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Abstract

This thesis studies the subgroup structure of mapping class groups. We use techniques

that fall into two categories: analysing the group action on a family of simplicial

complexes, and investigating regular, �nite-sheeted covering spaces.

We use the �rst approach to prove that a wide class of normal subgroups of map-

ping class groups of punctured surfaces are geometric, that is, they have the extended

mapping class group as their group of automorphisms, expanding on work of Brendle-

Margalit. For example, we determine that every member of the Johnson �ltration

is geometric. By considering punctured spheres, we also establish the automorphism

groups of many normal subgroups of the braid group.

The second approach is to relate subgroups of each of the mapping class groups as-

sociated to a covering space, namely, the liftable and symmetric mapping class groups.

Given that the two surfaces have boundary, we consider covers in which either every

mapping class lifts or every mapping class is �bre-preserving. We classify all covers

that fall into one of these cases.

In Chapter 1 we recall some preliminaries before stating the main results of the

thesis. We then extend Brendle-Margalit's de�nition of complexes of regions to surfaces

with punctures. Chapter 2 proves that the automorphism group of a complex of regions

is the extended mapping class group, resolving in part a metaconjecture of N. V. Ivanov.

In Chapter 3 we construct a complex of regions associated to a general normal subgroup

of a mapping class group of a surface with punctures. We then apply the main result

of the previous chapter to establish that such a normal subgroup is geometric.

Finally, Chapter 4 presents joint work with Tyrone Ghaswala. We give a proof of the

Birman-Hilden Theorem for surfaces with boundary and then prove the classi�cations

of regular, �nite-sheeted covering spaces of surfaces with boundary discussed above.

We conclude by investigating an in�nite family of branched covers of the disc. This

family induces embeddings of the braid group into mapping class groups. We prove that

each of these embeddings maps a standard generator of the braid group to a product

of Dehn twists about curves forming a chain, providing an answer to a question of

Wajnryb.
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Chapter 1

Introduction

The mapping class group Mod(Σ) is the group of symmetries of an oriented surface

Σ. In more formal language it is the group of isotopy classes of orientation-preserving

self-homeomorphisms of the surface, relative to the boundary.

Mapping class groups are ubiquitous in mathematics. They naturally arise in 4-

manifold and 3-manifold topology, through the study of Lefschetz �brations and Hee-

gaard splittings. Moreover, the mapping class group of a surface has a natural action

on the Teichmüller space of the surface. The quotient by this action is the moduli

space of Riemann surfaces and hence mapping class groups play a key role in algebraic

geometry. Mapping class groups can also be thought of as generalisations of braid

groups, arithmetic groups, and automorphism groups of free groups.

Broadly speaking, this thesis studies aspects of the subgroup structure of mapping

class groups. In particular, we focus on surfaces that are not closed, that is, they

may have punctures, or boundary, or both. We do this in two ways. The �rst is by

investigating the action of the mapping class group on a very general class of simplicial

complexes. This approach is inspired by the seminal paper of Ivanov [37] and the recent

work of Brendle-Margalit [13]. The second method is by leveraging covering spaces of

surfaces. In this case we will make use of the well-known Birman-Hilden Theorem [7].

In Chapter 2 we prove Theorem 1.4.2, a result which partially resolves a metacon-

jecture of Ivanov. In Chapter 3 we use Theorem 1.4.2 to prove that a each member

of a wide class of normal subgroups of the mapping class is geometric, that is, their

automorphism groups are the extended mapping class group. Finally in Chapter 4 we

determine the relative size of two natural subgroups arising from regular, �nite-sheeted,

possibly branched covering spaces of surfaces with boundary. We end the �nal chap-

ter by investigating a family of injective homomorphisms from the braid group into

mapping class groups.

1.1 Preliminaries

We begin with an overview of mapping class groups, including some basic results and

de�nitions before highlighting the main theorems of this thesis in the next section.
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CHAPTER 1. INTRODUCTION 2

1.1.1 Mapping class groups

Throughout this thesis we will use the notation Σ for an oriented surface, that is, a

topological space whose interior locally resembles R2 with some �xed orientation. A

surface Σ is of �nite type if its fundamental group is �nitely generated; otherwise it

is said to be of in�nite type. From now on we will assume that every surface is of

�nite type unless stated otherwise. Examples of surfaces of �nite type include spheres,

annuli, and tori. When denoting a speci�c surface we may use the notation Σm
g,n for

a surface homeomorphic to the complement of n singular points and m open discs

in a closed surface of genus g. We say that Σm
g,n has m boundary components and n

punctures. When the surface has no boundary components we omit the superscript

and when the surface has no punctures we usually omit the second subscript.

Curves

A simple closed curve on a surface Σ is an embedding of the circle c : S1 → Σ. We

will usually use the term curve when this is unambiguous. We call a curve essential

if it is not isotopic to a point or a boundary component. Note then that curves that

are isotopic to punctures are not essential. Abusing notation, we will write c for the

image of c in Σ.

For two curves c1 and c2 we write i(c1, c2) = |c1 ∩ c2|. We usually consider pairs

of curves with minimal intersection with respect to their isotopy class. We therefore

use the same notation for the minimal intersection of two isotopy classes of curves,

that is, i([c1], [c2]) = |c1 ∩ c2|, where c1 and c2 are representative curves with minimal

intersection. Throughout this thesis we will often refer to both a curve and its isotopy

class by the same name.

We say that a set of curves {ci} �lls the surface Σ if when we cut Σ along each of

the ci we get a collection of discs with zero or one punctures, and annuli that share

a boundary component with Σ. Equivalently, the set of curves {ci} �lls Σ if there

exist no essential curves disjoint from each ci. For any surface Σ (other than a disc,

a punctured disc, an annulus, or a pair of pants) it is a fact that there exists a pair

curves that �lls Σ [27]. Indeed, there exist in�nitely many such pairs.

Mapping class groups

Let Σ be a surface let and Homeo+(Σ) be the group of self-homeomorphisms that

preserve the orientation of the surface Σ. We de�ne Homeo+(Σ, ∂Σ) to be the subgroup

consisting of all homeomorphisms that preserve the boundary pointwise. Note here

that the `+' is super�uous, as all homeomorphisms that �x the boundary pointwise are

necessarily orientation-preserving. For two homeomorphisms f1, f2 ∈ Homeo+(Σ) we

write f1 ∼ f2 when f1 and f2 are isotopic. Isotopy is an equivalence relation and so we
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c

a Tc(a)

Figure 1.1: The Dehn twist of the curve a about the curve c, written Tc(a).

de�ne the mapping class group of the surface as follows;

Mod(Σ) := Homeo+(Σ, ∂Σ)/ ∼ .

We sometimes consider a �xed set of marked points B in a surface Σ. In this case we

de�ne the subgroup Mod(Σ,B) < Mod(Σ) consisting of all elements represented by

homeomorphisms that �x the marked points setwise. It is true that if |B| = n then

Mod(Σm
g ,B) ∼= Mod(Σm

g,n) and the justi�cation is left to the reader.

For surfaces without boundary we de�ne the extended mapping class group Mod±(Σ)

to be the group consisting of the equivalence classes of all self-homeomorphisms of the

surface Σ, including the orientation-reversing ones. It can be seen that Mod(Σ) is an

index two subgroup of Mod±(Σ).

We will now give some examples of homeomorphisms and mapping classes.

Dehn twists

Let Σ2
0 = S1 × [0, 1] be an annulus with some �xed orientation. We de�ne a homeo-

morphism of Σ2
0 as follows;

T : Σ2
0 → Σ2

0

(θ, t) 7→ (θ + 2tπ, t).

The homeomorphism T �xes the boundary pointwise and so T is orientation-preserving.

It follows then that T represents an element of Mod(Σ2
0). In fact, this element generates

the group Mod(Σ2
0) ∼= Z, see Farb-Margalit [27, Proposition 2.4].

Now, every surface Σ contains a simple closed curve c. Writing Ac for an annular

neighbourhood of c we can de�ne an orientation-preserving homeomorphism f : Σ2
0 →

Ac. The Dehn twist about c is de�ned as follows;

Tc(x) =

f ◦ T ◦ f−1(x) if x ∈ Ac

x otherwise.

If Σ is homeomorphic a to disc or a punctured disc then any such Dehn twist is

isotopic to the identity homeomorphism. If Σ is any other surface and c is essential, or

isotopic to a boundary component, then Tc represents a non-trivial element of Mod(Σ).
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c
a Hc(a)

Figure 1.2: The Half twist of the curve a about the curve c, written Hc(a).

From now on we will refer to both the mapping class and the homeomorphism as a

Dehn twist and write Tc ∈ Mod(Σ). We note that two isotopic curves admit Dehn

twists that are equal as mapping classes. Note that there is a choice between �twisting

left� and �twisting right�. We will use the convention that Tc is a left twist and T−1
c is

a right twist.

Dehn twists are fundamental in the study of mapping class groups. This is partly

because, in some sense, they are among the �smallest elements� as they are de�ned

on annular subregions. The main reason they are of such importance however, is that

they generate any mapping class group of a closed surface Σg. Moreover, there exists a

�nite generating set of Dehn twists for Mod(Σg) consisting of 2g+1 elements as shown

by Humphries [34]. In fact, the mapping class group of any surface without punctures

is �nitely generated by Dehn twists. If Σ is a surface with punctures however, we need

another type of mapping class to generate Mod(Σ).

Half twists

Let D2
∼= Σ1

0,2 be a disc with two punctures. As with the case of the annulus given

above, the mapping class group Mod(D2) ∼= Z is generated by a single element. We can

think about a representative homeomorphism of this generator as a half Dehn twist, or

simply a half twist. Heuristically, we cut a line between the two punctures, resulting

in a surface whose interior is homeomorphic to the interior of an annulus. We then

perform a half Dehn twist to this annulus and glue back along the line. This preserves

the boundary component of D2 and it �swaps the punctures�.

Let c be a curve bounding a disc Dc with two punctures in Σ. Let f : D2 →
Dc be an orientation-preserving homeomorphism. Writing H for the homeomorphism

described above, we de�ne the half twist about c as follows;

Hc(x) =

f ◦H ◦ f−1(x) if x ∈ Dc

x otherwise.

From now on we refer to the mapping class containing such a homeomorphism as a half

twist and we denote it by Hc ∈ Mod(Σ). A picture of a half twist is shown in Figure

1.2. Now, half twists generate mapping class groups of punctured discs and punctured

spheres. Furthermore, any mapping class group is generated by a set of �nitely many

Dehn twists and �nitely many half twists [27, Corollary 4.15]. As noted previously,
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πι

Figure 1.3: The hyperelliptic involution ι : Σ3 → Σ3. There are 8 �xed points indicated
by where the red �kebab skewer� intersects Σ3.

the groups Mod(Σm
g,n) and Mod(Σm

g ,B) are isomorphic when |B| = n. It is easy to see

that the construction of half twists can be generalised to mapping classes that �swap

two marked points�. We also refer to such mapping classes as half twists and it will be

clear from context to which one is being referred.

So far, we have seen that Mod(Σ) is �nitely generated. In fact, the extended map-

ping class group Mod±(Σ) is also �nitely generated as we only require one additional

orientation-reversing mapping class.

1.1.2 Classi�cation and supports

So far we have seen two mapping classes that generate all others. The de�nitions in

this section amount to a statement of the Nielsen-Thurston classi�cation of all possible

elements of Mod(Σg,n).

Supports

The support R of a homeomorphism f ∈ Homeo+(Σ, ∂Σ) is the minimal subsurface

of Σ with essential boundary components such that f restricted to the complement of

R is the identity homeomorphism. Here, we mean minimal with respect to subsurface

containment. Similarly we say that R is a support of the mapping class [f ] ∈ Mod(Σ).

The support of a mapping class is unique up to homotopy equivalence of subsurfaces [8].

Periodic mapping classes

We call [f ] a periodic element of Mod(Σ) if there exists an integer k such that [f ]k = id.

In other words, [f ] generates a �nite cyclic subgroup. Note that the support of any

periodic mapping class is the entire surface Σ. This implies that the mapping class

group of a surface with boundary cannot contain non-trivial periodic elements. This

fact will be explored in greater depths in Chapter 4. An example of a periodic mapping

class we will visit multiple times in Chapters 1 and 4 is the hyperelliptic involution which

we denote ι ∈ Mod(Σg,n).

Consider a closed surface Σg embedded in R3 such that there exists a straight line

that intersects Σg at 2g+ 2 points. Rotation by π (or 180◦) about this axis de�nes the

homeomorphism ι, see Figure 1.3. It is clear that this element is periodic and that it

generates the cyclic subgroup 〈ι〉 ∼= Z/2Z.
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Reducible mapping classes

A reducible element is one that �xes an isotopy class of a multicurve (a disjoint set

of essential simple closed curves). An example of a reducible mapping class is a Dehn

twist. Note that in the case where the surface is a torus with no punctures, the only

isotopy class of curves �xed by Tc is c itself. Unlike periodic mapping classes, there

are no restrictions on the supports of reducible mapping classes. For example, the

hyperelliptic involution ι is also reducible in that it �xes a set of so-called symmetric

curves. As we have seen the support of ι is the entire surface.

Pseudo-Anosov mapping classes

A pseudo-Anosov mapping class is one which is neither periodic, nor reducible. This

de�nition, while concise, does not do justice to the deep structure behind pseudo-

Anosovs. Informally these mapping classes stretch and squeeze the surface along two

transverse measured foliations. We will visit this structure in Chapter 3 and use it to

prove the main result of this thesis.

1.2 Normal subgroups

In this section we consider possibly punctured surfaces without boundary. We say that

a normal subgroup N of Mod(Σ) is geometric if its automorphism group is the extended

mapping class group Mod±(Σ). In his seminal paper, Ivanov showed that the mapping

class group of a surface of genus at least three, or of genus two with punctures, is

itself geometric [37]. The analogous result was given by Korkmaz for surfaces of genus

one and spheres with punctures [45]. The proofs of these results use the action of

Mod±(Σ) on the curve complex, a simplicial complex related to Σ that we will de�ne in

Section 1.4.1. Ivanov's result, and proof, acted as a springboard for a series of related

results; see Bavard-Dowdall-Ra� [3], Brendle-Margalit [12], Bridson-Pettet-Souto [16],

Irmak [35], and Kida [43] among many others.

The Torelli group and the Johnson �ltration

There is a natural action of Mod(Σ) on the �rst homology group of the surface H1(Σ).

The associated representation is known as the symplectic representation. This repre-

sentation has a large kernel I(Σ) known as the Torelli group and has been an object of

great interest in the study of mapping class groups, see Johnson [39] [40], Kasahara [41],

Mess [56], and Putman [59] [61], to name only a few. It was shown by Farb-Ivanov for

a closed surface Σ of genus at least 5 that I(Σ) is geometric [26].

The Torelli group can be generalised as follows. Write Γ0 for the fundamental group

of the surface Σ and de�ne Γk := [Γ0,Γk−1] to be the kth term in the lower central series

of Γ0. We now de�ne a sequence of groups {Nk(Σ)} to be the kernels of the group
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homomorphisms

Mod(Σ)→ Out(Γ0/Γk).

It was shown by Bass-Lubotzky that this is a �ltration, that is, an in�nite sequence of

nested groups with trivial intersection [2]. The �rst term in this sequence is the Torelli

group and the second term is named the Johnson kernel J (Σ). We call the entire

sequence the Johnson �ltration. It was shown by Brendle-Margalit for closed surfaces

of genus at least 4 that J (Σ) is geometric [12]. A proof has also recently been given

by Brendle-Margalit, for closed surfaces of genus at least 7, that Nk(Σ) is geometric

for all k [13]. This result was originally announced by Bridson-Pettet-Souto [16].

In fact the work of Brendle-Margalit goes much further. They prove that for closed

surfaces, each member of a wide class normal subgroups is geometric. This class in-

cludes (but goes well beyond) all the examples given above, provided the genus of the

surface is high enough.

1.2.1 Statement of the theorem

Theorem 1.2.1 of this thesis extends the result of Bredle-Margalit to surfaces with

punctures. In other words, it shows for a possibly punctured surface Σ that each

member of a wide class of normal subgroups is geometric. This gives the �rst proof

that every term in the Johnson �ltration of a punctured surface is geometric. Proofs

that the Torelli group I(Σ) and the Johnson kernel J (Σ) are geometric in this case

are covered by the work of Kida [43].

In order to state this result we must �rst de�ne the class of normal subgroups for

which it holds. This de�nition is dependent on the supports of the elements contained

in the subgroup.

Regions and small mapping classes

Let Σ be a surface of genus g and with n marked points. A region R of Σ is a

connected, compact subsurface of Σ such that each component of its boundary is an

essential simple closed curve. We write g(R) and n(R) for the genus of R and number

of punctures in R respectively.

Suppose the support of a mapping class [f ] ∈ Mod(Σ) is contained in a single

boundary region R. If Σ is a sphere with punctures we say that [f ] is small if n ≥
3n(R)−1. If Σ is a torus with punctures we say that [f ] is small if n ≥ max{3n(R), 7}.
Finally, in the general case we say [f ] is small if

g ≥ g(R) + 1 and n ≥ 3n(R).

As well as proving that many normal subgroups are geometric, Theorem 1.2.1 also

proves that the abstract commensurator group of such a normal subgroup is Mod±(Σ).

Recall, that for any group G we de�ne CommG to be the group of equivalence classes of
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isomorphisms between �nite index subgroups of G, where two isomorphisms are equiv-

alent if they agree on some �nite index subgroup. A survey on abstract commensurator

groups has been written by Studenmund [64]. Furthermore, recall that inherent in the

de�nition of Mod±(Σ) is that Σ has empty boundary.

Theorem 1.2.1. Let Σ be a surface with punctures and let N be a normal subgroup of

Mod±(Σ) containing a small element. The natural homomorphisms

Mod±(Σ)→ AutN → CommN

are isomorphisms. Furthermore, if N is normal in Mod(Σ) but not in Mod±(Σ) then

the natural homomorphism

Mod(Σ)→ AutN

is an isomorphism.

Collecting all the results discussed above, one may be fooled into thinking that every

normal subgroup of Mod(Σ) is geometric. This is not true. The question surrounding

non-geometric normal subgroups has been explored by Clay-Mangahas-Margalit [20]

and Dahmani-Guirardel-Osin [21]. Encouragingly, the requirement for a normal sub-

group to be non-geometric in these cases is similar to the the statement of Theorem

1.2.1, that is, they are determined by the relative topological size of the supports of

their elements. It can be expected that the de�nition of small may be improved to the

following:

Mutually small

Two mapping class [f1], [f2] ∈ Mod(Σ) are mutually small if their supports are sub-

surfaces R,Q that are disjoint up to homotopy and such that Σ \ {R,Q} is not an

annulus.

The conjecture below has an analogue for the closed surface case given by Brendle-

Margalit [13].

Conjecture 1.2.2. Let Σ be a possibly punctured surface without boundary. A normal

subgroup of Mod(Σ) is geometric if and only if it contains a pair of mapping classes

that are mutually small.

A further conjecture by Clay-Mangahas-Margalit suggests the form all non-geometric

normal subgroups can take [20]. Resolving both conjectures would give a complete pic-

ture of normal subgroups of mapping class groups for all surfaces with empty boundary.

Techniques from this thesis may be of use in tackling this problem. It is likely however,

that new ideas will also be required.
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1.3 Genus zero case

Consider a surface Sn = Σ0,n, that is, a n times punctured sphere. We can apply a

version of Theorem 1.2.1 to this special case to arrive at a number of interesting results

concerning braid groups. This application is viewed separately from the general case

in a paper by the author [55].

1.3.1 Braid groups

The braid group on n-strands Bn is generated by σ1, . . . , σn−1 subject to the relations

σiσj = σjσi for |i− j| > 1 and σiσjσi = σjσiσj for |i− j| = 1.

