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Abstract. Let E be an elliptic curve over a number field K. For a prime p, the p-
torsion points of E are the points of finite order p in the Mordell-Weil group E(K). In this
paper, we show that E has no p-torsion points if E has bad reduction at some primes.

1. Introduction

For a prime p, the p-torsion points of an elliptic curve E over a number field K are
the points of finite order p in the Mordell-Weil group E(K). A. Ogg [9] conjectured which
groups can be torsion subgroups of elliptic curves over Q. In his papers [7, 8], Mazur
proved Ogg’s conjecture and showed that any elliptic curve over (Q cannot have p-torsion
points for the primes p > 11. In the case where K is a quadratic field, Kenku-Momose
[6] and Kamienny [5] classified the possible torsion subgroups of elliptic curves over K
and showed that any elliptic curve over K cannot have p-torsion points for the primes
p > 17. In this paper, we study the p-torsion points of elliptic curves over a number field
K that have bad reduction at some primes. We shall first prove the following result which
is concerned with the p-torsion points of elliptic curves over Q for p = 5 and 7.

THEOREM 1.1. Let p = 5o0r7. Let E be an elliptic curve over Q with bad reduction
only at the primes £ # p with £ # 1 mod p. Then E has no p-torsion points.

Let £ denote the Néron model of E over Z and &[ p] the kernel of multiplication by
p. We give two proofs of Theorem 1.1. The main idea of the first proof is to examine the
finite flat group scheme £[ p] over the ring Z[1/N], where N is the product of the primes
at which E has bad reduction. On the other hand, the main idea of the second proof is to
study the extension Q(E[p]) of Q, where Q(E[p]) is the field generated by the points of
the p-torsion subgroup E[p].

Based on the idea of the first proof of Theorem 1.1, we studied the p-torsion points
of elliptic curves over certain number fields with good reduction everywhere [16]. On the
other hand, we can apply the idea of the second proof of Theorem 1.1 to the case where K
is a number field. Our result is the following which extends [16, Theorem 3.8] to the case
where E has bad reduction at some primes.
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THEOREM 1.2. Let K be a number field and p > 5 a prime number. Suppose that p
does not divide the class number of K (¢p) and the ramification index ey satisfies ey < p—1
for all primes p of K over p. Let E be an elliptic curve over K with bad reduction only
at the primes | of K over the primes £ # p with ¢/ % +1 mod p, where f is the residue
degree of I. Then E has no p-torsion points.

Acknowledgment. I would like to thank the reviewers for giving me useful com-
ments. Especially, I would like to thank the reviewer who gave me the idea of the second
proof of Theorem 1.1.

NOTATION. The symbols Z, and QQ denote, respectively, the ring of rational integers,
and the field of rational numbers. For a prime p, the finite field with p elements is denoted
by IF,. We denote the p-adic integers and the p-adic number field by Z, and Q,,. If G is
a group scheme over aring R, and n € Z, we write G[n] for the kernel of multiplication
[n]lg : G — G.

2. The first proof of Theorem 1.1

We begin with the following lemma:

LEMMA 2.1. Let E be an elliptic curve over a number field K. Suppose E has a
p-torsion point for p > 5. Let q be a prime of K with q t p. Then E has semistable
reduction at q.

Proof. See the proof of [1, Lemma 1.3]. O

Let p > 5 be a prime number and N a square-free integer with p t N. Let E be an
elliptic curve over Q. Assume that E has bad reduction only at the primes dividing N and
E has a p-torsion point P. Using the Weil-pairing e, : E[p] x E[p] — up, we define a
map E[p] = up by O — e, (P, Q). Since the point P is rational over Q, this map gives
an exact sequence

D 0— Z/pZ — E[p]l > up — 0

of Gal(Q/Q)-modules. Let £ be the Néron model of E over Z. By Lemma 2.1 and A.
Grothendieck’s semistable reduction Theorem [3, Exp. IX, (3.5.3)], we see that £[p] is a
finite flat group scheme over Z[1/N]. By [8, §3, Step 1], we have Z/pZ C € where Z/pZ
is the constant group scheme generated by the point P.

LEMMA 2.2. The exact sequence (1) of Gal(Q/Q)-modules induces an exact se-
quence
0—Z/pZ — E[pl = up — 0
of finite flat group schemes over Z[1/N], where Z/pZ (resp. |Lp) is a constant (resp.
diagonalizable ) group scheme over Z[1/N].

Proof. Let G be a finite flat group scheme over the ring Z[1/N] defined by coker
(Z] pZ — &[p]). It suffices to show that the group scheme G is isomorphic to the diago-
nalizable group scheme 1, over Z[1/N]. Since the group scheme G is étale over Z[1/pN ],
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we can consider the group scheme G over Z[1/pN] in terms of Galois modules, and hence
G is isomorphic to the diagonalizable scheme 1, over Z[1/pN] by the exact sequence (1).
Next we consider the group scheme G over the ring Z,. Since the group scheme over Z,
is uniquely determined up to isomorphism by the isomorphism type over Q, (see [14]),
the group scheme G is isomorphic to the diagonalizable group scheme ), over Z,. This
completes the proof by [10, Proposition 2.3]. U

Let Exté[l/N](up, 7/ pZ) be the group of extensions of u, by Z/pZ over Z[1/N].
By Lemma 2.2, we have £[p] € Extlz[l/N] (p, Z/pZ). In the case where N = £ is a prime

with £ # p, Schoof classified the group Extlz[ 1/6] (p, Z/pZ) [11, Corollary 4.2]. We give
the following result needed later.

