2

(
c

L(s, χ)

)k }
ds +O(1)

=J1 + J2 + J3 +O(1) ,

say. The bound (19) and Lemma 8 give J3 � T
1
2 +ε . By a similar reasoning as in [26], the

integral

J1 = 1

2πi

∫ 1−b+iC

1−b+iT
L′

L
(s, χ)L(s, ψ) ds

can be considered, firstly, up to an error term as a contour integral,

J1 = 1

2πi

∫
R
L′

L
(s, χ)L(s, ψ) ds +O(T

1
2 +ε) ,

and, secondly, as a sum of residues,

J1 =
∑

0<γ 0
χ<T

L(ρ0
χ ,ψ) +O(T

1
2 +ε) ,

where ρ0
χ = β0

χ + iγ 0
χ denotes the nontrivial zeros of L(s, χ). In [7] this sum of residues

was asymptotically evaluated as

J1 = T

2π
log

T q

2πe
+ a1

T

2π
+O

(
T exp(−b2(log T )

1
4 −ε)

)
, (24)

where b2 > 0,

a1 := a1(χ,ψ) := L′

L
(1, ψχ)− δ[q|Q]L(1, χψ)ψ(−1)τ (ψ)

τ(χψ0)

φ(Q)
, (25)

and ψ0 is the principal Dirichlet character modQ. Note that the second term on the right
does not appear if Q is not divisible by q .
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It remains to consider J2. Using the functional equation (12), we find

J2 = c

2πi

∫ 1−b+iC

1−b+iT
L′

L
(s, χ)

L(s, ψ)

L(s, χ)
ds

= − c

2πi

∫ b−iC

b−iT

(
∆′

∆
(1 − s, χ)− L′

L
(s, χ)

)
∆(1 − s, ψ)

∆(1 − s, χ)

L(s, ψ)

L(s, χ)
ds .

Hence, by complex conjugation,

J2 = − c

2π

∫ T

C

(
∆′

∆
(1 − b − iτ, χ)− L′

L
(b + iτ, χ)

)

×∆(1 − b − iτ, ψ)

∆(1 − b − iτ, χ)

L(b + iτ, ψ)

L(b + iτ, χ)
dτ

=K1 + K2 ,

say. Since

(cot π2 (1 − b − iτ ))(χ(−1)−ψ(−1))/2 = i
1
2 (χ(−1)−ψ(−1)) +O

(
e−2τ

)
,

as τ → ∞, we get in view of (13)

∆(1 − b − iτ, ψ)

∆(1 − b − iτ, χ)
= (ψχ)(−1)

τ (ψ)

τ(χ)

(
q

Q

)1−b−iτ
i(χ(−1)−ψ(−1))/2 +O

(
e−2τ

)

= a2

(
q

Q

)1−b−iτ
+O

(
e−2τ

)
,

as τ → ∞, where

a2 := a2(χ,ψ) := τ (ψ)

τ(χ)
i

1
2 (ψ(−1)−χ(−1)) (26)

is constant; here we have used the fact that τ (χ) = χ(−1)τ (χ) and the corresponding
formula for ψ in place of χ . By this, formula (14), and expressing L(b + iτ, ψ) and
L(b + iτ, χ) as Dirichlet series, we obtain

K1 = ca2

2π

(
q

Q

)1−b ∞∑
m,n=1

µ(m)χ(m)ψ(n)

(mn)b

∫ T

C

(
Q

mnq

)iτ
log

τq

2π
dτ +O(1) .

For Q
mnq

�= 1 the integral can be estimated by integrating by parts; these terms contribute

an error term O((logT )3). Computing the integral formn = Q
q

yields

K1 = ca2a3 · T
2π

log
T q

2πe
+O((logT )3) , (27)

where

a3 := a3(χ,ψ) := q

Q

∑
d |Qq

µ(d)χ(d)ψ

(
Q

dq

)
. (28)
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Similarly

K2 = −ca2

2π

(
q

Q

)1−b ∞∑
m,n,k=1

µ(m)χ(m)ψ(n)Λ(k)ψ(k)

(mnk)b

×
∫ T

C

(mnk)−iτ dτ +O(1)

=O((logT )3) .