The latter are known as the braid relations. The centre Z of Bn is generated by

the element (σ1 . . . σn−1)n [18]. We establish the automorphism group of any normal

subgroup N of Bn such that N ∩Z is trivial, providing N contains a product involving

at most one third of the generators given above. This result is given explicitly in

Corollary 1.3.3, the proof of which relies on an interpretation of Bn/Z as a subgroup

of Mod(Sn).

Braid groups as mapping class groups

Let Dn be a disc with n punctures, that is, a surface homeomorphic to Σ1
0,n. One can

de�ne an isomorphism from Bn to Mod(Dn) such that the image of σi is a half twist.

By collapsing the boundary ∂Dn to a point p, and considering p as a marked point of

Sn, we see that Mod(Sn, p) is isomorphic to Mod(Dn) modulo the subgroup generated

by the Dehn twist about a curve isotopic ∂Dn [18]. This Dehn twist generates the

centre Z of Bn and so it follows that

Bn/Z ∼= Mod(Sn, p).

Analogously to Mod(Sn, p), we de�ne the subgroup Mod±(Sn, p) of Mod±(Sn) consist-

ing of all elements that �x the marked point p. By removing the point p from the

surface we get a natural inclusion map Mod(Sn, p) ↪→ Mod(Sn+1). We can therefore

de�ne the following commutative diagram of inclusion maps:

Mod(Sn, p)

Mod(Sn+1) Mod±(Sn, p)

Mod±(Sn+1).
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Note that if N is a subgroup of Mod(Sn, p) that is normal in both Mod(Sn+1) and

Mod±(Sn, p) then it is also normal in Mod±(Sn+1). Furthermore, each subgroup in the

diagram is of �nite index. We de�ne the injective homomorphism

Ψ : Bn/Z ↪→ Mod±(Sn+1)

by the isomorphism and inclusion maps discussed above. We use this interpretation to

obtain the following result.

Theorem 1.3.1. Let N be a normal subgroup of Bn/Z containing an element repre-

sented by a product of at most (n−1)/3 standard generators. Then AutN is isomorphic

to the normaliser of Ψ(N) in Mod±(Sn+1).

In other words, AutN is isomorphic to one of Mod(Sn, p), Mod(Sn+1), Mod±(Sn, p),

or Mod±(Sn+1). This result is a direct consequence of a version of Theorem 1.2.1 for

punctured spheres and relies on the notions of small mapping classes discussed in

Section 1.2. In order to arrive at the precise wording of Theorem 1.3.1 we note that a

small element of Mod(Sn+1) has support contained in a disc with (n+ 2)/3 punctures.

We can therefore express this element as a product of at most (n− 1)/3 half twists. If

N is a small normal subgroup of Mod(Sn+1, p) this implies the corresponding subgroup

of Bn/Z contains an element represented by a product of at most (n− 1)/3 standard

generators. We give a version of Theorem 1.2.1 for Mod(Sn, p) in Chapter 3 and in

doing so complete the proof of Theorem 1.3.1.

As an example, we can apply Theorem 1.3.1 to the normal subgroup BI/Z, where
BI is the braid Torelli group (see [15]). It follows that AutBI/Z ∼= Mod±(Sn+1).

Furthermore, this is also true for each of the congruence subgroups of BI modulo the

centre Z.

We may also apply Theorem 1.3.1 to the groupBn/Z itself. We see that AutBn/Z ∼=
Mod±(Sn+1, p). This can also be shown using the fact that Mod(Sn, p) is a �nite index

subgroup of Mod±(Sn+1) [18]. Considering the braid relations, and the fact that Z ∼= Z,
one is able to prove that the natural homomorphism

AutBn → AutBn/Z

is an isomorphism. A short proof of this fact is given at the end of Chapter 3. The

group Mod±(Sn, p) can be generated by elements of Mod(Sn, p) and a single orientation-

reversing element of Mod±(Sn, p) and so we therefore recover the following isomorphism

of Dyer-Grossman [23].

Corollary 1.3.2. If n ≥ 4 then

AutBn
∼= Mod±(Sn, p) ∼= Bn/Z o Z/2Z.

If N is any normal subgroup of Bn such that N ∩Z = {1} then N is isomorphic to a
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normal subgroup of Bn/Z. It follows that Theorem 1.3.1 also gives the automorphism

groups of subgroups of this type.

Corollary 1.3.3. Let N be a normal subgroup of Bn containing a product of at most

(n − 1)/3 standard generators. If N ∩ Z = {1} then AutN is isomorphic to the

normaliser of Ψ(N) in Mod±(Sn+1).

In particular, the commutator subgroup [Bn, Bn] has trivial intersection with the

centre, leading to the following result.

Corollary 1.3.4. If n ≥ 7 then

Aut[Bn, Bn] ∼= Mod±(Sn, p) ∼= Bn/Z o Z/2Z.

This isomorphism was originally proved by Orevkov for n ≥ 4 [58]. We note that

each term further down the lower central series and the derived series of the braid group

is equal to [Bn, Bn], see for example [30]. The pure braid group PBn is the kernel of

the natural homomorphism from Bn to the symmetric group on the set of n elements.

While Z is also the centre of PBn, it has trivial intersection with its commutator

subgroup [PBn, PBn]. Since PBn is characteristic in Bn we are able to establish the

automorphism group of [PBn, PBn] and in fact we arrive at a more general result.

Corollary 1.3.5. If n ≥ 7 and Γ is any term in the lower central series or derived

series of PBn then Aut Γ is isomorphic to AutPBn/Z ∼= Mod±(Sn+1).

Note that [Bn, Bn], and each subgroup in the statement of Corollary 1.3.5, con-

tains elements that can be written as a product of two standard generators. Therefore

to apply Corollary 1.3.3 we require that (n − 1)/3 ≥ 2, that is, n ≥ 7. The rela-

tionship between spheres with punctures and braid groups has also been studied by

Bell-Margalit [4] [5], Charney-Crisp [18], and Leininger-Margalit [49].

1.3.2 The hyperelliptic Johnson �ltration

A further application of Theorem 1.2.1 in the case of spheres actually gives us informa-

tion about a family of subgroups of the group Mod(Σg), where Σg is a closed surface

of genus g. Let ι : Σg → Σg be a �xed hyperelliptic involution. We abuse notation

by writing ι for the element of Mod(Σg) represented by this homeomorphism. The

hyperelliptic mapping class group SMod(Σg) is the subgroup of Mod(Σg) consisting of

all elements that commute with ι.

Mapping class groups of spheres and hyperelliptic mapping class groups are related

by the following isomorphism;

Mod(S2g+2) ∼= SMod(Σg)/〈ι〉.

This is a consequence of the Birman-Hilden Theorem applied to the hyperelliptic cover.

These notions are discussed in greater depth in Section 1.5 and Chapter 4.
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Recall the de�nitions of the Torelli group and the Johnson �ltration from Section

1.2. We de�ne the hyperelliptic Torelli group and hyperelliptic Johnson �ltration by

the intersections

SI(Σg) := SMod(Σg) ∩ I(Σg) and SN k(Σg) := SMod(Σg) ∩Nk(Σg),

respectively. It is a result of Childers that AutSI(Σg) ∼= SMod±(Σg)/〈ι〉, when

g ≥ 3 [19]. Here, SMod±(Σg) is the extended hyperelliptic mapping class group, the

group generated by SMod(Σg) and a single orientation-reversing mapping class that

commutes with ι. Following these results it is natural to ask what the automorphism

groups are of terms appearing further down the hyperelliptic Johnson �ltration. The

following theorem answers this question and also gives the corresponding abstract com-

mensurator groups.

Theorem 1.3.6. For all surfaces Σg with g ≥ 6 we have that

CommSN k(Σg) ∼= AutSN k(Σg) ∼= SMod±(Σg)/〈ι〉.

To see how Theorem 1.2.1 implies this result we note that since the hyperelliptic

involution ι does not act trivially on homology we have that SI(Σg) is isomorphic to

a normal subgroup of Mod(S2g+2). Now, SI(Σg) is generated by Dehn twists about

symmetric separating curves of Σg (separating curves that are �xed by ι) as shown

by Brendle-Margalit-Putman [15]. Under the isomorphism of Birman-Hilden these

generators map to squares of Dehn twists about curves separating an odd number of

punctures in S2g+2. If g ≥ 3 then it follows that the image of SI(Σg) in Mod(S2g+2)

contains a small element. The normaliser of this subgroup is Mod±(S2g+2) and so from

Theorem 1.2.1 we recover the result of Childers [19] that

AutSI(Σg) ∼= Mod±(S2g+2) ∼= SMod±(Σg)/〈ι〉.

Similarly, any term SN k(Σg) is isomorphic to a normal subgroup of Mod(S2g+2). Using

a construction similar to [25, Proof of Theorem 5.10] we can �nd an element of SN k(Σg)

whose support is contained in a genus two subsurface with one boundary component.

This then corresponds to an element of Mod(S2g+2) whose support is contained in a

disc with �ve punctures. From Theorem 1.2.1 and the de�nition of small for genus zero

surfaces we have that if 2g + 2 ≥ 3(5)− 1 then

CommSN k(Σg) ∼= AutSN k(Σg) ∼= Mod±(S2g+2) ∼= SMod±(Σg)/〈ι〉,

which is precisely the statement of Theorem 1.3.6.
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Figure 1.4: Five vertices in the curve complex C(Σ3,4) and corresponding curves in the
surface.

1.4 The metaconjecture of Ivanov

Ivanov's proof that the mapping class group is geometric comes in two stages. The �rst

stage is a study of the Mod±(Σ)-action on the curve complex. This complex and others

that are related to it are discussed below. As in Sections 1.2 and 1.3.1 we assume that

Σ is a surface with empty boundary.

1.4.1 The curve complex

A useful tool for the study of mapping class groups has been the curve complex C(Σ).

This is a simplicial �ag complex whose vertices correspond to all isotopy classes of

essential simple closed curves in Σ. Two isotopy classes admit adjacent vertices when

they contain disjoint representative curves.

Ivanov showed for a surface Σ of genus g and with n punctures that if either g ≥ 3,

or g ≥ 2 and n ≥ 1 then the natural homomorphism

Mod±(Σ)→ Aut C(Σ)

is in fact an isomorphism [37]. Combined results of Korkmaz [45] and Luo [50] later

proved that equivalent results are true for tori with at least three punctures, spheres

with at least �ve punctures, and no other surfaces. As discussed above, one of many ap-

plications of this result is that Mod(Σ) is geometric, that is, Aut Mod(Σ) ∼= Mod±(Σ).

Furthermore, in recent papers both Bavard-Dowdall-Ra� [3] and Hernandez-Morales-

Valdez [32] prove that the natural homomorphism Mod±(Σ)→ Aut C(Σ) is an isomor-

phism for any surface Σ of in�nite type. This result answers a question of Patel-Vlamis

in showing that for in�nite type surfaces Σ and Σ′ we have

Mod(Σ) ∼= Mod(Σ′) ⇒ Σ ∼= Σ′.

Bavard-Dowdall-Ra� also use this reuslt to show that big mapping class groups are

geometric [3].
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1.4.2 Other complexes

An extreme generalisation of the curve complex is the complex of domains D(Σ), de-

�ned by McCarthy-Papadopoulos for surfaces of �nite type [54]. Here, vertices cor-

respond to the homotopy classes of all connected and compact subsurfaces in Σ with

essential boundary. Again, adjacency between vertices is determined by disjoint rep-

resentatives in the corresponding equivalence classes. The bijection between isotopy

classes of curves and homotopy classes of annuli in Σ induces a natural inclusion of

complexes C(Σ) → D(Σ). As well as this clear connection, McCarthy-Papadopoulos

showed that when the genus of the surface is at least two and there is at most a single

puncture, the natural homomorphism

Mod±(Σ)→ AutD(Σ)

is an isomorphism [54, Theorem 1.1]. This result is then a generalisation of the results

of Ivanov, Korkmaz and Luo mentioned above.

We can de�ne similar natural inclusions into D(Σ) for many other complexes, such

as: the complex of non-separating curves [35], the complex of separating curves [12],

the truncated complex of domains [54], the arc complex [36], the arc and curve com-

plex [46], and the complex of strongly separating curves [11]. Given certain restrictions

on the genus and the number of punctures, for each of these complexes the natural

homomorphism from Mod±(Σ) to the automorphism group of the complex is an iso-

morphism. As with the application of Ivanov's theorem highlighted above, these results

were used to show that certain normal subgroups of Mod(Σ) are geometric. Similar re-

sults were also shown to be true for the pants complex [52], the Torelli complex [43], and

the ideal triangulation graph [47], although in these cases there is no natural inclusion

of the vertex set into D(Σ). Following this work, Ivanov made a metaconjecture [25].

Metaconjecture 1.4.1 (Ivanov). Every object naturally associated to a surface Σ

and having a su�ciently rich structure has Mod±(Σ) as its group of automorphisms.

Moreover, this can be proved by a reduction to the theorem about automorphisms of

C(Σ).

While the language of the metaconjecture may seem vague, it re�ects the breadth

of results which it includes as evidence. Indeed, providing suitable de�nitions for

�naturally associated� and �su�ciently rich� is one of the di�culties in resolving the

metaconjecture. Brendle-Margalit de�ned a wide class of complexes associated to a

closed surface Σ, where for each such complex we can de�ne a natural inclusion into

D(Σ). They then resolved the metaconjecture for such complexes [13]. We will extend

this de�nition to surfaces with punctures. Theorem 1.4.2 resolves the metaconjecture

for such complexes associated to surfaces, and is used in Chapter 3 to prove Theorem

1.2.1.
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Figure 1.5: Five vertices in a complex of regions CA(Σ6,5) and corresponding regions in
the surface. Regions homeomorphic to Σ2

0, Σ1
1, Σ2

2, Σ3
0, and Σ3

1,1 are represented in A.

1.4.3 Complexes of regions

Before we are able to state Theorem 1.4.2 we must �rst introduce some terminology.

Sets of regions

Let R(Σ) be the set of Mod±(Σ)-orbits of all regions of Σ. If R is a region and the

Mod±(Σ)-orbit of R is an element of A ⊂ R(Σ) we say that R represents an element

of a set of regions A, or that R is represented in A.

Complexes of regions

Given a set of regions A ⊂ R(Σ) we de�ne the complex of regions CA(Σ) to be a sim-

plicial �ag complex with vertices corresponding to the homotopy classes of all regions

represented in A. We say that a vertex v corresponds to a region R if v corresponds

to the equivalence class containing R. Two vertices are adjacent if they correspond to

disjoint regions.

If A ⊂ R(Σ) is the set of essential annuli in Σ then CA(Σ) is naturally isomorphic

to the curve complex C(Σ). It is also clear that CA(Σ) = D(Σ) if A = R(Σ).

Exchange automorphisms

Let X be a simplicial complex. McCarthy-Papadopoulos de�ne φ ∈ AutX to be an

exchange automorphism if there exist vertices v1, v2 ∈ X where φ(v1) = v2, φ(v2) = v1

and φ(v) = v for all other vertices v of X distinct from v1 and v2, see [54].

In Section 2.1.1 of this paper we discuss the fact that the presence of exchange

automorphisms in a complex of regions is exactly the obstruction for the automor-

phism group of a complex of regions to be the extended mapping class group. In the

closed surface case, Brendle-Margalit gave topological conditions on A ⊂ R(Σ) for

the complex of regions CA(Σ) to admit exchange automorphisms. We generalise these

conditions below using the terminology of corks and holes that they introduced [13].

First, we de�ne a complementary region Q of a region R to be a subsurface that is

disjoint from R and homotopic to a component of Σ\R. We say that a subsurface of R
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Figure 1.6: If no proper subsurface of a one boundary, genus two region with no
punctures is represented in A then there exists a cork pair in CA(Σ) corresponding to
the two regions shown.

is peripheral if it is an annulus whose boundary components are isotopic to a boundary

component of R.

Corks and holes

Let A ⊂ R(Σ). We say a vertex of CA(Σ) is a cork if it corresponds to an annulus

R with a complementary region Q represented in A with no proper, non-peripheral

subsurface of Q represented in A. We call the vertices corresponding to R and Q a

cork pair.

We say that a vertex v of CA(Σ) is a hole if v corresponds to a region R that has

a complementary region Q such that no subsurface of Q represents an element of A.

Let v be a hole corresponding to a region R. Let Qi be a region homotopic to such a

complementary region of R such that the intersection of R and Qi is an annulus. We

de�ne the �lling of the hole v to be the union of R will all such Qi. See Figure 1.7 for

an example of two holes with equal �llings.

Figure 1.7: If there are no nonseparating annuli with one or no punctures represented
in A then there are holes in CA(Σ) corresponding to the two regions shown. Moreover,
these holes have equal �llings; a region homeomorphic to Σ1

2,1.

1.4.4 Statement of the theorem

We now give the statement of the main theorem regarding complexes of regions for a

surface Σ = Σg,n.

Enveloping regions and small regions

Let A ⊂ R(Σ) and let R represent an element of A. We say that a region Q covers R

if Q has a single boundary component and R ⊂ Q. Let gR be the smallest genus of any

region that covers R. Note that gR ≥ g(R). We de�ne a region R̂ to be an enveloping
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Figure 1.8: The picture shows a region R homeomorphic to Σ4
1,1 in a surface Σ of genus

at least 7 and at least 5 punctures. We see an enveloping region R̂ homeomorphic to
Σ1

3,3. In this case the enveloping region is unique up to homotopy.

region of R if R̂ has fewest punctures such that R̂ covers R and g(R̂) = gR, see Figure

1.8. We say that R is a core region of A when for all regions Q representing an element

of A we have that

Q̂ ⊂ R̂ ⇒ Q̂ ' R̂,

where `'' is an equivalence relation on regions de�ned by the existence of a homotopy.

Now, let Σ be a surface of genus g > 0 with n > 0 punctures. We call a core region R

g-small if for all Q represented in A we have;

g(Q̂) ≥ g(R̂), and n ≥

max{3n(R̂), 7} if g = 1, and

3n(R̂) if g ≥ 2.

Similarly, we call a core region R n-small if for all Q represented in A we have

n(Q̂) ≥ n(R̂) 6= 1, and g ≥ 3g(R̂) + 1.

In the case where either n = 0 or g = 0 the de�nitions of core, g-small, and n-small

regions coincide. In particualr, every core region R is such that R̂ belongs to a single

Mod±(Σ)-orbit. In these special cases we require that

g ≥ 3g(R̂) + 1 or n ≥ 3n(R̂)− 1,

for when n = 0 and g = 0 respectively. These special cases are addressed in papers by

Brendle-Margalit [13] and the author [55].

For any surface Σ, if a vertex v of CA(Σ) corresponds to a g-small region then we call

it a g-small vertex. Similarly, a vertex corresponding to an n-small region is called an

n-small vertex. We can now state the resolution of the metaconjecture for complexes

of regions associated to surfaces with punctures.
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Theorem 1.4.2. Let Σ be a surface with punctures. Let CA(Σ) be a complex of regions

containing a vertex that is g-small and a vertex that is n-small. Then the natural

homomorphism

ηA : Mod±(Σ)→ Aut CA(Σ)

is an isomorphism if and only if CA(Σ) has no holes and no corks.

This result is used to prove Theorem 1.2.1 in Chapter 3. The reader may be

wondering why the de�nition for small regions is considerably more obtuse than the

de�nition for small mapping classes given in Section 1.2. This is because for a normal

subgroup N containing a small mapping class we can build an associated complex of

regions CN(Σ) containing (not necessarily distinct) g-small and n-small vertices. See

Chapter 3 for details on this construction. Conversely, if a normal subgroup contains

two mapping classes whose supports are g-small and n-small, then there clearly exists a

small mapping class in N . As however, one may want to consider a complex of regions

not necessarily related to a normal subgroup, we give the necessary conditions on the

complex in full detail.

1.5 The liftable and symmetric subgroups

As well as the mapping class group action on complexes, we may also use covering

spaces to study the subgroup structure of mapping class groups. Unlike the previous

sections, we now allow for surfaces with boundary.