PROPOSITION 2.3. Let p > 5 be a prime number and N a product of primes £ # p
with £ % £1 mod p. Then the group Extlz[l/N] (p, L/ pZ) is trivial.

Proof. The idea is based on the proof of [11, Corollary 4.2]. Let ¢, be a primitive
p-th root of unity. Let A = Gal(Q(¢,)/Q) and let w : A — ]F’; denote the cyclotomic
character defined by o'(¢,) = ¢ for every o € A. For any F,[A]-module M, let M,
denote the ' -eigenspace of M. By a similar proof of [11, Proposition 4.1], we get an exact
sequence

) 0 — Extyyw(tp, Z/pZ) — (ZI11/pN. &p1*/ (Z11/ PN, £p1%)7)

— Q&) /(@ Ep)*)"),2 -
We compute the group in the middle of the exact sequence (2). By the proof of [11, Corol-
lary 4.2], we get the following exact sequence of w>-eigenspaces:

3) 0— (ZI1/p. ¢p)*/ (ZI1/p. £p1)7) 2

— (Z1/pN, &p1*/ (Z11/pN. ¢1%)7) . = | DFp | — 0,

1IN ol
where [runs over the set of the primes of Z[{),] that lie over N. We identify the Galois group
A with F; via the cyclotomic character w. By [15, Theorem 8.13], the F,[A]-module
Z[1/p, £p1*/(Z[1/ p, £p1*)P is isomorphic to u, x Fp[A/{=1)]. So its w’-eigenspace
has F,-dimension 1. The module By F is a permutation module isomorphic to B,y
F,[A/(£)], where £ runs over the set of the primes dividing N. The w’-eigenspace of
F,[A/(£)] is trivial for which w?(¢) # 1. By assumption, the w>-eigenspace of @EI N
F,[A/(£)]is trivial. This shows that the group in the middle of the exact sequence (3) has
dimension 1 over I ,.

Since p > 5, the w?-eigenspace of Qp(Cp)*/(Qp(£p)*)P has dimension 1. By [15,
Theorem 8.25], the w?-eigenspace of the cyclotomic units is equal to the w?-eigenspace of
the local units. Therefore the w?-eigenspace of the cyclotomic units in Z[1/p, ¢pl* maps
surjectively onto the w?-eigenspace of Q p(Ep)*/(Qp(p)*)P. It follows that the rightmost
arrow in the exact sequence (2) is surjective. This completes the proof. (]
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Here we prove Theorem 1.1. The idea is based on the proof of [8, §3] or [16, Theorem
3.8]. Let p = Sor7. Let E be an elliptic curve over Q as in Theorem 1.1. Suppose E
has a p-torsion point. Set E; = E. Since the exact sequence (1) of Gal(@/ @Q)-modules
is split by Lemma 2.2 and Proposition 2.3, there exists an elliptic curve E> over Q and a
Q-isogeny Ey — E»> with kernel i ,. Then the image of the Galois submodule Z/ pZ gives
a point of order p in E;. Continuing in this fashion, we obtain a sequence of Q-isogenies

Ei—>Ey— -,

where each isogeny has kernel w,. By Shafarevich’s Theorem [12, Chapter IX, Theorem
6.1], we see that E; >~ E; for some i < j. Composing our Q-isogenies gives an endo-
morphism f : E; — E; defined over Q. If P; € E;(Q) is the image of P € E(Q), then
by construction P; ¢ ker f. Since deg f is a power of p, we see that f is a non-scalar
endomorphism. Therefore the elliptic curve E; has complex multiplication. But this con-
tradicts to Lemma 2.1 (see [12, Chapter VII, Proposition 5.4]). This completes the proof of
Theorem 1.1. ]

3. The second proof of Theorem 1.1

Let E be an elliptic curve over QQ with a p-torsion point R for p = 5 or 7. To prove
Theorem 1.1, it suffices to show that E has bad reduction at p, or a prime £ = £1 mod p.
We note that E is isogeneous to an elliptic curve E’ over Q with a p-torsion point such that
Q(E'[p]) is a ramified extension of Q(¢p) of degree p (see the last paragraph of §2). Since
both E and E’ have bad reduction at same primes, we may assume that F = Q(E[p]) is a
ramified extension of K = Q(¢,) of degree p.