Taking into account (22), (24), and (27), we now obtain∑
0<γχ<T

L(ρχ ,ψ)= (1 + ca2a3)
T

2π
log

T q

2πe
(29)

+ (a1 − δ[c=1] · logm)
T

2π
+O

(
T exp(−b1(log T )

1
4 −ε)

)
.

Hence, we may replace (29) by (1) with the constants

α1 = α1(c, χ,ψ) := 1 + ca2a3, (30)

α0 = α0(c, χ,ψ) := a1 − δ[c=1] · logm+ (1 + ca2a3) log
q

2πe
(31)

where all relevant information is given by (20), (23), (25), (26), and (28). Theorem 4 is
proved. •

Finally, we shall discuss how Theorem 4 can be used to show that distinct Dirichlet
L-functions cannot share a complex value c with at most one exception for c. Specializing
(3) shows for the numberNc(T ) of nontrivial c-points of L(s, χ) with a primitive character
χ mod q with imaginary part γc satisfying |γc| < T that

Nc(T ) = T

π
log

qT

2πebc
+O(logT ) (32)

with bc = 1 if c �= 1, and b1 = m, wherem is defined by (20). We have to take into account
that the summation in the formula of Theorem 4 is over all c-points ρχ = βχ + iγχ with
imaginary part γχ ∈ (0, T ). We observe

L(βχ + iγχ , χ) = c ⇐⇒ L(βχ − iγχ , χ) = c .

Hence, we have to conjugate c and χ for c-points in the lower half-plane. In view of
Theorem 4 we write

Σ(c, T , χ,ψ) :=
∑

0<γχ<T

L(ρχ ,ψ)

= α1(c, χ,ψ)
T

2π
log T + α0(c, χ,ψ)

T

2π
+ E ,

where E denotes here and in the sequel an error term of size O
(
T exp(−b1(logT )

1
4 −ε)

)
.

We observe ∑
−T<γχ<0

L(ρχ ,ψ) = Σ(c, T , χ,ψ)
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and ∑
|γχ |<T

L(ρχ ,ψ) = Σ(c, T , χ,ψ) +Σ(c, T , χ,ψ) +O(1) ,

where the error term is with respect to possible c-points on the real axis. Hence, by our
previous observations,∑

|γχ |<T
L(ρχ ,ψ)= (α1(c, χ,ψ)+ α1(c, χ,ψ))

T

2π
log T

+(α0(c, χ,ψ) + α0(c, χ,ψ))
T

2π
+ E .

Subtracting (32) yields∑
|γχ |<T

(L(ρχ ,ψ)− c)

= (2 + ca2(χ,ψ)a3(χ,ψ)+ ca2(χ,ψ)a3(χ,ψ)− 2c)
T

2π
log T

+ (α0(c, χ,ψ) + α0(c, χ,ψ)− 2c log
q

2πebc
)
T

2π
+ E .

If not all coefficients at T log T and T vanish, it obviously follows that L(s, χ) and L(s,ψ)
do not share the value c. Since the coefficient at T log T depends linearly on c, there is
at most one value of c for which the series on the left-hand side vanishes. It would be
interesting to exclude the existence of such an exceptional value c by a different argument
than in §4, however, the coefficients depend in a rather sophisticated way on c, χ and ψ
and include additionally algebraic and transcendental constants. Since we could not exclude
such an exceptional value of c, we decided to leave this problem for the interested reader.

REMARK. Recently, Ki [15] succeeded in showing that if two elements of S� with
constant coefficient a(1) = 1 satisfy the same functional equation with positive degree and
share a non-zero complex value, then they are identical; moreover, he showed that this is
not true for c = 0 or for zero degree.
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