Let p : Σ̃→ Σ be a regular, �nite-sheeted covering space. We allow for the possibil-

ity of branched covering spaces. In such cases we write B for the set of branch points

in Σ. Let D < Homeo+(Σ̃) be the deck group. A homeomorphism f̃ ∈ Homeo+(Σ̃) is

�bre-preserving with respect to p if

p(x) = p(y) ⇒ pf̃(x) = pf̃(y) for all x, y ∈ Σ̃.

De�ne the symmetric mapping class group SMod(Σ̃) to be the subgroup of Mod(Σ̃)

consisting of all mapping classes that are represented by �bre-preserving homeomor-

phisms. A homeomorphism f ∈ Homeo+(Σ) lifts to a homeomorphism f̃ ∈ Homeo+(Σ̃)

if pf̃ = fp. De�ne the liftable mapping class group LMod(Σ,B) to be the subgroup of

Mod(Σ,B) consisting of all mapping classes that are represented by homeomorphisms

that lift to boundary preserving homeomorphisms.

In their seminal paper [7], Birman and Hilden generalised results from a series

of papers in the 1970s to prove what is now known as the Birman-Hilden Theorem.

It states that under mild conditions, for any regular, �nite-sheeted covering space

between closed surfaces p : Σ̃ → Σ, with Σ̃ of genus at least 2, that the quotient

group SMod(Σ̃)/D is isomorphic to LMod(Σ,B). The conditions on the Birman-Hilden

theorem were removed due to results of MacLachlan-Harvey [51] and Kerkho� [42]. The

fact thatD is a subgroup of SMod(Σ̃) is not obvious and is a result of Birman-Hilden [7].
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A survey article containing di�erent approaches and applications of the Birman-Hilden

Theorem by Margalit-Winarski gives a detailed account of this topic [53].

If the surface Σ̃ has boundary then it follows that non-trivial elements of D are not

representative homeomorphisms of mapping classes. This suggests that the statement

of the theorem will be slightly di�erent. The following result seems to be well known,

though a proof is hard to come to by. As such, we �ll this apparent gap in the literature

by including a proof in Chapter 4.

Theorem 1.5.1. Let p : Σ̃ → Σ be a regular, �nite-sheeted, possibly branched cover-

ing space of surfaces with boundary. Then the groups LMod(Σ,B) and SMod(Σ̃) are

isomorphic.

The proof is similar in spirit to proofs given by Winarski [53] and Farb-Margalit [27].

Examples of some applications of the Birman-Hilden Theorem include Aramayona-

Leininger-Souto [1], Bigelow-Budney [6], Brendle-Margalit [14], Brendle-Margalit-Putman

[15], Endo [24], Morifuji [57], and Stukow [65] to name a few. Such endeavours have

been fruitful due to considering covers where at least one of the liftable or symmetric

mapping class groups coincide with the entire mapping class group of the surface. For

example, in Section 1.3.6 we used the isomorphism in the hyperelliptic case

Mod(S2g+2) ∼= Mod(Σ0,B) = LMod(Σ0,B) ∼= SMod(Σg)/〈ι〉,

owing to the fact that every mapping class is liftable in this case. We may then ask

when does LMod(Σ,B) = Mod(Σ,B)? When does SMod(Σ̃) = Mod(Σ)? If equality is

not achieved, when are the subgroups �nite index?

If the surfaces are closed, then it is known that LMod(Σ,B) is �nite index. It is also

known in the case of the hyperelliptic involution that SMod(Σ̃) is in�nite index when

the genus of Σ̃ is at least 2. Ghaswala-Winarski classi�ed all cyclic branched covers of

the sphere that satisfy LMod(Σ0,B) = Mod(Σ0,B) [29].

However, Birman-Hilden proved that if Σ̃ is of genus at least 3 then there are no

�nite cyclic covers p : Σ̃ → Σ0 of a sphere with marked points such that SMod(Σ̃) =

Mod(Σ̃) [7]. Included in their paper is the following remark:

The possibility remains that if we relax the requirements on (p,Σ0, Σ̃) to admit coverings

of other Riemann surfaces, or to admit all regular coverings, or to admit non-regular

coverings that we will have better luck. (However we conjecture that all such e�orts

will fail).

While this question is not addressed head on, our results agree with the opinion that

mapping class groups rarely consist only of elements represented by �bre-preserving

homeomorphisms with respect to a regular, �nite-sheeted covering space.
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1.5.1 A classi�cation of regular, �nite-sheeted covering spaces

For the remainder of this section, and in Chapter 4, we let p : Σ̃ → Σ be a regular,

�nite-sheeted, possibly branched cover of surfaces with boundary.

Theorem 1.5.2 classi�es all such covers with the property that LMod(Σ,B) =

Mod(Σ,B), and proves that LMod(Σ,B) is always �nite index. Theorem 1.5.3 classi�es

all such covers where the equality SMod(Σ̃) = Mod(Σ̃) holds, and proves that if it does

not, SMod(Σ̃) is an in�nite index subgroup.

Burau covers

Pick a point x ∈ ∂Dn and let γi ∈ π1(Dn, x) be the homotopy class of a loop sur-

rounding only the ith puncture anti-clockwise. The set {γ1, . . . , γn} generates the

fundamental group π1(Dn, x). For each k ≥ 2 we de�ne a homomorphism;

qk : π1(Dn, x)→ Z/kZ, by γi 7→ 1,

for all i. The kernel of qk determines a k-sheeted cyclic branched cover pk : Σm
g →

Σ1
0 branched at n points. Here, m = gcd(n, k) and it can be shown by an Euler

characteristic argument that g = 1
2
(nk − n − k − m + 2). We will call such a cover

a k-sheeted Burau cover. This name owes to the intimate relationship between such

covers and the Burau representation of the braid group, see [67].

Theorem 1.5.2. Let p : Σ̃→ Σ be a regular, �nite-sheeted, possibly branched covering

space of surfaces with boundary. Then

1. LMod(Σ,B) = Mod(Σ,B) if and only if p is a Burau cover, and

2. LMod(Σ,B) is �nite index in Mod(Σ,B).

We now give the analogous result for the symmetric mapping class group.

Theorem 1.5.3. Let p : Σ̃→ Σ be a regular, �nite-sheeted, possibly branched covering

space of surfaces with boundary. Then

1. SMod(Σ̃) = Mod(Σ̃) if and only if Σ̃ is a disc, and annulus, or p : Σ1
1 → Σ1

0 is

the hyperelliptic cover, otherwise

2. SMod(Σ̃) is in�nite index in Mod(Σ̃).

Note that the hyperelliptic cover is in fact the 2-sheeted Burau cover. Combining

these results we see that p2 : Σ1
1 → Σ1

0 is a regular, �nite-sheeted covering space

of surfaces with boundary where both symmetric and liftable mapping class groups

coincide with the entire mapping class group. This fact gives rise to the following

isomorphism of groups;

B3
∼= Mod(D3) ∼= Mod(Σ1

0,B) = LMod(Σ1
0,B) ∼= SMod(Σ1

1) = Mod(Σ1
1).
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1.5.2 Braid group embeddings

As discussed in Section 1.3.1 the mapping class group of a disc Mod(Dn) is isomorphic

to the braid group Bn. The hyperelliptic cover and Theorem 1.5.1 (the Birman-Hilden

Theorem) give a standard embedding of the braid group into a mapping class group,

sending each generator σi to a Dehn twist. Embeddings of this type are said to be

geometric.

A question of Wajnryb is whether or not there exist embeddings of the braid group

that are non-geometric [68]. This question has been answered in the a�rmative and

examples of non-geometric embeddings have been given by Bödigheimer-Tillman [9],

Kim-Song [44], Song [62], Song-Tillman [63], and Szepietowski [66].

Note that there is no relation between the notions of a geometric embedding of the

braid group and a geometric normal subgroup of a mapping class group. The fact that

two objects of study in this thesis have similar names is coincidental. These terms are

left unchanged in order to stay aligned with the wider literature. Furthermore, there

is little intersection between Chapter 3 and Chapter 4.

We may use Theorems 1.5.1 and 1.5.2 to construct a family of embeddings of the

braid group induced by Burau covers as follows;

Bn
∼= Mod(Dn) ∼= Mod(Σ1

0,B) = LMod(Σ1
0,B) ∼= SMod(Σm

g ) ↪→ Mod(Σm
g ),

where g and m are given in the de�nition of Burau covers. The �nal section of Chapter

4 studies these embeddings.

Chains

We call a set of curves {ci}ki=1 a k-chain if i(ci, cj) = 1 if j = i ± 1 and i(ci, cj) = 0

otherwise. Given a k-chain C = {ci}ki=1 we call the product

TC := Tc1Tc2 . . . Tck

a k-chain twist, or simply a chain twist.

Theorem 1.5.4. Given n, k ≥ 2 there exists an injective group homomorphism

βk : Bn → Mod(Σm
g )

such that the image of each standard generator of the braid group is a (k − 1)-chain

twist.

When k = 2 the corresponding 1-chains are of course simple closed curves. It is clear

that a k-chain twists is not equal to Dehn twist for k ≥ 2. This implies that that β2

gives the standard geometric embedding, while k ≥ 3 gives non-geometric embeddings.

Kim-Song independently arrived at the embedding β3 in a recent paper [44].
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a1

a2

a3

b1

b2

b3

Figure 1.9: The two 3-chains A = {a1, a2, a3} and B = {b1, b2, b3} de�ne chain twists
TA := Ta1Ta2Ta3 and TB := Tb1Tb2Tb3 such that TATBTA = TBTATB.

Using these embeddings as inspiration, we de�ne a combinatorial condition on two

k-chains that imply their respective chain twists satisfy a braid relation. The condition

is de�ned in Section 4.4.4 and proven to be su�cient in Proposition 4.4.6. Figure 1.9

shows two 3-chains satisfying the combinatorial condition, so their chain twists satisfy

a braid relation.

Braid group embeddings are of interest in the wider literature, in particular the

induced maps on the homology of groups of braid groups to mapping class groups, see

Song-Tillman [63]. Another feature of interest is that if the target surface has a single

boundary component then the embedding induces an action of the fundamental group

which is a free group.



Chapter 2

Resolution of the metaconjecture

This chapter is dedicated to proving Theorem 1.4.2, that is, that the natural homo-

morphism

ηA : Mod±(Σ)→ Aut CA(Σ)

is an isomorphism for surfaces with punctures. We �rst prove injectivity of the natural

homomorphism in Section 2.1. Also in this section, we investigate exchange auto-

morphisms, stating results of Brendle-Margalit which carry over to this more general

case [13]. We then focus our attention on proving surjectivity. We begin by de�ning

S to be the set of all Mod±(Σ)-orbits of separating curves in the surface. Recall that

there is a bijection between the isotopy classes of curves and the homotopy classes of

annuli. It follows then that for any given subset X ⊂ S we can de�ne CX(Σ) to be a

subcomplex of the separating curve complex CS(Σ).

Each separating curve c has two associated regions homotopic to the components

of Σ \ c. We de�ne the subset S(A) ⊂ S to consist of all classes of separating curves

whose associated regions both contain regions represented in A ⊂ R(Σ). The proof of

Theorem 1.4.2 relies on the following result, the statement of which uses the de�nitions

of g-small and n-small regions given in Section 1.4.4.

Theorem 2.0.1. Let Σ be a surface with punctures and let A ⊂ R(Σ). If a g-small

region and an n-small region are represented in A then the natural homomorphism

ηS(A) : Mod±(Σ)→ Aut CS(A)(Σ)

is an isomorphism.

In Section 2.2 we investigate the set S(A) and other related subsets of S. Section
2.3 generalises the notion of sharing pairs (see [13] and [55]). Section 2.4 uses these

de�nitions and a result of Kida [43] to prove Theorem 2.0.1. In Sections 2.5 and 2.6

we complete the proof of Theorem 1.4.2 using the notion of dividing sets introduced

by Brendle-Margalit [13].

23
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2.1 Injectivity and exchange automorphisms

In this section we prove that the homomorphism from Theorem 1.4.2 is injective. This

result is in fact more general and will be used many times in this chapter. Follow-

ing McCarthy-Papadopoulos [54, Section 4] and Brendle-Margalit [13, Section 2] we

also look at the precise conditions for a complex of regions CA(Σ) to admit exchange

automorphisms.

Recall that the link Lk(v) of a vertex v is the set of all vertices that span an edge

with v in the complex. The star of a vertex is the union of the vertex and its link.

Lemma 2.1.1. Let Σ be a surface with punctures and let A ⊂ R(Σ). The natural

homomorphism

ηA : Mod±(Σ)→ Aut CA(Σ)

is injective.

Proof. We begin by de�ning a homomorphism

Θ : Aut C(Σ)→ Aut CA(Σ)

as follows. Suppose v is vertex of CA(Σ) corresponding to the region R. There exists

a simplex σ of C(Σ) corresponding to the multicurve ∂R. For any φ ∈ Aut C(Σ) the

image φ(σ) corresponds to a multicurve M of Σ. We de�ne Θ(φ)(v) to be the vertex

corresponding to the region R′ such that ∂R′ = M . This makes sense since Aut C(Σ)

is isomorphic to Mod±(Σ). That is, the multicurve M necessarily bounds a region in

the Mod±(Σ)-orbit of R. Hence, the region R′ is represented in A.

As η : Mod±(Σ)→ Aut C(Σ) is the natural isomorphism it is clear that Θ ◦ η = ηA.

It remains only to show that Θ is injective. To that end, suppose φ belongs to the kernel

of Θ. Every simplex σ, as described above, must therefore be �xed by φ. We want

to show that, in fact, φ �xes each vertex of σ. Suppose otherwise, that is, φ(v1) = v2

where v1, v2 ∈ σ and suppose vi corresponds to the curve ci where {c1, c2, . . . , cm}
form boundary components for a region R represented in A. We can �nd a curve c′1

in the Mod±(Σ)-orbit of c1 such that c1 and c′1 have positive essential intersection and

{c′1, c2, . . . , cm} form boundary components for a region in the Mod±(Σ)-orbit of R.

The mapping class [f ] = η−1(φ) maps c1 to c2 and so does not map c′1 to c2. It follows

that there is a simplex in C(Σ) belonging to the Mod±(Σ)-orbit of σ that is not �xed

by φ. This is contradiction and so we have that φ �xes every vertex in every simplex

σ de�ned by a region represented in A.

We have now shown that for any vertex v corresponding to a curve v of C(Σ) there

exist in�nitely many vertices in Lk(v) that are �xed by φ. Namely, those vertices

corresponding to boundary components of regions represented in A. Such vertices

correspond to curves that �ll the associated regions of v. This implies that v is �xed

by φ and hence φ is the identity, completing the proof. �
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The proofs of the equivalent statements for the cases where Σ = Σg and Σ = Σ0,n

are given by Brendle-Margalit [13] and the author [55] respectively. All three proofs are

of slightly di�erent �avours. Going through the curve complex has two bene�ts. The

�rst is that the same proof works for both surfaces of �nite and in�nite type. Methods

from the other proofs are not so easily translated. The second bene�t is that the

method resonates with the second sentence of the metaconjecture. In some sense each

�su�ciently rich� complex inherits all the structure of the curve complex. This idea is

used throughout the remainder of this chapter when proving that ηA is surjective.

2.1.1 Exchange automorphisms

We now state two results concerning the exchange automorphisms of a complex of

regions. Recall that φ ∈ Aut CA(Σ) is an exchange automorphism if there exist vertices

v1, v2 ∈ CA(Σ) where φ(v1) = v2, φ(v2) = v1 and φ(v) = v for all other vertices v of

CA(Σ) distinct from v1 and v2. The results will be given without proof as the analogous

results for closed surfaces carry over to the general case considered in this chapter. The

following result is given in terms of holes and corks, whose de�nitions can be found in

Section 1.4.

Theorem 2.1.2 (Brendle-Margalit). Let Σ be a surface of �nite or in�nite type and let

A ⊂ R(Σ) such that CA(Σ) is connected. Then CA(Σ) admits exchange automorphisms

if and only if it has a hole or a cork.

As an example we consider the cork pair and the holes depicted in Figures 1.6 and

1.7. In Figure 1.6, any region that does not intersect the red region homeomorphic to

Σ1
2,0 is homotopic to a region that does not intersect the blue annulus. It follows then

that the vertices corresponding to these regions have equal stars. In particular, they

span an edge with each other. Similarly in Figure 1.7, every region that intersects the

red region homeomorphic to Σ3
1,0 intersects the blue region, also homemorphic Σ3

1,0.

This implies that the vertices corresponding to these regions have equal links. Here

the vertices do not span an edge with each other. If two vertices have equal links or

equal stars then we can de�ne an exchange automorphism. The proof of [13, Theorem

2.1] tells us that if two vertices have equal links then the are holes, and if they have

equal stars then they are cork pairs.

When the automorphism group of a complex of regions does have exchange au-

tomorphisms, Brendle-Margalit give us an explicit description of the automorphism

group of the complex.

Theorem 2.1.3 (Brendle-Margalit). Let CA(Σ) be a connected complex of regions with

a g-small vertex and an n-small vertex. Then

Aut CA(Σ) ∼= Ex CA(Σ) o Mod±(Σ).
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Here, Ex CA(Σ) is the subgroup of Aut CA(Σ) generated by all exchange automor-

phisms.

2.2 Characteristic vertex types

From now on we will assume the surface Σ is of genus g ≥ 0 and has n > 0 punctures.

Recall that a separating curve c is represented in S(A) when the associated regions

of c contain regions that are represented in A ⊂ R(Σ). In Section 2.4 we will prove

Theorem 2.0.1, that the natural homomorphism

ηS(A) : Mod±(Σ)→ Aut CS(A)(Σ)

is an isomorphism. This proof relies on �rst showing that the natural homomorphism

ηX : Mod±(Σ)→ Aut CX(Σ)

is an isomorphism, whenever X is an extended set of S(A). This is a particular type of

subset of separating curves satisfying S(A) ⊆ X ⊆ S which we de�ne in Section 2.2.2.

In this section we prove that the topology of the curves represented in X determine

characteristic subsets of vertices in the complex CX(Σ) when X is an extended set.

2.2.1 Minimum curves and lattices

In Section 1.4 we de�ned R to be a core region of A ⊂ R(Σ) if for all Q represented

in A we have that if R̂ contains Q̂ as a subsurface then they are homotopic. Recall

further, the de�nitions of g-small and n-small from Section 1.4.4.

We call a separating curve c in Σ a (k, l)-curve if it has a unique associated region

of lowest genus g(R) = k and l punctures. If both associated regions of c are of genus

k then then we call c a (k, l)-curve the associated region of c with fewest punctures has

exactly l punctures. If c is a (k, l)-curve then for any [f ] ∈ Mod±(Σ) we have that [f ](c)

is a (k, l)-curve. We write Zk,l for the Mod±(Σ)-orbit of (k, l)-curves as an element of

S. We call any vertex of CS(Σ) that corresponds to a (k, l)-curve a (k, l)-vertex.

Given a subset A ⊂ R(Σ) we would like to know which values of k and l admit

Zk,l as an element of S(A). Equivalently, for what values of k and l do (k, l)-vertices

belong to the subcomplex CS(A)(Σ) of the separating curve complex? We begin with

two fundamental topological types of curves represented in S(A). These are strongly

linked to the de�nitions of g-small and n-small.

Minimum curves

Let X ⊂ S and let c be a separating curve represented in X with an associated region

R. We call c a minimum curve of X if all curves that are represented in X and

contained in R are isotopic to c.
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c1
c2

c3c4

Figure 2.1: Two sets of four intersecting minimum curves in Σ14,19. Each curve ci has
an associated region of genus k1 = 1, k2 = 2, k3 = 4, k4 = 5 with n1 = 7, n2 = 4,
n3 = 3, n4 = 2 punctures.

Let Σ be a surface and let A ⊂ R(Σ) such that a g-small region and an n-small

region are represented in A. Let

X := {R ⊂ Σ | R is an associated region of a curve in S(A)}.