Since K has class number 1, the extension F/K is ramified at some prime over a prime
£. By the proof of [8, §3, Step 3], we have Q,(E[p]) = Q,(¢)) if E has good reduction at
p. Hence we may assume £ # p. By the criterion of Néron-Ogg-Shafarevich [12, Chapter
VII, Theorem 7.1], we see that £ is a prime of bad reduction for E. Since E has semistable
reduction at £ by Lemma 2.1, there exists an extension of M of degree 1 or 2 over Q¢ such
that £ is isomorphic to the Tate curve E; over M, where g is the Tate parameter (see [13,
Chapter V] for details). By the theory of Tate curves, we have

¢: E@p) ~Q,/q".
With the identification ¢, we clearly have
¢ Elpl~ - 0%)/q".

where Q = ¢!/? € Q, is a fixed p-th root of ¢. Hence we have M(E[p]) = M(¢'/?, Ip).
Since M (E[p]) is a ramified extension of M (¢,) of degree p, we see that ql/”{[‘; g M
for any i. On the other hand, we have {, € M since R is defined over M. Therefore we
have [Q¢(Zp) : Q¢l = 1 or 2, which means £ = &1 mod p. This completes the proof of
Theorem 1.1. (|

Proof of Theorem 1.2. By a similar argument of the second proof of Theorem 1.1,
we can prove Theorem 1.2. Let p > 5 be a prime number and K a number field with the
following conditions:
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(a) p does not divide the class number of K (¢),
(b) the ramification index ey, satisfies e, < p — 1 for all primes p of K over p.

Let E be an elliptic curve over K with a p-torsion point. By a similar argument as above,
we may assume that L = K (E[p]) is aramified extension of M = K () of degree p. By
the assumption (a), the extension L /M is ramified at some prime over a prime [ of M. Let p
be a prime of K over p and let K}, denote the completion of K at p. By the assumption (b),
we note that any finite flat group scheme over K}, of p-power order admits a prolongation
over the ring of integers of Ky, (see [2, Théoreme 3.3.3]). Therefore it follows from the
proof of [8, §3, Step 3] that we have K, (E[p]) = K (¢p) if E has good reduction at p.
Hence we may assume [ { p. Let £ be the prime number with [ | £. By a similar argument
as above, we have [K((¢), Ki] = 1 or 2, which means ¢/ = +1 mod p where f is the
residue degree of . This completes the proof of Theorem 1.2. (]

REMARK. By Theorem 1.2 or [16, Theorem 3.8], we obtain the following results on
the class number of K ({p).

e Set K = Q(+/26) and p = 5. Let
E:y2+(l—e)xy—ey=x3—ex2

be an elliptic curve over K, where € = 5 + /26 is the fundamental unit of K.
Since the discriminant A(E) is equal to —e®, we see that E has good reduction
everywhere. Since E has a p-torsion point (0, 0), it follows from Theorem 1.2 or
[16, Theorem 3.8] that the class number of K (¢) is divisible by 5. In fact, the class
number of K (&) is equal to 40.

e Set K = Q(+/37) and p = 5. Let

E:y2—6y=x3+36+1x2+ lle+1x
2 2

be an elliptic curve over K with good reduction everywhere, where € = 6 + /37 is

the fundamental unit of K (see [4]). Since E has a p-torsion point (0, 0), it follows

from Theorem 1.2 or [16, Theorem 3.8] that the class number of K (¢,) is divisible

by 5. In fact, the class number of K (¢,) is equal to 5.

4. The primes at which elliptic curves with a p-torsion point have bad reduction

For p = 5 or 7, let E be an elliptic curve over Q with a p-torsion point. Theorem 1.1
shows that E has bad reduction at p, or a prime £ # p with £ = %1 mod p. In this section,
we give some examples of the primes at which E has bad reduction.

For p = 5, we see that the elliptic curve E is isomorphic to an elliptic curve defined
by the equation

E)(f) : y2 + (1 =A)xy—Ary =x3 — ax2.
The discriminant of E) is A(E\) = A3(A2—111—1). With A € Q\ {0}, the elliptic curve
E §5) has a 5-torsion point (0, 0). For p = 7, we see that the elliptic curve E is isomorphic
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to an elliptic curve defined by the equation

EY 2+ (14 a— Py + 02 =)y =x3 + 02 = )2,

The discriminant of £\ is A(EL") = 27(h — 1)7(33 — 822+ 51 4 1). With & € Q\ {0, 1},
the elliptic curve E S) has a 7-torsion point (0, 0). In the following table, we list the primes

at which E )(Lp ) has bad reduction for p = 5,7 and some A.

[4]
[5]

[6]

[91]
[10]

[11]

TABLE 1. The primes at which E)(Lp) has bad reduction for p =5,7and 2 =1,2,---, 10

A || The primes £ at which | The primes £ satisfying
E )(Lp ) has bad reduction | £ = p or £ = +1 mod p
p=5] p=7 p=5] p=71

1 11 — 11 —

2 2,19 2,13 19 13

3 3,5 2,3,29 5 29

4 2,29 2,3,43 29 43

5 5,31 2,5,7 5,31 7

6 ||2,531] 23,541 31 41

7 7,29 2,3,7,13 29 7,13

8 2,5 2,7,41 5 7,41

9 3,19 2,3,127 19 127

10 2,5, 11| 2,3,5,251 | 5,11 251
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