From the de�nition it follows that each curve represented in S(A) will correspond to

two elements of X . We now de�ne the following values:

kg := min{g(R) | R ∈ X},

lg := min{n(R) | R ∈ X and g(R) = kg},

ln := min{n(R) | R ∈ X}, and

kn := min{g(R) | R ∈ X and n(R) = ln}.

Let c be a (kg, lg)-curve in S(A) and let R be its associated region of genus kg with lg

punctures. By de�nition, all curves contained in R that are represented in S(A) are

isotopic to c. It follows then that c is the boundary of the unique enveloping region of

some g-small region represented in A up to homotopy.

Similarly, let c now be a curve represented in S(A) and let R be its associated

region of genus kn with ln punctures. All separating curves contained in R that are

represented in A belong to the isotopy class of c. As above, this implies that c is

the boundary of the enveloping region of an n-small region of A. By the de�nition of

n-small regions we have that g > 2kn and so (kn, ln)-curves are represented in S(A).

We now describe all minimum curves of S(A) explicitly. Let {ci}mi=1 be a set of

curves represented in S(A) where each ci is a (ki, li)-curve. The curves {ci}mi=1 are a

set of minimum curves of S(A) if

kg = k1 < k2 < · · · < km = kn, lg = l1 > l2 > · · · > lm = ln,

and for any curve c represented in S(A) we have that if c is a (ki, l)-curve then l ≥ li.

See Figure 2.1 for a picture of generic minimum curves of of the set S(A).
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The following de�nition gives a useful visual representation of the curves represented

in a subset X ⊂ S.

Lattices of separating curves

Let X ⊂ S. We de�ne the Lat(X) to be the integer lattice corresponding to elements

of X. That is, if Zk,l ∈ X then (k, l) ∈ Lat(X) ⊂ Lat(S), where

Lat(S) =
(
[0, bg/2c]× [0, n]

)
∩
(
Z× Z

)
.

We can equivalently de�ne the numbers kg, kn, lg and ln using the visual language

of lattices of separating curves. De�ne H ⊂ Lat(S(A)) to be the points closest to the

horizontal axis and V ⊂ Lat(S(A)) to be the points closest to the vertical axis. The

point (kg, lg) is the point in H closest to V and (kn, ln) is the point in V closest to H.

We call a point (k, l) in Lat(X) a minimum point if (k, l)-curves are minimum curves

of X.

For the special cases when n = 0 or g = 0 the minimum curves of a subset of

separating curves S(A) ⊂ S belong to the Mod±(Σ)-orbit of a single curve. In these

cases the lattice Lat(S(A)) will consist of the integers in the interval [kg, bg/2c] when
n = 0, and the interval [ln, n− ln] when g = 0.

The following lemma shows that a set of minimum curves of S(A) determines every

curve represented in S(A).

Lemma 2.2.1. Let A ⊂ R(Σ) such that a g-small region and an n-small region are

represented in A. The curve c is represented in S(A) if and only if it separates two

minimum curves.

Proof. If c is a curve separating two minimum curves of S(A) then both associated

regions of c contain an associated region of a minimum curve. Since both associated

regions of a given minumum curve contain regions represented in A it follows that c is

represented in S(A).

Now suppose that c is represented in S(A) and R,Q are the associated regions of

c such that g(R) ≤ g(Q). We need to show that both R and Q contain a minimum

curve. From the de�nition of kg we have g(R) ≥ kg = k1. If R does not contain a

(k1, l1)-curve then n(R) < l1 and so g(R) ≥ k2. If R does not contain a (k2, l2)-curve

then n(R) < l2 and so g(R) ≥ k3. If we continue this argument algorithmically it

follows that if R does not contain any minimum curves then n(R) < lm = ln. This

contradicts the minimality of ln, so R must contain a minimum curve. Similarly we

can show that Q contains a minimum curve. �

It can now be checked that Lat(S(A)) is the set of integer coordinates contained in

the shaded region of Figure 2.2.
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n

n− lm

l1

l2

lm−1

lm

0 k1 k2 km−1 km bg/2c
Figure 2.2: The lattice Lat(S(A)). Recall that k1 := kg and lm := ln.

2.2.2 Extended sets and linear simplices

We now introduce a class of subsets of separating curves related to, but more general

than S(A) ⊂ S. First, we de�ne a path γ in Lat(X) to be a sequence of integer

coordinates {(xi, yi)}mi=1 such that either xi+1 = xi and |yi+1−yi| = 1 or |xi+1−xi| = 1

and yi+1 = yi. A path is said to be strictly decreasing if xi+1 = xi − 1 or yi+1 = yi − 1

for all i ∈ {1, . . . ,m− 1}.
We de�ne the lower lattice of a point (k, l) in Lat(X) to be ([0, k]× [0, l])∩Lat(X).

If the lower lattice of (k, l) consists solely of the point itself then (k, l)-curves are

minimum curves of X, that is, (k, l) is a minimum point.

Extended sets of separating curves

Let A ⊂ R(Σ) such that a g-small region and an n-small region are represented in A.

Suppose we have a subset of separating curves X such that S(A) ⊆ X ⊆ S. We call

X an extended set of S(A) if the following properties are satis�ed;

1. for every minimum point (ki, li) of Lat(X) there exists a minimum point (kj, lj)

of Lat(S(A)) such that (ki, li) is in the lower lattice of (kj, lj),

2. given (kj, lj) in Lat(X) and (ki, li) in the lower lattice of (kj, lj), there exists a

strictly decreasing path γ in Lat(X) connecting (kj, lj) and (ki, li), and

3. if l ≥ n/2 and (bg/2c, l) ∈ Lat(X) then (bg/2c, n− l) ∈ Lat(X).

Lemma 2.2.2. Let A ⊂ R(Σ) such that a g-small region and an n-small region are

represented in A. The set S(A) is an extended set of S(A).
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Proof. The �rst condition is clearly satis�ed. To show that the second condition is met,

let (ki, li), (kj, lj) be two points in Lat(S(A)) such that they are connected by a strictly

decreasing path γ in Lat(S). Let a be a (ki, li)-curve and let b be a (kj, lj)-curve such

that a lies on in the associated region of b of genus kj. From Lemma 2.2.1 we have that

any curve separating a and b belongs to S(A). It follows that the path γ is contained

in Lat(S(A)).

It remains to show that if (bg/2c, l) ∈ Lat(S(A)) then (bg/2c, n − l) ∈ Lat(S(A))

where l ≥ n/2. We have that l ≥ ln so n− l ≤ n− ln. If g is even then l = n/2, and the

result is clear. Let g be odd and let c be a ((g−1)/2, l)-curve. Let Q be the associated

region of c with n− l punctures. If Q does not contain a ((g−1)/2, n− l)-curve that is
represented in S(A) then there must be a minimum curve of S(A) with genus (g+1)/2.

It follows that kn ≥ (g + 1)/2, that is, g ≤ 2kn − 1. This contradicts the fact that

each (kn, ln)-curve is the boundary of the enveloping region for some n-small region,

completing the proof. �

Given a subset of separating curves X ⊂ S it can be shown that simplices in CX(Σ)

correspond to multicurves of Σ by taking disjoint representatives of the isotopy classes

of curves. We intend to make use of a multicurve M ⊂ Σ that partitions the surface

into subsurfaces, each with one or two boundary components. In Section 2.2.3 we use

this to show that vertex types are preserved by automorphisms of the complex CX(Σ),

when X is an extended set. Recall that the link Lk(v) of a vertex v is the set of all

vertices that span an edge with v.

Sides

Given a vertex v of a subcomplex of separating curves CX(Σ) we say that vertices u,w

lie on the same side of v if u,w ∈ Lk(v) and there exists another vertex in Lk(v) that

does not span an edge with either u or w.

Linear simplices

We de�ne a simplex σ of CX(Σ) to be linear if there is a labeling of its vertices v0, . . . , vm

such that vi−1 and vi+1 do not lie on the same side of vi for all i = 1, . . . ,m − 1. We

call the vertices v0 and vm the extreme vertices of the linear simplex σ.

We say that a linear simplex is maximal if its vertices do not form a subset of

another linear simplex. Any vertex that belongs to a maximal linear simplex is said to

be linear. We say that a vertex v is an increment of u when v and u are adjacent in

the ordering of some maximal linear simplex σ.

If v1, . . . , vm is a maximal linear simplex of a subcomplex of separating curves CX(Σ)

we can �nd a corresponding multicurveM in Σ. Let {Ri}mi=0 be the collection of regions

de�ned by Σ \M . When X is an extended set it is easy to see that two regions, R0

and Rm, each have a single boundary component and all others have two boundary

components. Moreover, every region with two boundary components is homeomorphic
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Figure 2.3: A typical maximal linear simplex of CX(Σ) will correspond to curves of the
form shown when X is an extended set of S(A).

to either Σ2
1,0 or Σ2

0,1, see Figure 2.3. This is a direct consequence of the existence of

strictly decreasing paths in lattices of extended sets.

Lemma 2.2.3. Let A ⊂ R(Σ) such that a g-small region and an n-small region are

represented in A. Let X ⊂ S be an extended set of S(A). The vertex v of CX(Σ) is an

extreme vertex of a maximal linear simplex if and only if it corresponds to a minimum

curve of X.

Proof. The point (bg/2c, bn/2c) belongs to Lat(S(A)). Since X is an extended set of

S(A) we can construct a strictly decreasing path in Lat(S(A)) from (bg/2c, bn/2c) to
the point (k, l), where (k, l)-curves are minimum curves of X. The existence of this

path de�nes a maximal linear simplex σ which proves the lemma. �

Lemma 2.2.3 tells us that vertices corresponding to minimum curves are a charac-

teristic subset. The next result will be used in Section 2.2.3 to prove that all vertex

types are characteristic.

Lemma 2.2.4. Let A ⊂ R(Σ) such that a g-small region and an n-small region are

represented in A. If X ⊂ S is an extended set of S(A) then every vertex of CX(Σ) is

linear.

Proof. Let v be a (k, l)-vertex in CX(Σ). Let K = bg/2c − 1 and consider the point

(K,L) ∈ Lat(X) such that L ≥ l̃ for all other points (K, l̃) ∈ Lat(X). Since X is

an extended set of S(A) we can construct a strictly decreasing path from (K,L) to

(k, l) and a strictly decreasing path from (k, l) to a minimum point of Lat(X). Since

L ≥ n/2 and X is an extended set of S(A) we have that (K,n−L) ∈ Lat(X) and so a

strictly decreasing path exists between (K,n−L) and a minimum point of Lat(X). The

existence of these two paths, along with the path from (bg/2c, bn/2c) to (bg/2c, n−L)

is enough to show that an maximal linear simplex σ containing v exists in CX(Σ). �

2.2.3 Preservation by automorphisms

We will now study a property of subcomplexes of the separating curve complex that is

necessary when proving Theorem 2.0.1. In the last section it was shown that there are

sets of separating curves X ⊂ S such that every vertex of the complex CX(Σ) is linear.

We now discuss the two possible types of increment and show that each type is also

characteristic in CX(Σ).
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Figure 2.4: A typical genus increment.

Genus increments and puncture increments

Suppose u is (k1, l1)-vertex and v is a (k2, l2)-vertex such that u and v are adjacent

in the ordering of some maximal linear simplex. It follows that either k1 = k2 ± 1 or

l1 = l2 ± 1. In the �rst case we call u a genus increment of v and in the second case

we call u a puncture increment of v.

Lemma 2.2.5. Let A ⊂ R(Σ) such that a g-small region and an n-small region are

represented in A. Let X be an extended region of S(A) and let φ be an automorphism

of CX(Σ). If a vertex v is a genus (resp. puncture) increment of a vertex u then φ(v)

is a genus (resp. puncture) increment of φ(u).

Proof. We claim that the vertex v is a genus increment of u if and only if there exist

vertices x and y, such that the vertex set {u, v, x, y} spans a square in CX(Σ). The

result follows from the claim. The forward implication of the claim is clear. We take

appropriate Dehn twists or push maps of representative curves of u and v, see Figure

2.4.

Suppose now that the vertex v is an increment of the vertex u and such a x and

y exist. Let R be the region with boundary components corresponding to u and v.

Assume v is a puncture increment of u and take B to be the a regular neighbourhood

union of the curves u and x which have minimal intersection where u, x correspond to

u,x. One of the components of ∂B is the boundary of a disc D1 ⊂ R with a single

puncture. Any choice of y not adjacent to u will correspond to a curve that intersects

D1; hence y is not adjacent to either x or v, a contradiction. �

In Lemma 2.2.3 it was shown that automorphisms of CX(Σ) preserve the set of

vertices corresponding to minimum curves of the extended set X. We will now use

Lemma 2.2.5 to go one step further to proving that each curve type determines a

characteristic subset of vertices.

Lemma 2.2.6. Let A ⊂ R(Σ) such that a g-small region and an n-small region are

represented in A. Let X ⊂ S be an extended set of S(A). The (k, l)-vertices corre-

sponding to minimum curves of X form a characteristic subset of CX(Σ) for all possible

values of k and l.

Proof. In Lemma 2.2.3 it was shown that if the vertex v corresponds to a minimum

curve then so does the vertex φ(v). We need to show that if v is a (k, l)-vertex then

φ(v) is a (k, l)-vertex. There exist strictly decreasing paths in Lat(X) from (kn, lg) to
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any minimum point of Lat(X). Let the vertices v and φ(v) correspond to curves v and

v′. Since g-small and n-small regions are represented in A it follows that g ≥ 3kg and

n ≥ 3ln. Hence, there exists a minimum curve c in Σ disjoint from both v and v′.

We claim that φ(v) is a (k, l)-vertex if and only if there exist maximal linear sim-

plices

σu = {u0, u1, . . . , um} and σw = {w0, w1, . . . , wm}

such that u0 = v, w0 = φ(v), um and wm correspond to the curve c, and both simplices

consist of the same number of genus increments. The result then follows the claim.

To prove one direction of the claim we note that if v and v′ are both (k, l)-curves

lying in the same associated regions of c then we can de�ne a maximal multicurve of

separating curves between c and v (or v′). Such that there exists a maximal linear

simplex corresponding to these multicurves. The number of genus increments in each

sequence will be equal.

Now, to prove the other direction letQu andQw be the highest genus non-separating

regions associated to v and v′. Let c be a (k̃, l̃)-curve and suppose both simplices have

mg genus increments. We see that g(Qu) = g(Qw) = k̃ + mg. It follows that φ(v) is a

(k, l)-vertex. �

We can now �nally prove that curve types determine characteristic subsets of ver-

tices in the complex CX(Σ).

Lemma 2.2.7. Let A ⊂ R(Σ) such that a g-small region and an n-small region are

represented in A. Let X ⊂ S be an extended set of S(A). The (k, l)-vertices form a

characteristic subset of CX(Σ) for all possible values of k and l.

Proof. Let v be a (k, l)-vertex of CX(Σ) corresponding to the curve v and let φ be an

automorphism of CX(Σ) such that φ(v) corresponds to the curve v′. We need to show

that v′ is a (k, l)-curve. It follows from Lemma 2.2.4 that there exists some maximal

linear simplex σ containing v. Suppose one of the extreme vertices is a (k̃, l̃)-vertex

distance t from v with respect to the ordering of σ. Now, Lemma 2.2.6 tells us that

φ(σ) is a maximal linear simplex containing φ(v) and that one of the extreme vertices

is a (k̃, l̃)-vertex distance t from φ(v). Finally, it follows from Lemma 2.2.5 that v′ is

a (k, l)-curve and hence φ(v) is a (k, l)-vertex. �

Note that in order to prove curve types determine characteristic subsets of vertices

for surfaces of the form Σg,0 or Σ0,n we need only de�ne maximal linear simplices.

Indeed, all minimum curves are of the same topological type and there are only either

genus increments or puncture increments. When these special cases are handled by

Brendle-Margalit [13] and the author [55], the content of Section 2.2 can be reduced

to a single lemma.
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Figure 2.5: A vertex in CX(Σ) corresponding to the red curve on the right projects to
a non-separating arc.

2.3 Sharing pairs

In the last section we discussed subcomplexes of separating curves and in particular

CS(A)(Σ). The purpose of this section is to show that certain intersection data is

characteristic to the complexes we are interested in. We will generalise the notion of

sharing pairs de�ned by Brendle-Margalit [13, Section 3] into three distinct �avours.

In each case we say a pair of (k, l)-curves a,b share a curve c. If c is (k − 1, l)-curve

we call a,b a genus sharing pair. If c is (k, l− 1)-curve we call a,b a puncture sharing

pair. Finally, if c is (k, l + 1)-curve we call a,b a reversed puncture sharing pair.

Before we give the de�nition of sharing pairs we introduce arcs to facilitate the

discussion. Let R be a surface with boundary. An arc in R is a continuous image of

the interval whose endpoints map to the boundary of R. Let z be a vertex of CX(Σ)

corresponding to a curve with an associated region R of lowest genus with fewest

punctures and let SA(R) be the set whose elements are the, possibly empty, sets of

arcs in R. We can de�ne a projection map

πz : CX(Σ)→ SA(R).

If v is a vertex of CX(Σ) that shares an edge with z then πz(v) = ∅. If v and z do not

share an edge then v corresponds to a curve whose intersection with R is a nonempty

collection of disjoint arcs.

We call an arc α non-separating if R \ α is a single connected surface, otherwise

we call it separating. For a vertex v ∈ CX(Σ), if the projection πz(v) is a set of non-

separating arcs that belong to the same free isotopy class then it makes sense to think

of πz(v) as a single non-separating arc up to isotopy. As we can see from Figure 2.5, it

is possible for a vertex v ∈ CX(Σ) to have a non-separating projection πz(v) ∈ SA(R).

2.3.1 Genus sharing pairs

The following de�nitions and Lemma 2.3.1 are necessary for the subsequent discussion

of genus sharing pairs.
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Figure 2.6: Two separating curves such that the union of their projections de�ne the
shaded torus with two boundary components, Σ2

1,0.

Unlinked projections and handle pairs

For a surface R with one boundary component two vertices u, v of CX(Σ) are said to

have unlinked projections if there exists a connected segment of ∂R intersecting an arc

of πz(u) twice but not intersecting πz(v).

The vertices u, v form a handle pair for R if πz(u) and πz(v) are distinct non-

separating arcs of R with representatives that lie on some subsurface Q ⊂ R such that

Q ∼= Σ2
1,0, see Figure 2.6.

Recall that for a vertex v in CX(Σ) we say that vertices u,w lie on the same side of

v if u,w ∈ Lk(v) and there exists another vertex in Lk(v) which does not span an edge

with either u or w. If v is a (k, l)-vertex then we say that a vertex lies on the small

side of v if it does not lie on the same side as a (k + 1, l)-vertex. The following result

is analagous to a result of Brendle-Margalit in the closed case [13, Lemma 3.2].

Lemma 2.3.1. Let A ∈ R(Σ) such that a g-small region and an n-small region are

represented in A. Let X ⊂ S be an extended set of S(A) and let φ ∈ Aut CX(Σ).

Suppose z is a (k, l)-vertex and that CX(Σ) contains (k − 1, l)-vertices. Let u and v be

two vertices of CX(Σ) such that πz(u) and πz(v) are distinct, non-separating arcs.

1. The projection πφ(z)(φ(u)) is a non-separating arc;

2. If πz(u) and πz(v) are unlinked non-separating arcs then πφ(z)(φ(u)) and πφ(z)(φ(v))

are unlinked non-separating arcs.

3. If πz(u) and πz(v) are a handle pair then πφ(z)(φ(u)) and πφ(z)(φ(v)) are a handle

pair.

Proof. Let R be a region of genus k with l punctures such that z corresponds to ∂R.

For the �rst statement we claim that πz(u) is a non-separating arc if and only if there

is more than one (k − 1, l)-vertex in Lk(u) that lies on the small side of z.

To prove the forward direction we assume that πz(u) is a non-separating arc. It

follows then that R \ πz(u) ∼= Σ2
k−1,l. As there are in�nitely many curves in Σ2

k−1,l

separating the surface into a pair of pants and a surface homeomorphic to Σ1
k−1,l, the

implication is clear.
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We deal with the other direction in two cases: either πz(u) contains the homotopy

class of a separating arc or it contains more than one homotopy class of non-separating

arcs. In the �rst case, if we cut R by a separating arc it results in two surfaces R1 and

R2 homeomorphic to Σ1
k1,l1

and Σ1
k2,l2

with k2 ≥ k1 and k1 +k2 = k and l1 + l2 = l. If w

is a vertex in Lk(u) on the small side of z then it must correspond to a curve contained

in either R1 or R2. If w is a (k − 1, l)-vertex then k1 = 1, l1 = 0 and so w is unique, a

contradiction.

In the second case, suppose we cut along two distinct and disjoint non-separating

arcs in R. Either we obtain a surface of genus k − 1 and l punctures or we obtain

one or two surfaces with less genus than k − 1. That is, either there exists a single

(k− 1, l)-vertex adjacent to u on the small side of z or there are none. This completes

the proof of the �rst statement.

To prove the second statement let u and v be adjacent vertices such that πz(u)

and πz(v) are unlinked non-separating arcs. These arcs are distinct if and only if there

exists a (k − 1, l)-vertex of CX(Σ) on the small side of z that is adjacent to u but not

v. To prove the statement then we claim that the arcs πz(u) and πz(v) are linked if

and only if there exists a (k − 1, l)-vertex w in CX(Σ) that lies on the small side of z

and is adjacent to both u and v.

If we cut R along disjoint representatives of πz(u) and π(v) then we either obtain

a surface of genus k− 1 and l punctures or we obtain one or two surfaces of genus less

than k − 1, depending on whether πz(u) and πz(v) are linked or unlinked. The claim

follows similarly to the proof of the �rst statement.

Finally, we note that two non-separating arcs form a handle pair if and only if they

are linked. This completes the proof. �

Genus sharing pairs

We say that two (k, l)-vertices form a (k, l)-genus sharing pair if they correspond to

curves with geometric intersection number two and, of the four surfaces obtained by

cutting Σ along the curves, one is homeomorphic to Σ1
k−1,l and two are homeomorphic

to Σ1
1,0.

If two vertices that form a genus sharing pair correspond to the curves a,b we say

that a,b share the (k − 1, l)-curve c, where c is isotopic to the boundary curve of the

region homeomorphic to Σ1
k−1,l.

Lemma 2.3.2. Let A ⊂ R(Σ) such that X ⊂ S is an extended set of S(A) and

(k0, l0)-vertices are represented in S(A). Let u, v form a (k, l)-genus sharing pair. If

g ≥ 2k0 + k + 1 and n ≥ 2l0 + l then φ(u), φ(v) form a (k, l)-genus sharing pair for all

φ ∈ Aut CX(Σ).

Proof. We will show that two vertices u, v form a (k, l)-genus sharing pair if and only if

there are (k0, l0)-vertices x1, x2, y1, y2 and a (k+ 1, l)-vertex z that satisfy the following

properties.
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k − 1

l

u

v

z

Figure 2.7: A (k, l)-genus sharing pair u, v corresponds to the red and blue curves. The
vertex z corresponds to light blue curve. The arcs πz(x1),πz(x2),πz(y1) and πz(y2) are
shown in green and orange.

1. Both u and v lie on the small side of z;

2. both x1 and x2 are adjacent to u, y1 and y2, but not v;

3. both y1 and y2 are adjacent to v, x1 and x2 but not u;

4. both pairs πz(x1), πz(x2) and πz(y1), πz(y2) are distinct handle pairs; and

5. the arcs πz(xi) and πz(yj) are unlinked for i, j ∈ {1, 2}.

The result then follows from Lemmas 2.2.7 and 2.3.1.

Suppose the vertices u, v form a (k, l)-genus sharing pair and correspond to the

curves u,v. Up to homeomorphism there is a unique confuguration for the curves u,v

shown in Figure 2.7.

The curves u and v separate Σ into four regions which are homeomorphic to Σ1
k−1,l,

Σ1
1,0, Σ1

1,0 and Σ1
g−k−1,n−l. Take R to be the complement of this �nal region in Σ and

let z be the vertex corresponding to ∂R. We then de�ne x1, x2, y1, and y2 to be (k0, l0)-

vertices corresponding to the projected arcs shown in Figure 2.7. The chosen vertices

satisfy the �ve conditions above.

Now suppose we have vertices u, v, x1, x2, y1, y2, F and z satisfying the above condi-

tions. By the fourth condition the arcs πz(x1) and πz(x2) are contained in some region

Qx
∼= Σ2

1,0. Denote the two boundary components of Qx by ∂1Qx and ∂2Qx. The

vertex z must correspond to ∂1Qx, which we label z, and the arcs πz(x1) and πz(x2)

have endpoints on z. We want to show that the vertex u corresponds to ∂2Qx.

The surface obtained by cutting along Qx by πz(x1) is homeomorphic to a pair of

pants P . If we then cut P along πz(x2) the resulting surface is an annulus. It follows

that πz(x1) and πz(x2) �ll Qx. From the second condition we have that u corresponds to

a curve u that is disjoint from Qx. Since Qx is of genus one the boundary component
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πz(x1)

πz(x2)

πz(x1)

πz(x2)

πz(y1)

πz(y2)

πz(y1)

πz(y2)

Figure 2.8: The curve z with indicated intersections with πz(x1),πz(x2),πz(y1) and
πz(y2)

∂2Qx must be isotopic to u. By symmetry, the vertex v must correspond to v the

boundary component of the equivalent region Qy not equal to ∂R.

From the �fth condition, we can view z as the circle in Figure 2.8. There exist

segments γx and γy of z, with γx ∪ γy = z, such that the arcs πz(x1) and πz(x2) have

endpoints in γx and the arcs πz(y1) and πz(y2) have endpoints in γy. It follows that the

intersection of πz(y1) and πz(y2) with Qx is a set of four freely isotopic arcs. Since Qy

is a regular neighbourhood of the arcs πz(y1) and πz(y2) we have that the intersection

of Qx and Qy is an annulus whose boundary components are isotopic to z. The curves

u and v must therefore have essential intersection two.

If two separating simple closed curves intersect in two points then they divide Σ

into four regions, one of which must contain z. It follows that one of these regions is

of genus k − 1 and has l punctures. Thus, u, v form a genus sharing pair. �

2.3.2 Puncture sharing pairs

Before introducing the second type of sharing pair we note that if two arcs in a region

R of Σ are separating and disjoint then they are necessarily unlinked.

Puncture sharing pairs

We say that two (k, l)-vertices form a (k, l)-puncture sharing pair if they correspond

to curves with geometric intersection number two and, of the four surfaces obtained by

cutting Σ along the curves, one is homeomorphic to Σ1
k,l−1 and two are homeomorphic

to Σ1
0,1.

If two vertices that form a puncture sharing pair correspond to the curves a,b we

say that a,b share the curve c, where c is isotopic to the boundary curve of the region

homeomorphic to Σ1
k,l−1.

As well as pairs of (k, l)-curves sharing a (k, l − 1)-curve, it will be necessary for

Section 2.4 that we look at (k, l)-curves sharing a (k, l + 1)-curve. The de�nition

of these reversed puncture sharing pairs is essentially the same as that of puncture

sharing pairs. Note that we de�ne two types of puncture sharing pairs simply because

our de�nition of the (k, l)-curves prioritises genus over number of punctures. This shift

in perspective is needed in order to make certain lemmas easier to prove later on.
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k

l − 1

u

v

z

Figure 2.9: A (k, l)-puncture sharing pair u, v corresponds to the red and blue curves.
The vertex z corresponds to light blue curve. The arcs πz(x) and πz(y) are shown in
green and orange.

Reversed puncture sharing pairs

We say that two (k, l)-vertices form a (k, l)-reversed puncture sharing pair if they

correspond to curves with geometric intersection number two and, of the four surfaces

obtained by cutting Σ along the curves, one is homeomorphic to Σ1
k,l+1 and two are

homeomorphic to Σ1
0,1.

As above, if two vertices that form a reversed puncture sharing pair correspond to

the curves a,b we say that a,b share the curve c, where c is isotopic to the boundary

curve of the region homeomorphic to Σ1
k,l+1.

Lemma 2.3.3. Let A ⊂ R(Σ) such that X ⊂ S is an extended set of S(A) and

(k0, l0)-vertices are represented in S(A). Let u, v form a (k, l)-puncture sharing pair.

If g ≥ 2k0 + k and n ≥ 2l0 + l − 1 then φ(u), φ(v) form a (k, l)-puncture sharing pair

for all φ ∈ Aut CX(Σ).

Proof. We will show that two vertices u, v form a (k, l)-puncture sharing pair if and

only if there are (k0, l0)-vertices x and y and a (k, l + 1)-vertex z that satisfy the

following properties.

1. Both u and v lie on the small side of z;

2. the vertex x is adjacent to u and y but not v;

3. the vertex y is adjacent to v and x but not u; and

4. both πz(x) and πz(y) are disjoint separating arcs.

The result then follows from Lemmas 2.2.7 and 2.3.1.

Suppose the vertices u, v form a (k, l)-puncture sharing pair and correspond to the

curves u,v. Up to homeomorphism there is a unique con�guration for the curves u,v

shown in Figure 2.9.

The curves u and v separate Σ into four regions which are homeomorphic to Σ1
k,l−1,

Σ1
0,1, Σ1

0,1 and Σ1
g−k,n−l−1. Take R to be the complement of this �nal region in Σ and
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πz(x)

πz(x)

πz(y)

πz(y)

Figure 2.10: The curve z with indicated intersections with πz(x) and πz(y)

let z be the vertex corresponding to ∂R. We then de�ne x and y to be (k0, l0)-vertices

corresponding to the projected arcs shown in Figure 2.9. The chosen vertices satisfy

the �ve conditions above.

Now suppose we have vertices u, v, x, y and z satisfying the above conditions. By

the �rst and second conditions the arc πz(x) is contained in some Qx homeomorphic

to an annulus with a single puncture. Denote the two boundary components of Qx by

∂1Qx and ∂2Qx. The vertex z must correspond to ∂1Qx, which we label z, and the arc

πz(x) has endpoints on z. We want to show that the vertex u corresponds to ∂2Qx.

When we cut Qx along the arc πz(x) we get two surfaces; an annulus and a disc

with one puncture. The boundary of this annulus is isotopic to ∂2Qx, a (k, l)-curve

u that is contained in the associated region of z with genus k. This curve is unique

and it follows that u corresponds to u, hence ∂2Qx. By symmetry, the vertex v must

correspond to v, the boundary component of the equivalent region Qy not isotopic to

z.

From the fourth condition the curve z takes the form of the circle in Figure 2.10.

There exist segments γx and γy of z, with γx ∪ γy = z, such that the arcs πz(x) and

πz(y) have endpoints in γx and γy respectively.

It follows that the intersection of the arc representing πz(y) with Qx is a set of two

freely isotopic arcs. If we cut along one of these arcs then since u and v must intersect

they take the form shown in Figure 2.11 where they intersect exactly twice.

v

u

πz(y)

πz(x)

πz(x)

Figure 2.11: A subsurface homeomorphic to D1 with boundary is de�ned by the curves
v, z and the arc πz(x). The picture indicates that u and v intersect exactly twice.

If two separating simple closed curves intersect in two points then they divide Σ

into four regions, one of which must contain z. It follows that one of these regions is

of genus k and has l − 1 punctures. Thus, u, v form a genus sharing pair. �

Finally, we state the case of reversed puncture sharing pairs.
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Lemma 2.3.4. Let A ⊂ R(Σ) such that X ⊂ S is an extended set of S(A) and (k0, l0)-

vertices are represented in S(A). Let u, v form a (k, l)-reversed puncture sharing pair.

If k ≥ 2k0 and l ≥ 2l0 − 1 then φ(u), φ(v) form a (k, l)-reversed puncture sharing pair

for all φ ∈ Aut CX(Σ).

The bounds on k and l are obtained by replacing k and l in the bounds in the

statement of Lemma 2.3.3 with g − k and n − l. This lemma is just a rephrasing of

Lemma 2.3.3 and so the proof is omitted.

2.3.3 Sharing triples

Let A ⊂ R(Σ) such that a g-small region and an n-small region are represented in A.

Let X ⊂ S be an extended set of S(A). In this section we will prove that for a given

automorphism of the complex CX(Σ) we can extend it to an automorphism of CY (Σ),

where Y is an extended set of S(A) containing X. We do this by �rst introducing

the graph of sharing pairs and showing that it consists of in�nitely many connected

components, each representing a unique isotopy class of a shared curve.

Recall the set Zk,l ∈ S(A) is the orbit of a (k, l)-curve. Suppose Zk,l ∈ X. If

Y = X ∪ {Zk−1,l} then we call Y a genus extension of X. If Y = X ∪ {Zk,l−1} then
we call Y a puncture extension of X. If Y = X ∪ {Zk,l+1} then we call Y a reversed

puncture extension of X.

Graphs of sharing pairs

We call three vertices u, v, w a sharing triple if they form pairwise sharing pairs of the

same type and correspond to curves that pairwise share the same curve. We construct

a graph SP with vertices corresponding to all (k, l)-sharing pairs of the same type.

Two vertices share an edge if they correspond to sharing pairs u, v and v, w, where

u, v, w is a sharing triple. Note that this de�nition holds for the three types of sharing

pair introduced so far in Section 2.3.

It is clear that if two vertices are connected then they correspond to sharing pairs

that share the same curve. This implies that the graph SP is made up of various

disconnected components, we will write SP(c) for the components relating to sharing

pairs that correspond to pairs of curves that share the same curve c. We will make use

of a result of Putman concerning the connectivity of simplicial complexes [60].

Lemma 2.3.5 (Putman). Let G be a group acting on a simplicial complex X with v a

�xed vertex in X0. Let S be a set of generators of G and assume that;

1. for all u ∈ X0, the orbit G ·v intersects the connected component of X containing

u, and

2. for all s ∈ S±1, there is a path Ps in X from v to s · v.

Then X is connected.
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k − 1

l

a

b

Figure 2.12: Generating twists and half twists with respect to a genus sharing pair.

Lemma 2.3.6. Let Σ be a surface with g ≥ k+ 3 and n ≥ l+ 2. Let SP be any graph

of (k, l)-sharing pairs such that a vertex of SP corresponds to curves that share a curve

c. Then the subgraph SP(c) is a single connected component of SP.

Proof. Let a,b be (k, l)-curves that share the curve c. Let R be the associated region

of c that does not contain a or b. Let Mod±(Σ, R) be the subgroup of Mod±(Σ) that

�xes the subsurface R. For each vertex v in SP(c) there exists some [f ] ∈ Mod±(Σ, R)

such that v corresponds to the curves [f ](a), [f ](b). This satis�es the �rst condition

in Lemma 2.3.5 for the simplicial complex SP(c). It remains to show that the second

condition is satis�ed. This will be done in two cases; the �rst case concerns genus

sharing pairs and the second concerns both puncture and reversed puncture sharing

pairs. Suppose the vertices of SP correspond to genus sharing pairs. The groups

Mod±(Σ, R) and Mod±(Σ1
g−(k−1),n−l) are isomorphic. It follows that there exists a

�nite generating set for Mod±(Σ, R) consisting of Dehn twists about non-separating

curves and half twists about (0, 2)-curves, see Figure 2.12. We choose the set so that

one non-separating curve intersects a, one non-separating curve intersects b, and all

other curves are disjoint from both a and b.

By symmetry it is enough to consider the single case where T is a Dehn twist about

a non-separating curve intersecting b and disjoint from a. It is clear that T (a) = a

and that a, T (b) share the curve c. It remains to show that the vertices corresponding

to a,b and a, T (b) are connected in SP(c).

Given g ≥ k + 3 we can �nd a curve d such that that the vertex corresponding

to a,d is adjacent to the vertices corresponding to a,b and a, T (b) in SP , see Figure
2.13. By Lemma 2.3.5 the result holds for graphs of genus sharing pairs.

Now suppose the vertices of SP correspond to puncture sharing pairs. The groups

Mod±(Σ, R) and Mod±(Σ1
g−k,n−(l−1)) are isomorphic. In the case where the vertices

correspond to reversed puncture sharing pairs we have that Mod±(Σ, R) is isomorphic

to Mod±(Σ1
k,l+1). In either case we can �nd a �nite generating set for Mod±(Σ, R)

consisting of Dehn twists about non-separating curves and half twists about (0, 2)-
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k − 1

l

d

T (b) ab
ad

aT (b)

Figure 2.13: The vertex of SP(c) corresponding to the sharing pair a,d spans an edge
with both a,b and a, T (b).

curves, see Figure 2.14. Again, in either case, we can choose the set so that one

non-separating curve and one (0, 2)-curve intersect b and one (0, 2)-curve intersects

both a and b, all other curves are disjoint from both a and b.

As before, if T is a Dehn twist about a non-separating curve intersecting b and

disjoint from a then it is clear that T (a), T (b) share c. Given n ≥ l + 2 we can �nd

a curve d such that the vertex relating to a,d is adjacent to the vertices relating to

a,b and T (a), T (b) in SP . A similar argument follows for the half twist about the

(0, 2)-curve intersecting a and not b.

k

l − 1

a

b

Figure 2.14: Generating twists with respect to a puncture sharing pair.

Finally, for the half twist H about a (0, 2)-curve intersecting both a and b it is clear

that H(a), H(b) share c. Furthermore, without loss of generality we can assume that

H(a) = b. Given n ≥ l + 2 we can �nd a curve d such that the vertex corresponding

d,b is adjacent to both to a,b and H(b),b, see Figure 2.15.

By Lemma 2.3.5 the result holds for graphs of puncture and reversed puncture

sharing pairs. �

We now prove a key step that we will use repeatedly when showing that the natural

homomorphism

ηS(A) : Mod±(Σ)→ Aut CS(A)(Σ)

is an isomorphism.
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k − 1

l

H(b)

d
ab

db

H(b)b

Figure 2.15: The vertex of SP(c) corresponding to the sharing pair d,b spans an edge
with both a,b and H(b),b. Note also that H(a) = b.

Lemma 2.3.7. Let A ⊂ R(Σ) and let X and Y be extended sets of S(A) such that

X ⊂ Y and Y \X = Zk,l. Suppose the natural homomorphism

ηY : Mod±(Σ)→ Aut CY (Σ)

is an isomorphism. If (k + 1, l)-genus sharing pairs, (k, l + 1)-puncture sharing pairs,

or (k, l − 1)-reversed puncture sharing pairs form characteristic subsets of CX(Σ) then

the natural homomorphism

ηX : Mod±(Σ)→ Aut CX(Σ)

is an isomorphism.

Proof. By Lemma 2.1.1 the map ηX is injective. It remains to show that it is surjective.

Let φ be an automorphism of Aut CX(Σ). By assumption (k+1, l) genus sharing pairs,

(k, l+ 1) puncture sharing pairs, or (k, l− 1) reversed puncture sharing pairs are char-

acteristic in CX(Σ), therefore by Lemma 2.3.6 there exists a well de�ned automorphism

φ̂ of the vertices of CY (Σ) such that φ̂ restricts to φ on the vertices of CX(Σ). We will

show that φ̂ in fact extends to an automorphism of CY (Σ).

Suppose vertices u, v of CY (Σ) correspond to the curves u and v. We need to show

that the adjacency of u and v in the complex CY (Σ) is characteristic in its subcomplex

CX(Σ). If both u and v are vertices of CX(Σ) then this is clear. Suppose neither u nor

v are vertices of CX(Σ), that is, they are both (k, l)-vertices. They are adjacent if and

only if there are adjacent vertices w1 and w2 in CX(Σ) such that w1 corresponds to a

curve that shares u and w2 corresponds to a curve that shares v.

Finally, suppose v is a vertex of CX(Σ) and u is not, that is, u is a (k, l)-vertex. The

vertices span an edge in CY (Σ) if there exists some vertex w spanning an edge with, or

equal to, v in CX(Σ) that corresponds to a curve that shares u. As Y is an extended set

of S(A) all such edges take this form. We have therefore shown that φ̂ ∈ Aut CY (Σ).

By assumption there exists some [f ] ∈ Mod±(Σ) whose image in Aut CY (Σ) is

precisely φ̂. Since the restriction of φ̂ to CX(Σ) is φ it follows that the image of [f ] in

Aut CY (Σ) is indeed φ. �
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n

n− l

ln

l

0 k kg bg/2c
Figure 2.16: The lattice Lat(S(A; k, l)) corresponding to the (k, l)-extended set an-
chored by A.

2.4 Proof of Theorem 2.0.1

In this section we will prove Theorem 2.0.1 which says that the natural homomorphism

ηS(A) : Mod±(Σ)→ Aut CS(A)(Σ)

is an isomorphism for A ⊂ R(Σ). This result plays in important role in the proof of

Theorem 1.4.2, that

ηA : Mod±(Σ)→ Aut CA(Σ)

is an isomorphism. We will �rst de�ne a type of extended set S(A; k, l) of S(A). This

allows us to use a double induction argument.

Recall that the minimum curves of a subset of X ⊂ S are the (k, l)-curves in the

surface Σ such that (
[0, k]× [0, l]

)
∩ Lat(X) = {(k, l)},

that is, the lower lattice of the point (k, l) in Lat(X) is the points (k, l) itself. The

values kg and ln are the lowest genus and fewest number of punctures of the associated

regions of the minimum curves of S(A).

The (k, l)-extended set anchored by A

Let S(A; k, l) ⊂ S be an extended set of S(A) where (k̃, l̃)-curves are represented in

S(A; k, l) if either k ≤ k̃ ≤ g/2 and l ≤ l̃ ≤ n− l or k̃ ≤ kg and l̃ ≤ ln, see Figure 2.16.

We will �rst prove two inductive steps in Lemmas 2.4.1 and 2.4.2. These results use

Lemma 2.3.7 to relate the automorphism groups of complexes of the form CS(A,k,l)(Σ).

Lemma 2.4.1 is an inductive step indexed by the value l and Lemma 2.4.2 is is an

inductive step indexed by the value k. It has been shown by Kida that the natural



CHAPTER 2. RESOLUTION OF THE METACONJECTURE 46

homomorphism

ηS : Mod±(Σ)→ Aut CS(A;0,0)(Σ)

is an isomorphism [43]. Here we are using the fact that S(A; 0, 0) = S for any A ⊂
R(Σ). We then use Lemmas 2.4.1 and 2.4.2 to show that the natural homomorphism

Mod±(Σ)→ Aut CS(A;kg ,ln)(Σ)

is an isomorphism. Finally we prove Theorem 2.0.1 using the isomorphism given above.

Completing the proof is similar to that of the two inductive steps in spirit, although this

part requires some more careful book-keeping. We begin by proving the two lemmas.

Lemma 2.4.1. Let A ⊂ R(Σ) such that a g-small region and an n-small region are

represented in A. For 1 ≤ l ≤ ln if the natural homomorphism

ηS(A;0,l−1) : Mod±(Σ)→ Aut CS(A;0,l−1)(Σ)

is an isomorphism then the natural homomorphism

ηS(A;0,l) : Mod±(Σ)→ Aut CS(A;0,l)(Σ)

is an isomorphism.

Proof. Let X0 = S(A; 0, l − 1) and de�ne Xi such that Xi−1 is the reversed puncture

extension of Xi, where

Xi = Xi−1 \ Zi,n−(l−1),

for all i = 1, 2, . . . , bg/2c. Now let Xbg/2c = Y0. Similarly we de�ne Yi such that Yi−1 is

the puncture extension of Yi where

Yi = Yi−1 \ Zbg/2c−i,l−1,

for all i = 1, 2, . . . , bg/2c−kg, that is, Ybg/2c−kg = S(A; 0, l). By Lemma 2.2.7 the vertex

types of each complex CXi
(Σ) and CYi(Σ) are preserved by automorphisms as each Xi

and Yi is an extended set of S(A). We will show that each natural homomorphism ηXi

and ηYi is an isomorphism. This is true for X0 by assumption. Note that from the

de�nition of n-small we have that ln 6= 1, so ln ≥ 2.

We want to show that the (k̃, n − l)-reversed puncture sharing pairs form charac-

teristic subsets in the complexes CXi
(Σ) for all values 0 ≤ k̃ ≤ bg/2c. Note that

k̃ ≥ 0 and n− l ≥ 3ln − 1− l ≥ 3.

Furthermore, since each complex contains (0, 2)-vertices, we have that CXi
(Σ) satis�es

the conditions from Lemma 2.3.4. It then follows from induction and Lemma 2.3.7

that each natural homomorphism ηXi
is an isomorphism.
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By construction, we now have that the homomorphism ηY0 is an isomorphism. We

now want to show that the (k̃, l)-puncture sharing pairs form characteristic subsets in

the complexes CYi(Σ) for all values kg ≤ k̃ ≤ bg/2c. We have that

g ≥ k̃ and n ≥ 3ln − 1 ≥ l + 3.

Once again, the complex CYi(Σ) contains (0, 2)-vertices. Lemma 2.3.3 implies that

(k̃, l)-puncture sharing pairs form characteristic subsets. It now follows from induction

and Lemma 2.3.7 that each natural homomorphism is an isomorphism. By de�nition

of the sets Yi the result is proved. �

Lemma 2.4.2. Let A ⊂ R(Σ) such that a g-small region and an n-small region are

represented in A. For 1 ≤ k ≤ kg if the natural homomorphism

ηS(A;k−1,l) : Mod±(Σ)→ Aut CS(A;k−1,l)(Σ)

is an isomorphism then the natural homomorphism

ηS(A;k,l) : Mod±(Σ)→ Aut CS(A;k,l)(Σ)

is an isomorphism.

Proof. Let X0 = S(A; k − 1, l) and de�ne Xi such that Xi−1 is the genus extension of

Xi, where

Xi = Xi−1 \ Zk−1,n−l−i

for i = 1, . . . , n− l− ln. That is, Xn−l−ln = S(A; k, l). By Lemma 2.2.7 the vertex types

of each complex CXi
(Σ) are preserved by automorphisms as each Xi is an extended set

of S(A). As with Lemma 2.4.1, we will show that each natural homomorphism ηXi
is

an isomorphism. By assumption, this is true for X0.

We want to show that the (k, l̃)-genus sharing pairs form characteristic subsets in

the complexes CXi
(Σ) for all values ln ≤ l̃ ≤ n− l. We have that

g ≥ 3kg + 1 ≥ k + 3 and n ≥ l̃.

Since each complex contains (1, 0)-vertices we have that CXi
(Σ) satis�es the conditions

in Lemma 2.3.2. It follows from induction and Lemma 2.3.7 that each homomorphism

is an isomorphism. By de�nition of the Xi, we have proved the result. �

Using the two inductive steps above we can now show that the natural homo-

morphsim

ηS(A;kg ,ln) : Mod±(Σ)→ Aut CS(A;kg ,ln)(Σ)

is an isomorphism. It is useful at this stage to compare the lattices Lat(S(A; kg, ln))

and Lat(S(A)). This comparison is shown in Figure 2.17.
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0 k1 k2 km−1 km bg/2c
Figure 2.17: The integer lattice Lat(S(A)) is represented by the red region and the
integer lattice Lat(S(A; kg, ln)) is represented by both shaded regions. Recall that
k1 = kg and lm = ln

We can now prove Theorem 2.0.1. This proof uses the same techniques as Lemmas

2.4.1 and 2.4.2.

Proof of Theorem 2.0.1. As discussed above, from [43, Theorem 1.1], Lemmas 2.4.1,

2.4.2 and a double induction argument we have that the natural homomorphism

ηS(A;kg ,ln) : Mod±(Σ)→ Aut CS(A;kg ,ln)(Σ)

is an isomorphism. Similar to the previous two lemmas, we can �nd a �nite sequence

of extended sets of S(A) which we label X0, . . . , XN where

X0 = S(A; kg, ln) and XN = S(A).

Furthermore, as indicated in Figure 2.17 we can choose each Xi+1 such that it is a

genus extension or puncture extension of Xi. In each case, the related (k, l)-sharing

pairs will be such that k ≤ kn and l ≤ lg. It follows that

g ≥ 3kn + 1 ≥ k + 2kn + 1 and n ≥ 3lg ≥ l + 2lg.

Therefore, from Lemmas 2.3.2 and 2.3.3, all (k, l)-sharing pairs form characteristic

subsets of any complex CXi
(Σ) containing (k, l)-vertices. By induction and Lemma

2.3.7 we have that the natural homomorphism

ηXN
: Mod±(Σ)→ Aut CXN

(Σ)

is an isomorphism. By de�nition of XN we have the required result. �
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As mentioned throughout this section, the special cases of closed surfaces [13] and

spheres with punctures [55] are much simpler. Indeed, the process of extended the

isomorphism

ηS : Mod±(Σ)→ Aut CS(Σ)

to an isomorphism

ηS(A) : Mod±(Σ)→ CS(A)(Σ)

involves de�ning a solitary type of sharing pair and then a single variable induction

argument.

2.5 Complexes of dividing sets

The goal of this section is to connect Theorem 2.0.1 with complexes of regions. We do

this by using a generalisation of separating curves for a surface Σ of strictly positive

genus introduced by Brendle-Margalit [13, Section 4].

Dividing sets

A dividing set in Σ is a multicurve that divides the surface into exactly two regions. We

allow for one of the regions to be an annulus, that is, the multicurve may consist of two

isotopic non-separating curves. As with separating curves, the two regions obtained by

cutting Σ along each curve in a dividing set d are the associated regions of d. We say

that two dividing sets are nested if one is contained entirely in one of the associated

regions of the other, otherwise we say that they intersect. If two dividing sets intersect

then their respective multicurves may intersect or they may not.

Let DS denote the set of all Mod±(Σ)-orbits of dividing sets in Σ. For a subset

D ⊆ DS we de�ne the simplicial �ag complex CD(Σ) analogously to complexes of

regions. The vertices of CD(Σ) correspond to all homotopy classes of dividing sets

that represent elements of D. We say that a vertex corresponds to a dividing set if it

corresponds to the equivalence class of that dividing set. Two vertices span an edge in

CD(Σ) if they correspond to nested dividing sets. As with complexes of regions there

is a natural homomorphism

ηD : Mod±(Σ)→ Aut CD(Σ)

for every subset D ⊆ DS.
For A ⊂ R(Σ) we de�ne ∂A ⊆ DS to be the subset consisting of dividing sets where

each of the associated regions contain a region represented in A. We can also de�ne

∂D ⊆ DS for any subset D ⊆ DS in the same way, that is, the subset ∂D consists of

dividing sets with associated regions containing dividing sets represented in D. Notice

that in the special case Σ0,n we have S = DS and S(A) = ∂A for A ⊂ R(Σ). In

general S(A) = ∂A ∩ S.
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Lemma 2.5.1. Given A ⊂ R(Σ) the subset ∂A ⊆ DS satis�es the relation ∂A =

∂(∂A).

Proof. Let d be represented in ∂A. There exist dividing sets homotopic to d that lie in

each of its associated regions. It follows that d is represented in ∂(∂A). Now suppose

d is represented in ∂(∂A) and suppose d separates dividing sets d1,d2 ∈ ∂A. There

exists a region Ri represented in A that is contained in the associated region of di not

containing d for i = 1, 2. It follows that d separates R1 and R2 and so is represented

in ∂A. �

2.5.1 The case with annular dividing sets

We call a dividing set d annular when d has an annular associated region. Clearly, there

is a bijection between the isotopy classes of annular dividing sets and isotopy classes

of non-separating curves. Suppose then that annular dividing sets are represented in

D ⊆ DS. It follows from [13, Lemma 4.1] that the vertices of CD(Σ) that correspond

to annular dividing sets form a characteristic subset. We thus obtain an injective

homomorphism

Aut CD(Σ) ↪→ AutN (Σ),

where N (Σ) is the complex of non-separating curves. From Lemma 2.1.1 and [35,

Theorem 1.4] we have that the composition

Mod±(Σ) ↪→ Aut CD(Σ) ↪→ AutN (Σ)
∼=−→ Mod±(Σ)

is injective and equal to the identity map, therefore Mod±(Σ) → Aut CD(Σ) is an

isomorphism. In the remainder of this section we will assume that annular dividing sets

are not represented in D ⊆ DS and prove that the homomorphism is an isomorphism

in this case as well.

2.5.2 Vertex types are characteristic

Assume throughout this section that no annular dividing sets are represented in D ⊂
DS. We say that a vertex v of CD(Σ) is k-sided if v corresponds to a dividing set d

such that k of the associated regions contain a non-homotopic dividing set represented

in D ⊂ DS. Note that k ∈ {0, 1, 2}. We now generalise the notion of the enveloping

regions given in Section 1.4.4.

Enveloping regions

The enveloping region of a 1-sided dividing set d is de�ned to be the enveloping region

R̂ of a region R which is the associated region of d of lowest genus that has fewest

punctures. An enveloping region of D ⊂ DS, written as D̂, is a subregion of Σ with a

single boundary component, lowest genus and fewest punctures such that D̂ contains
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an element of the Mod±(Σ)-orbit of d for every 1-sided element d. Note that D̂ also

contains the enveloping regions for all such 1-sided elements. Furthermore, if R is a

core region represented in some A ⊂ R(Σ) then its enveloping region R̂ is also an

enveloping region for a 1-sided dividing set.

As dividing sets are a generalisation of separating curves, we may employ similar

techniques when studying complexes of dividing sets. In particular, just like vertices

corresponding to separating curves, we can de�ne sides of vertices corresponding to

dividing sets by analysing their links as in Section 2.2.2. Explicitly, two vertices u,w ∈
Lk(v) lie on the same side of the vertex v if there exists another vertex in Lk(v) that

does not span an edge with either u or w.

Now, for all v ∈ CD(Σ) corresponding to a dividing set v, we de�ne δ(v) to be the

number of components of v. We say that a vertex v ∈ CD(Σ) satisfying δ(v) = 1 is of;

• type S1 if v is 1-sided,

• type S2 if every vertex on one side of v is of type S1, and

• type S3 otherwise.

Here, the letter `S' indicates that v corresponds to a separating curve. If v is a vertex

of CD(Σ) such that δ(v) ≥ 2 then we say that v is of;

• type M1 if v is 1-sided,

• type M2 if every vertex on one side of v is of type S1, and

• type M3 otherwise.

The letter `M ' indicates that the vertex corresponds to a multicurve.

Our goal now is to show that vertices of type S1, S2 and S3 form characteristic

subsets of CD(Σ) when D = ∂D. That is, separating curves determine a characteristic

subset of vertices in CD(Σ). We use the assumption that there are no annular dividing

sets to de�ne the normal form of a simplex [13, Section 4.2].

Normal form

Let σ be any simplex in the complex CD(Σ) consisting of vertices v1, . . . , vm. We call a

collection of pairwise nested multicurves v1, . . . ,vm a normal form representative for

σ if each vi corresponds to vi. We state the following result of Brendle-Margalit [13,

Lemma 4.3].

Lemma 2.5.2 (Brendle-Margalit). Suppose D ⊂ DS and let σ be a simplex of CD(Σ).

There exists a normal form representative of σ, unique up to isotopy.

Recall from Section 2.2 that a linear simplex is one with an ordering of the vertices

determined by the sides of the corresponding curves. We use the same terminology in

the case of dividing sets.
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Linear simplices of CD(Σ)

A simplex σ of CD(Σ) is linear if there is a labeling of its vertices v1, . . . , vm such that

vi−1 and vi+1 do not lie on the same side of vi for all i = 1, . . . ,m − 1. We call the

vertices v0 and vm the extreme vertices of the linear simplex σ.

As discussed in Section 2.2.2 and in [13, Lemma 4.5] we have the following result.

Lemma 2.5.3. Let CD(Σ) be a complex of dividing sets and let φ be an automorphism.

If σ = {v1, . . . , vm} is a maximal linear simplex then φ(σ) = {φ(v1), . . . , φ(vm)} is a

maximal linear simplex.

We now move on to showing that the various vertex types form characteristic sub-

sets, beginning with vertices of type S1.

Lemma 2.5.4. Let Σ be a surface and let the subset D ⊂ DS satisfy ∂D = D. If

g ≥ 3g(D̂) + 1 and n ≥ 3n(D̂) then the vertices of type S1 form a characteristic subset

of CD(Σ).

Proof. It follows from the de�nition of a maximal linear simplex that a vertex v is

1-sided if and only if it is an extreme vertex of some maximal linear simplex. We will

show then that a vertex is of typeM1 if and only if it is 1-sided and there exist vertices

u,w such that;

1. u and w span a triangle with v, and

2. any other 1-sided vertex spanning a triangle with u and w spans an edge with v.

To prove one direction suppose v is of type M1 and corresponds to the multicurve v.

Let u be a vertex in the Mod±(Σ)-orbit of v corresponding to the multicurve u disjoint

from v such that exactly one of the curves in v is isotopic to a curve in u. Let R be the

unique region de�ned by cutting along u and v that contains more than one dividing

set represented in D. We now de�ne w to be the vertex of CD(Σ) corresponding to

∂R. Clearly the vertices u, v and w span a triangle. Now, any choice of 1-sided vertex,

other than v, that spans a triangle with u and w must correspond to a dividing set

contained in R. It follows then that any such vertex spans an edge with v.

Now assume that v is a vertex of type S1 corresponding to v and let u and w be

vertices corresponding to dividing sets u,w satisfying the conditions above. Let R be

the region of Σ with boundary de�ned by v and containing u,w. Since v does not

correspond to u or w there exists an element in the Mod±(Σ)-orbit of v that is disjoint

from u and w and intersects v. This completes the proof. �

We treat the remaining cases seemingly out of order by �rst showing that vertices

of S3 form a characteristic subsets before dealing with vertices of type S2.

Lemma 2.5.5. Let Σ be a surface with punctures and let the subset D ⊂ DS satisfy

∂D = D. If g ≥ 3g(D̂) + 1 and n ≥ 3n(D̂) then the vertices of type S3 form a

characteristic subset of CD(Σ).
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v
Pw

Pu

Figure 2.18: The red multicurve is v. We see that we can construct the desired pairs
of pants Pu and Pw.

Proof. It follows from Lemmas 2.5.3 and 2.5.4 that the sets S1, M1 and S2 ∪ M2

form characteristic subsets of CD(Σ). It remains only to show that we can distinguish

between vertices of type M3 and vertices of type S3. We claim that a vertex v is of

type M3 if and only if ;

1. there exist two vertices u and w that span a triangle with v, and

2. there exists exactly one vertex not adjacent to v that spans an triangle with both

u and w.

To prove the forward direction of the claim we assume v is of type M3 and consider

three cases separately; δ(v) ≥ 4, δ(v) = 3, and δ(v) = 2. In each case we will construct

dividing sets u and w that are not on the same side of a dividing set v, where v

corresponds to v. In order to de�ne the unique dividing set implicit in the claim we

require that the (possibly connected) subsurface bounded by u and v is a collection

of annuli and a single pair of pants Pu. We de�ne the pair of pants Pw related to the

dividing set w in the same way. Here, we go against convention slightly by de�ning a

pair pants to be homeomorphic to either Σ3
0,0 or Σ2

0,1. Furthermore, we require that if

a component curve of v bounds Pu (or Pw) it must bound an annulus with w (or u).

Given such curves we then let the vertices u and w correspond to the dividing sets u

and w. The unique vertex spanning edges with u and w but not v must correspond to

the dividing set

{u ∩w} ∪ {∂Pu \ v} ∪ {∂Pw \ v}.

An example is shown in Figure 2.18.

First we consider the case where δ(v) ≥ 4. The pair of pants Pu will consist either

of three boundary components, or two boundary components and a single puncture.

Suppose that such a Pu does not exist, then every dividing set d nested with v will be

isotopic to v. This contradicts our assumption that v is 2-sided. Similarly, we can �nd

a pair of pants Pw satsifying the conditions above, see Figure 2.18.

Now let δ(v) = 3 and let Ru and Rw be the two associated regions of v such that

g(Rw) ≥ g(Ru). Suppose we can choose a dividing set u in Ru with four components,

two of which are isotopic to distinct components of v. Since v is 2-sided we can �nd

an appropriate choice of w contained in Rw where either w has two components and
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v v

v v

Figure 2.19: The red multicurve with three components is v. We see that we can
always construct desired pairs of pants Pu and Pw.

Pw is homeomorphic to Σ3
0,0 or w has three components and Pw is homeomorphic to

Σ2
0,1. This is shown in the bottom two con�gurations in Figure 2.19 where u is the

dividing set on the right and w is on the left. Similarly, suppose we can choose u

with three boundary components, two of which belong to v and where the region Pu

is homeomorphic to Σ2
0,1. Once again, as v is 2-sided, there is an appropriate choice of

w in Rw. A picture can be seen in the top two con�gurations in Figure 2.19, again u

is on the right and w is the dividing set on the on the left.

If neither choice of u exists it follows that there are no 1-sided vertices of CD(Σ)

corresponding to dividing sets in Ru with associated region of lower genus or fewer

punctures than Ru, and so g(D̂) ≥ g(Ru) and n(D̂) ≥ n(Ru). We now have the

inequalities;

n(Rw) = n− n(Ru) ≥ 3n(D̂)− n(Ru),

≥ 3n(Ru)− n(Ru),

= 2n(Ru),

so n(Rw) > n(Ru).

We can choose a dividing set with two components u contained inRu with associated

side Qu ⊂ Ru. Furthermore, we choose u such that g(Qu) = g(Ru) and n(Qu) = n(Ru).

This is always possible as v is 2-sided. It follows that there exists a dividing set d in

the Mod±(Σ)-orbit of u represented in Rw. Since n(Rw) > n(Ru) it follows that v and

d bound a region with at least one puncture. We now set w to be the dividing set

separating v and d with side Qw ⊂ Rw such that w has three components, the same

genus as Rw, and n(Qw) = n(Rw)−1. It is clear now that Pw is homeomorphic to Σ2
0,1.

This is shown in the top left picture of Figure 2.19, where u is the dividing set on the

left and w is on the right.

Now we deal with the case where δ(v) = 2. If both associated regions of v contain

dividing sets u and w such that Pu and Pw are homeomorphic to Σ2
0,1 then we are
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u
v w

Figure 2.20: When the surface is of genus one there is a vertex of type M2 adjacent to
a vertex of type S1 and S3 in a maximal linear simplex. Moreover, there is no other
vertex that corresponds to a multi-curve in this simplex.

done. If this is not the case then since v is of type M3 there exists a vertex in CD(Σ)

spanning an edge with v that is either of type S2 or S3. Any such vertex is not 1-sided

and so we can �nd a dividing set u with three components, two of which are shared by

v. As before we can therefore �nd the desired pairs of pants Pu and Pw.

We now assume that v is a vertex of type S3. If u and w lie on the same side of

v then up to relabeling there are in�nitely many vertices in the Mod±(Σ)-orbit of v

spanning edges with u and w but not with v. Suppose then that u and w lie on di�erent

sides of v. If the vertices u, v correspond to the dividing sets u,v then the subsurface

bounded by these curves cannot be an annulus, as v is a separating curve. It follows

that there are in�nitely many vertices in the Mod±(Σ)-orbit of v spanning edges with

u and w but not with v. This completes the proof. �

Finally we complete the proof that the vertices of CD(Σ) corresponding to separating

curves form characteristic subsets by distinguishing vertices of type S2 and M2.

Lemma 2.5.6. Let Σ be a surface that is not a torus with six punctures. Let D ⊂ DS
with ∂D = D. If g ≥ 3g(D̂) + 1 and n ≥ 3n(D̂) then the vertices of type S2 form a

characteristic subset of CD(Σ).

Proof. Following Lemmas 2.5.3 and 2.5.4 we need only distinguish vertices of type S2

from vertices of type M2. We deal with the cases g = 1 and g ≥ 2 separately. To that

end, let g = 1. We claim that a vertex v is of type M2 if and only if there there exists

a vertex u of type S1 and a vertex w of type S3 such that;

1. the vertices u, v, w are adjacent in a maximal linear simplex, and

2. there is no vertex x of type M3 such that u, v, w, x are adjacent in a maximal

linear simplex.

To prove one direction of the claim we let v be a vertex of type M2 corresponding

to the dividing set v. By de�nition we can choose a vertex u of type S1 as above. Let

w be a separating curve in Σ that bounds a pair of pants with v such that the vertex

w corresponding to w is distinct from u. Suppose w is of type S1 or S2. Since g = 1

both u and w must represent curves bounding discs with n(D̂) or n(D̂) + 1 punctures

and so n = 2n(D̂) or 2n(D̂) + 1. However, n ≥ 3n(D̂), a contradiction as n(D̂) ≥ 2.

So w must be of type S3 and u, v, w are the �rst three vertices in a maximal simplex.

As g = 1 it is clear that any vertex x cannot be of type M1,M2 or M3.
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u
v w

Figure 2.21: When the genus of the surface is at least two there is vertex w of type
M3 such that δ(w) = 3 adjacent to a vertex v of type M2 in a maximal linear simplex
Moreover, any choice of a subsequent vertex in this simplex must correspond to a
multi-curve. In particular, it is not of type S3.

Now assume v is type S2. Up to the action of Mod±(Σ) there is a unique choice of

a vertex u of type S1. Again, up to the action of Mod±(Σ) there is a unique choice of

w, whereby v and w correspond to curves v and w that bound a region homeomorphic

to Σ2
0,1. Since g = 1 and g ≥ 3g(D̂) + 1, it follows that the associated region R of w

not containing v is such that g(R) = 1. We can therefore de�ne a vertex x of type M1,

M2, or M3 such that u, v, w, x are adjacent in a maximal linear simplex. Since g = 1,

hence g(D̂) = 0, the vertex x cannot be of type M1. Let x correspond to the dividing

set x. If x is of type M2 then using similar arguments as above we see that the two

associated regions of x are homeomorphic to Σ2
0,n(D̂)+2

and Σ2
0,n(D̂)

, so n = 2n(D̂) + 2.

Since n ≥ 3n(D̂), we have that n(D̂) = 2, hence n = 6. Since Σ is not a torus with six

punctures we have that x is of type M3, a contradiction.

We now move onto the case when g ≥ 2. We claim that a vertex v is of type M2 if

and only if there exists a vertex u of type S1 and a vertex w of type M3 such that;

1. the vertices u, v, w are adjacent in a maximal linear simplex, and

2. there is no vertex x of type S3 such that u, v, w, x are adjacent in a maximal

linear simplex.

First we let v be a vertex of type M2. As above we choose u to be one of in�nitely

many vertices of type S1 such that u, v form the �rst two vertices in some maximal

linear simplex. Let u and v correspond to the dividing sets u and v. Since g ≥ 2 and

g ≥ 3g(D̂) + 1, the associated region R of v not containing u is such that g(R) ≥ 2.

We can therefore �nd a dividing set w with three components that bounds an annulus

and a pair of pants with v, see Figure 2.21. By the de�nition of D̂ we have that there

is a vertex w of CD(Σ) corresponding to w. Moreover, w is of type M3. It is clear

that u, v, w form the �rst three vertices of some maximal linear simplex. Any choice

of vertex x such that u, v, w, x are adjacent in a maximal linear complex σ cannot

correspond to a separating curve, otherwise σ would not be maximal, again see Figure

2.21.

For the other direction we assume that v is of type S2. Up to the action of Mod±(Σ)

there are unique choices of both u and w. Note that δ(w) = 2 and v and w must

correspond to dividing sets v and w that bound a pair of pants. It easy to see that we

can �nd a separating curve x that bounds a pair of pants with w. By de�nition of D̂
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there is a vertex x of CD(Σ) corresponding to x. The associated region of x containing v

is of genus at most g(D̂)+1 and has at most n(D̂)+1 punctures. The other associated

region is then of genus at least 2g(D̂) and has at least 2n(D̂)− 1 punctures. It follows

that x must be of type S3, which is a contradiction. �

The condition that Σ is not a torus with six punctures is equivalent to the second

requirement in the de�nition of n-small from Section 1.4.4. In practice this rules out

very few cases. An example of such a case is the arc complex on the surface of genus

1 with less than seven punctures.

2.5.3 The case without annular dividing sets

We may now connect the preceding results on complexes of dividing sets with Theorem

2.0.1, this then provides our starting point when discussing complexes of regions in the

next section.

Lemma 2.5.7. Let A ⊂ R(Σ) such that a g-small region and an n-small region are

represented in A. The natural homomorphism

η∂A : Mod±(Σ)→ Aut C∂A(Σ)

is an isomorphism.

Proof. By Lemma 2.1.1 we have that η∂A is injective. We want then to show that

η∂A is surjective. Let φ ∈ Aut C∂A(Σ). By Lemmas 2.5.4, 2.5.5 and 2.5.6, φ restricts

to an automorphism φ̂ of CS(A)(Σ). Here we think of CS(A)(Σ) as a full subcomplex

of C∂A(Σ). By Theorem 2.0.1 there exists a mapping class [f ] ∈ Mod±(Σ) such that

ηS(A)([f ]) = φ̂. We need to show that η∂A([f ]) = φ.

It su�ces to show that an automorphism of C∂A(Σ) restricting to the identity on

CS(A)(Σ) must be the identity. To do this, we show by induction on the distance from

a vertex of CS(A)(Σ) and then since C∂A(Σ) is connected the result follows.

By assumption, the automorphism restricts to the identity for all vertices distance

zero from CS(A)(Σ). Assume then that the automorphism restricts to the identity for all

vertices of C∂A(Σ) distance i from CS(A)(Σ). We deal with the inductive step separately

for 1-sided vertices and 2-sided vertices.

Let v be a 1-sided vertex of C∂A(Σ) that is distance i+ 1 from a vertex of CS(A)(Σ).

Let w be a vertex of C∂A(Σ) spanning an edge with v and distance i from a vertex of

CS(A)(Σ). Let v, w correspond to v,w. There exist elements of the Mod±(Σ)-orbit of

w that �ll the associated region of v containing w. The vertex v is 1-sided, hence is

the unique vertex whose link contains vertices corresponding to such dividing sets. It

follows that the automorphism must also �x v.

Assume now that v is a 2-sided vertex that is distance i + 1 from CS(A)(Σ). Let w

be a vertex of C∂A(Σ) adjacent to v. Let u be any vertex of C∂A(Σ) that is not on the
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same side of v as u. We can show using a similar method that v must be �xed by the

automorphism, completing the proof. �

2.6 Complexes of regions

In this section we will complete the resolution of the metaconjecture in the case of

surfaces with punctures, that is we prove Theorem 1.4.2. A key step to this result

is invoking Lemma 2.5.7 given at the end of the previous section. We relate the sets

∂A ⊆ DS and A ⊂ R(Σ) by observing a bijection between sets of joins of vertices in

the complex CA(Σ) and the vertices of the complex C∂A(Σ). This allows us to construct

an injective homomorphism

∂ : Aut CA(Σ)→ Aut C∂A(Σ).

We then consider the injective homomorphism η−1
∂A ◦ ∂ ◦ ηA and show that it is the

identity of Mod±(Σ). First we de�ne the map

Φ :
{
vertices of C∂A(Σ)

}
→
{
subcomplexes of CA(Σ)

}
.

Given a vertex v of C∂A(Σ) corresponding to a dividing set v, de�ne Φ(v) to be the full

subcomplex of CA(Σ) spanned by the vertices that correspond to regions contained in

the associated regions of v.

2.6.1 Joins

Recall that a subcomplex X ⊂ CA(Σ) is a join if X is spanned by disjoint subsets of

vertices V1, . . . , Vm, such that every vertex in Vi spans an edge with every vertex in

Vj for all i 6= j. Assuming the subcomplex spanned by the vertices in Vi is not itself

a join for each i, we say that the X has m component subcomplexes. If a component

subcomplex consists of a solitary vertex we call it a singular component, and a non-

singular component otherwise. We say that a join X is k-sided if X has exactly k

non-singular components.

In the following three lemmas we show that the image of each vertex of C∂A(Σ),

with respect to the map Φ, forms a characteristic join of vertices in CA(Σ). We deal

with three cases; strong 2-sided vertices, weak 2-sided vertices, and �nally all 1-sided

vertices.

Strong 2-sided vertices

Recall from Section 2.5 that a vertex of C∂A(Σ) is 2-sided if it corresponds to a dividing

set such that each of the associated regions contains a non-homotopic dividing set of

∂A. We call a 2-sided vertex of C∂A(Σ) strong if there are in�nitely many vertices on

each of its sides, otherwise we call it weak. Note that all 2-sided vertices are strong,
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unless one of the associated regions is homeomorphic to either Σ3
0 or Σ2

0,1, and ∂A

contains annular dividing sets. Furthermore, ∂A contains annular dividing sets if and

only if A contains non-separating annuli.

We begin by characterising the image of all strong 2-sided vertices of C∂A(Σ) under

the map Φ. To that end, we say that a 2-sided join X in CA(Σ) is maximal if there

exist no vertices z in CA(Σ) \X such that X ∪ {z} spans a 2-sided join.

Lemma 2.6.1. If the complex CA(Σ) has no holes and no corks then the restriction of

the map

Φ :
{
strong 2-sided vertices of C∂A(Σ)

}
→
{
maximal 2-sided joins of CA(Σ)

}
is a bijection.

Proof. We must �rst show that this map makes sense, that is, that for any strong

2-sided vertex v ∈ C∂A(Σ) the the subcomplex Φ(v) is a maximal 2-sided join. Let v

correspond to the dividing set v and suppose L and R are the two associated regions of

v. We write VL for the subcomplex spanned by vertices corresponding to non-peripheral

regions of L. We de�ne VM to be the subcomplex spanned by peripheral regions of L

(and R) and de�ne VR analogously to VL. Note that VM may be empty. Now, there

are no vertices in Φ(v) that are not contained in either VL, VM , or VR. Furthermore

every vertex of VL spans an edge with every vertex of VM and VR. The same is true

for VM and VR and so Φ(v) = VL ∗ VM ∗ VR, a join. By de�nition of a strong 2-sided

vertex, L and R are �lled by regions represented in A. It follows that VL and VR are

non-singular components of Φ(v). Furthermore, it is clear that each vertex of VM spans

an edge with every other vertex of VM , and so Φ(v) is a 2-sided join.

Suppose Φ(v) is not a maximal 2-sided join. Then there exists a vertex z not in Φ(v)

such that Φ(v)∪{z} spans a 2-sided join. Every vertex that is not in Φ(v) corresponds

to a region that intersects both L and R. It follows that the subcomplex spanned by

VL, VR, and the vertex z is not a join, which is a contradiction. It follows that Φ(v) is

indeed maximal.

It remains to show that all maximal 2-sided joins of CA(Σ) are of this form. Let

X = V1 ∗ V2 ∗ · · · ∗ Vm be a such a join, where V1 and V2 are the two non-singular

components. Each Vi corresponds to a subsurface Ri of Σ, that is, the vertices in Vi

correspond to regions that �ll Ri. Now, both R1 and R2 are non-separating and the

complement {Ri}mi=1 must be a collection of annuli, as otherwise X cannot be maximal.

Now, for i > 2 each component Vi is a single vertex. If this vertex does not correspond

to an annulus then we can �nd a region represented in A that intersects Ri and either

R1 or R2. The subcomplex spanned by X and a vertex corresponding to this region

is 2-sided join and so X is not maximal, a contradiction. Similarly, it must be that

each annulus Ri, for i > 2, has boundary components that are isotopic to boundary

components of R1 and R2. It follows then R1 has boundary components that are

isotopic to a 2-sided dividing set in ∂A. �
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Weak 2-sided vertices

We now move on to the weak 2-sided vertices of C∂A(Σ). Recall that these only occur

when one of the associated regions is a pair of pants or a punctured annulus, and

non-separating annuli are represented in A.

Suppose X is a 1-sided join with more than two components, that is, one non-

singular component and at least two singular components. Let u,w ∈ X be two such

singular components. We say thatX is a �lling join if there are no vertices x, y ∈ CA(Σ)

such that {u,w, x, y} spans a square. We call a �lling join X maximal if there exist no

vertices z in CA(Σ) \X such that X ∪ {z} spans a �lling join or a 2-sided join.

Lemma 2.6.2. If the complex CA(Σ) has no holes and no corks then the restriction of

the map

Φ :
{
weak 2-sided vertices of C∂A(Σ)

}
→
{
maximal �lling joins of CA(Σ)

}
is a bijection.

Proof. Let v be a weak 2-sided vertex of C∂A corresponding to the dividing set v. Let

L be the associated region of v region homeomorphic to either Σ3
0 or Σ2

0,1 and let R

be the other associated region of v. Let VR be the subcomplex spanned by vertices

corresponding to regions contained in R. Similarly, let VM be the subcomplex spanned

by the vertices corresponding to annuli with boundary components isotopic to boundary

components of R. Finally, de�ne VL to be the possibly empty subcomplex consisting of

the single vertex corresponding to L. Note that L contains no other regions represented

in A. It follows then that Φ(v) is equal to the join VL ∗VM ∗VR and that each vertex in

VM spans an edge with all other vertices in Φ(v). Furthermore, VR contains in�nitely

many vertices and is not a join, so Φ(v) is a 1-sided join in CA(Σ). Now, let u and

w be any two distinct vertices of VL ∪ VM corresponding to regions Qu, Qw ⊆ L. If

Qu ' L then there is no vertex z that spans an edge with both u and w. If Qu and

Qw are annuli then any region intersecting Qu and not Qw must also intersect every

region that intersects Qw. It follows that there are no vertices x, y that span a square

with u,w, hence Φ(v) is a �lling join of CA(Σ).

Suppose now that Φ(v) is not maximal. Then there exists a vertex z not in Φ(v)

that spans a �lling join or a 2-sided join with Φ(v). However, every vertex that is not

in Φ(v) also fails to span an edge with one of the vertices in VM . If L ∼= Σ2
0,1 then

it follows that if X := Φ(v) ∪ {z} spans a join, it must span a 1-sided join with a

sole singular component subcomplex. In particular X is not a �lling join or a 2-sided,

hence Φ(v) is maximal. Suppose then that L ∼= Σ3
0 and X spans a join that is 1-sided.

The join X must have two singular components u,w corresponding to non-separating

annuli. Furthermore, the complement of two such annuli in Σ is a single connected

region. We can therefore �nd vertices x, y ∈ CA(Σ) corresponding to annuli that span

a square with u and w. It follows that X is not a �lling join, hence Φ(v) is maximal.
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It remains to show that all maximal �lling joins correspond to weak 2-sided dividing

sets. Let X = V ∗v1∗· · ·∗vm be such a join where V is the non-singular component and

each vi is a vertex. Suppose the subcomplex V is spanned by region in the subsurface

R. Since X is 1-sided, R is connected. Furthermore, since X is a �lling join, R is

non-separating. Suppose both v1 and v2 do not correspond to annuli. There exists a

region represented in A that is disjoint from R and intersects both of these non-annular

regions. It follows that there exists a vetex z ∈ CA(Σ) \ X that spans a 2-sided join

with X, which is a contradiction. Thus, we have shown that at most one singular

component of X corresponds to a region other than an annulus. If v1 corresponds to

annulus that is not peripheral in R then the Mod±(Σ)-orbit of this annulus �lls the

complementary region of R. As above, this contradicts the maximality of X.

Suppose now that there are at least four singular components of X that correspond

to annuli. Any region with four boundary components contains a non-peripheral annu-

lus. Since R is non-separating, it has a unique complementary region Q with at least

four boundary components. Any such region is �lled by non-separating annuli hence

X is not maximal. We have therefore proven that there are at most three singular

vertices of X that correspond to annuli. Similar to the above argument, if Q has three

boundary components and contains a puncture then it is �lled by non-separating an-

nuli, hence X is not maximal. If Q has two boundary components it must contain a

puncture, otherwise X would only have two components. It follows that Q is either a

pair of pants or a punctured annulus, completing the proof. �

All 1-sided vertices

Finally, we deal with the 1-sided vertices of C∂A(Σ). If a 1-sided join X has two compo-

nent subcomplexes, that is, one singular component and one non-singular component,

we call it perfect. A perfect join X is maximal if there exist no vertices z in CA(Σ) \X
such that X ∪ {z} spans a join.

Lemma 2.6.3. If the complex CA(Σ) has no holes and no corks then the restriction of

the map

Φ :
{

1-sided vertices of C∂A(Σ)
}
→
{
maximal perfect joins of CA(Σ)

}
is a bijection.

Proof. We begin by showing that Φ(v) is a maximal perfect join if v is a 1-sided vertex

corresponding to the dividing set v. Let L and R be the two associated regions of v

such that L does not contain any non-homotopic dividing sets. By the de�nition of

∂A, this implies that if Q is a region in L represented in A then v ⊆ ∂Q. Since the

complex CA(Σ) does not contain any holes, it must be that v = ∂Q, hence Q ' L or

Q is an annulus. If Q is an annulus then either Q ' L (a non-separating annulus) or

L is not represented in A, as CA(Σ) has no corks. If Q is not an annulus we arrive at
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the same conclusion and hence Φ(v) is a perfect join. To see that it is maximal we

note that any vertex z not in Φ(v) cannot span an edge with the singular component

of Φ(v), hence Φ(v) and z do not span a join.

It remains to show that every maximal perfect join X = V ∗u is of this form. Let V

correspond to the region R. Since X is a maximal perfect join R must be a connected

non-separating subsurface. Let L be the complementary region of R. If L contains a

dividing set d ∈ ∂A that is not homotopic the boundary of L then it must contain

more than one region represented in A. It follows that we can �nd a vertex of CA(Σ)

that is not in X yet spans a join with X. This contradicts the maximality of X, so

L only contains dividing sets homotopic to its boundary, that is, X is the image of a

1-sided dividing set. �

2.6.2 Completing the proof

As a consequence of Lemmas 2.6.1, 2.6.2, and 2.6.3 we have that an automorphism of

CA(Σ) induces an automorphism on the vertices of C∂A(Σ). We will now show that this

automorphism extends to an automorphism of the entire complex. To that end, we

say that a subcomplex V of C∂A(Σ) is compatible with a subcomplex W if V = V1 ∗ V2

where V1 is not empty and V1 ⊆ W [13, Section 5]. We can now state the following

results of Brendle-Margalit. These facts are vital in proving Theorem 1.4.2.

Lemma 2.6.4 (Brendle-Margalit). Let u and v be vertices of the connected complex

of dividing sets C∂A(Σ). Then u and v span an edge if and only if Φ(u) is compatible

with Φ(v).

In other words, vertices u and v correspond to nested dividing sets if and only if

their images in Φ are compatible.

Lemma 2.6.5 (Brendle-Margalit). Let A ⊂ R(Σ) so that CA(Σ) has no holes, no

corks, and is connected.

1. Let R be represented in A; then there is a simplex in C∂A(Σ) that corresponds to

∂R.

2. The complex C∂A(Σ) is connected.

Before completing the proof of the main theorem of this chapter we note that there

is a partial order on vertices of CA(Σ). We say that u � v if the link of v is contained in

the link of u. A vertex is link-minimal when it is minimal with respect to this ordering.

Similar to the de�nition for dividing sets we say that a vertex of CA(Σ) is 1-sided if it

corresponds to a region R such that exactly one of its complementary regions contains

a region represented in A. Finally, if a vertex v corresponds to an annulus then we call

v an annular vertex.
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Proof of Theorem 1.4.2. Let CA(Σ) be a connected complex of regions with a g-small

vertex, an n-small vertex, and no holes or corks. We would like to show that

ηA : Mod±(Σ)→ Aut CA(Σ)

is an isomorphism. It follows from Lemma 2.1.1 that ηA is injective. It remains to show

that it is surjective. We have from Lemmas 2.6.1, 2.6.2, 2.6.3, and 2.6.4 that there is

a well-de�ned map

∂ : Aut CA(Σ)→ Aut C∂A(Σ)

where the the image under ∂(φ) of a vertex corresponding to a dividing set is determined

by the image under φ of the corresponding maximal join. We will show that ∂ is

injective.

Suppose ∂(φ) is the identity. Let v be a 1-sided, annular vertex of CA(Σ) corre-

sponding to an annulus with boundary components isotopic to the curve v, we need

to show that φ(v) = v. Let the regions R and Q be the associated regions of v. We

want to �nd a vertex of C∂A(Σ) corresponding to a curve which is not isotopic to the

curve v. Since CA(Σ) is connected then, up to renaming regions, it contains a vertex

w corresponding to a subsurface of Q that is not homotopic to R. If w corresponds to

an annulus then the desired vertex of C∂A(Σ) corresponds to the isotopy class of the

boundary components of the annulus. If w does not correspond to an annulus then

from Lemma 2.6.5 we can �nd the desired vertex. We do not consider the case where

w corresponds to the region Q itself as CA(Σ) does not contain corks.

Having found vertex in C∂A(Σ) that corresponds to a non-peripheral curve in Q we

deduce that there exist vertices of C∂A(Σ) which correspond to curves that �ll Q. Each

of these vertices is �xed by ∂(φ) by assumption and so it follows that φ(v) corresponds

to a region disjoint from Q. Since v is a 1-sided vertex and CA(Σ) has no holes we

have that φ(v) = v. It can be shown using a similar argument that if v is a 1-sided,

non-annular, link-minimal vertex of CA(Σ) then we can deduce that φ(v) = v.

Now assume that v is any other vertex of CA(Σ). Let Q be a complementary region

of a region Rv, such that v corresponds to Rv. Since v is not a 1-sided, annular vertex

and CA(Σ) does not contain holes, we have that there exist vertices that span edges

with v and that correspond to regions contained in Q. We will label the set of all such

vertices Q.
Suppose vertices u,w ∈ Q correspond to regions Ru, Rw ⊂ Q. De�ne R̃u, R̃w to

be the lowest genus nonseparating regions in Q with fewest punctures that contain Ru

and Rw respectively. Writing u ≤ w if R̂u ⊆ R̂w up to homotopy, we see ≤ is a partial

order on the vertices of Q. We claim that a ≤-minimal vertex of Q is either a 1-sided,

annular vertex or it is a 1-sided, non-annular, link-minimal vertex.

We prove the claim in three steps. First we assume that u is a 2-sided, non-annular

vertex. Let P be a complementary region of Ru that does not contain the boundary of

Q. There are no holes in CA(Σ), so there must exist a vertex w of CA(Σ) corresponding
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to a subsurface of P . This implies that w < u.

In the second case we assume that u is a 1-sided, non-annular vertex that is not

link-minimal. Since u is non-annular and there are no holes in CA(Σ) the region Ru

must be nonseparating. However u is not link-minimal, so there must be a vertex w

such that Rw ⊂ Ru, hence w < u.

Finally we suppose that u is a 2-sided, annular vertex. Denote by P the comple-

mentary region of Ru that does not contain the boundary of Q. Since CA(Σ) has no

corks, there must be a vertex w of CA(Σ) represented by a proper subsurface of P .

Once again, since CA(Σ) has neither holes nor corks, it must be that there exists a

vertex w < u.

We have therefore characterised all ≤-minimal vertices. We now have that one of

the following conditions hold;

1. there exist 1-sided, annular vertices and 1-sided, non-annular, link-minimal ver-

tices in Q corresponding to regions that �ll the region Q,

2. there exists a 1-sided annular vertex of CA(Σ) corresponding to the boundary of

Q and no vertices of CA(Σ) correspond to non-peripheral subsurfaces of Q, or

3. the region Q is homeomorphic to Σ2
0, Σ2

0,1, or Σ3
0 and Q contains 1-sided annular

vertices corresponding to non-separating annuli.

Indeed, if there exists a ≤-minimal vertex of Q corresponding to a non-peripheral

region in Q then by the above claim we must be in the �rst case. If however, all ≤-
minimal vertices of Q are peripheral then the boundary of Q may be connected or it

may not. If it is connected then since there are no corks, the region Q is not represented

in A and we are in the second case. If the boundary of Q is not connected then each

of its boundary components must be nonseparating curves and hence nonseparating

annuli are represented in A. If Q is homeomorphic to anything other than an annulus,

a punctured annulus, or a pair of paints then we can �nd nonseparating annuli in that

�ll Q. This contradicts our assumption that all ≤-minimal vertices are peripheral, so

we must be in the third case.

Given a vertex v, let V be the set of all the 1-sided, annular vertices and 1-sided,

non-annular, link-minimal vertices in the link of v. We can now conclude that v is the

unique vertex of CA(Σ) whose link Lk(v) contains V . Since we have shown that such

vertices are �xed by φ it follows that φ(v) = v. Hence ∂ is injective.

From Lemma 2.6.5 the complex C∂A(Σ) is connected and by Lemma 2.5.7 the natural

homomorphism η∂A is an isomorphism. The diagram

Mod±(Σ) Aut CA(Σ)

Aut C∂A(Σ)

ηA

∼=
η∂A ∂
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is commutative from the de�nition of ∂. Finally we may conclude that both ηA and ∂

are isomorphisms, completing the proof. �



Chapter 3

Geometric normal subgroups

Throughout this chapter we will assume that all surfaces have empty boundary. We

write g for the genus of a surface Σ and allow for the possibility of n punctures.

We prove Theorem 1.2.1 which determines the automorphism groups of many normal

subgroups of Mod(Σ). A crucial ingredient to the proof is an application of Theorem

1.4.2, which we proved in the last chapter. At the end we include the proof of a

result discussed in Section 1.3.1. Namely, that the automorphism groups AutBn and

AutBn/Z are isomorphic, where Z is the centre of the braid group Bn.

A great deal of the mathematical machinery used to prove Theorem 1.2.1 was

developed by Brendle-Margalit to prove the analogous result for closed surfaces. In

fact, many of the lemmas and proofs from their paper carry over to this more general

case. For this reason we state a number of results and give appropriate references to

the paper of Brendle-Margalit [13, Section 6].

Before moving on to the proof we note that the results on braid groups discussed

in Section 1.3.1 rely on a slightly di�erent version of Theorem 1.2.1.

Proposition 3.0.1. Let N be a normal subgroup of Mod(Sn, p) such that N contains an

element with support contained in a disc disjoint from p with at most n/3 punctures.

Then AutN is isomorphic to the normaliser of N in Mod±(Sn+1). Furthermore, if

N is normal in Mod±(Sn+1) then the group of abstract commensurators CommN is

Mod±(Sn+1).

The proof of Proposition 3.0.1 can be found in a paper by the author [55]. There

is very little di�erence between this special case and the results of this chapter.

3.1 Method

We will de�ne a complex of regions CN(Σ) related to a normal subgroup N of Mod(Σ).

The vertices of CN(Σ) will correspond to the supports of so-called basic subgroups of

N . We �rst state some results which arise from the study of the Nielsen-Thurston

classi�cation of elements of Mod(Σ).

66
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Let R be region of Σ. A partial pseudo-Anosov element of Mod(Σ) is the image of

a pseudo-Anosov element of Mod(R) under the map Mod(R) → Mod(Σ) induced by

the inclusion of R in the surface Σ. The region R is called the support of the partial

pseudo-Anosov element and is unique up to isotopy; see [8] for more details.

3.1.1 Pure mapping classes

Using the terminology of Ivanov [38] we call a mapping class [f ] pure if it can be written

as a product [f1] . . . [fk] where;

1. each [fi] is a partial pseudo-Anosov element or a power of a Dehn twist; and

2. if i 6= j then the supports of [fi] and [fj] have disjoint non-homotopic represen-

tatives.

The [fi] are called the components of [f ]. We note that the pure elements of

Mod±(Σ) are also elements of Mod(Σ). Furthermore, while the components of a pure

mapping class are not canonical in general, the support of a pure element (the union

of the supports of the components) is canonical [8].

Pure subgroups

We call a subgroup of Mod(Σ) pure if each of its elements is pure. The support of a

pure subgroup is well-de�ned and is invariant under passing to �nite index subgroups.

Let B be a �nite set of marked points in a surface Σ. We denote by PMod(Σ,B)

the subgroup of Mod(Σ,B) consisting of elements that induce the trivial permutation

of the marked points in B. If R is a component of the support of a pure subgroup H,

then there is a well de�ned reduction map

H → PMod(R,B)

where R is the surface obtained by collapsing each boundary component of R to a

marked point and B is the set of such points.

Recall that two pseudo-Anosov elements with equal support are independent if their

corresponding foliations are distinct. Similarly two partial pseudo-Anosov elements are

independent if their images under the reduction map are independent pseudo-Anosov

elements of PMod(R,B), otherwise they are dependent.

We are now able to state a key fact concerning the commutativity of pure elements.

Crucially, this only applies to pure elements that belong to a pure subgroup. The result

follows from the ideas given above and in [8] and [38, Lemma 5.10].

Fact 3.1.1. Two elements of a pure subgroup commute if and only if;

1. the supports of their components are pairwise disjoint or equal; and
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2. in the case where two partial pseudo-Anosov components have equal support, the

components are dependent.

In particular if two pure elements commute then all of their nontrivial powers commute

and if two pure elements do not commute then all of their nontrivial powers fail to

commute.

Note that this is not the case for all non-commuting pure mapping classes. Paris-

Bonatti construct examples of this type, however such elements do not generate a pure

subgroup [10].

The next lemma uses Fact 3.1.1 to relate the centraliser of a non-abelian pure

subgroup H and the complement of one of the components of its support.

Lemma 3.1.2 (Brendle-Margalit). Let H be a pure non-abelian subgroup of Mod(Σ).

Then there is a component R of the support of H so that the reduction map H →
PMod(R,B) has non-abelian image. For any such R, the centraliser of H is supported

in the complement of R.

The proof of Lemma 3.1.2 is given in [13, Lemma 6.2]. In general a subgroup of

a normal subgroup N does not have connected support. As, however, we are aiming

to de�ne a complex of regions where vertices correspond to subgroups of N this issue

must now be addressed.

Lemma 3.1.3 (Brendle-Margalit). Let N be a pure normal subgroup of Mod(Σ) and

let G be a �nite index subgroup of N . Let [f ] be an element of G and let R be a region

of the surface so that some component of [f ] has support contained as a non-peripheral

subsurface of R and all other components have support that is either contained in or

disjoint from R. Let J be the subgroup of G consisting of all elements supported in R.

Then

1. the subgroup J is not abelian;

2. the subgroup J contains an element with support R; and

3. the centraliser CG(J) is supported in the complement of R.

The proof of this lemma depends upon the fact that N is pure. If [f ] is an element

of N with a component whose support is a non-annular region R then the commutator

trick allows us to �nd an element of N whose support is R. The proof is detailed in the

paper of Brendle-Margalit along with a more in depth discussion of the commutator

trick [13, Section 6.2].

3.2 Vertices of the complex

We shall turn our attention to the vertices of the complex related to N . First, recall

from Section 1.2 that a mapping class is small if its support is contained in a single
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boundary region R such that; n ≥ 3n(R) − 1 when g = 0, n ≥ max{3n(R), 7} when
g = 1, and in the general case we say a mapping class is is small if

g ≥ g(R) + 1 and n ≥ 3n(R).

Furthermore, recall from Section 1.4.4 that R a core region of A ⊂ R(Σ) is one where

R̂ ⊆ Q̂ ⇒ R̂ ' Q̂,

for any region Q represented in A.

The complex of regions CN(Σ) we construct in the next section will have vertices

that correspond to the supports of so-called basic subgroups. Our goal now is to show

that these supports are regions of the surface, that the extended mapping class group

acts on the set of supports, and that there is a basic subgroup of N whose support is a

core region. By de�nition, if one such support is a core region and N contains a small

element, our complex CN(Σ) will contain both a g-small and an n-small vertex.

Basic subgroups

There exists a strict partial order on subgroups of G as follows:

H ≺ H ′ if CG(H ′) ( CG(H).

This means that `≺' is a transitive binary relation, but no subgroup is related to itself.

We say a subgroup of G is a basic subgroup if among all non-abelian subgroups of G it

is minimal with respect to the strict partial order.

The next lemma tells us that the supports of basic subgroups are indeed suitable

candidates from which we can build a complex of regions. We de�ne AN ⊂ R(Σ) to

be the set containing the Mod±(Σ)-orbits of the supports of all basic subgroups.

Lemma 3.2.1 (Brendle-Margalit). Let N be a pure normal subgroup of Mod(Σ) that

contains a small element and let G be a �nite index subgroup of N .

1. The support of a basic subgroup of G is a non-annular region of Σ.

2. If B is a basic subgroup of N then B ∩G is a basic subgroup of G; similarly, any

basic subgroup of G is a basic subgroup of N .

3. N contains a basic subgroup whose support is core region of AN .

4. Mod±(Σ) acts on the set of supports of basic subgroups of G.

Proof. To prove the �rst statement we let H be a basic subgroup of G. The support

of H is not empty and is not an annulus as H is not abelian by the de�nition of basic

subgroup. Suppose the support of H is the entire surface Σ. From Lemma 3.1.2 it

follows that CG(H) is trivial. Now, since G is �nite index it contains a small element
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[f ] supported in a single boundary region R such that g ≥ 3(R) and n ≥ 3(R) − 1.

From Lemma 3.1.3 we can �nd a non-abelian subgroup J containing an element [j]

with support R. The centraliser CG(J) contains an element of the form [hjh−1] for

some [h] ∈ Mod±(Σ). Since J is not trivial this contradicts the fact that H is basic,

thus the support of H is not the entire surface.

In order to �nish the proof of the �rst statement we need to show that the support

of H is connected, hence a region. Assume then that the support of H is not connected.

By Lemma 3.1.2 there exists a component R of the support of H so that the image

of the reduction map H → Mod(R,B) is not abelian. There must then be an element

of H with a component whose support is a non-peripheral subsurface of R. This

satis�es the conditions of Lemma 3.1.3 so the subgroup J ⊂ G consisting of all elements

supported in R is not abelian. By Lemma 3.1.2 the centraliser CG(H) is supported in

the complement of R, hence CG(H) ⊆ CG(J). In order to contradict our assumption

that the support of H is not connected we will show that there is an element of

CG(J) \ CG(H). Thus, implying J ≺ H.

Let [h] be an element of H whose support is not contained in R. There exists a

non-annular region Q disjoint from R that contains a component of the support of

[h] as a non-peripheral subsurface. Once again, this satis�es Lemma 3.1.3 so there

exists an element of CG(J) not in CG(H). This contradicts the minimality of the basic

subgroup H, so the support of H must be connected. This completes the proof of the

�rst statement.

The proofs of the second statement and fourth statement are the same as the

analogous result of Brendle-Margalit [13, Lemma 6.4].

Now we will prove the third statement. We have that G contains a non-trivial pure

element [f ] that is small. Let the support of this [f ] be the region Q. We can �nd a

region R1 contained in Q satisfying the conditions of Lemma 3.1.3. Let

JR1 = {[h] ∈ G | the support of [h] is contained in R1}.

Now, from Lemma 3.1.3, JR1 is not abelian and CG(JR1) is precisely the elements of G

with support disjoint from R1. We will show that JR1 contains a basic subgroup. We

assume that JR1 is not itself minimal, so it contains a non-abelian subgroup J ′R1
≺ JR1 .

By Lemma 3.1.2 the support of J ′R1
has a component that is a subsurface R2 which is

non-peripheral in R1. We de�ne JR2 in the same way as JR1 and we see that JR2 ≺ JR1 .

Repeating this process algorithmically we will arrive at a basic subgroupH of JR1 whose

support is a core region of AN in Q. By the second statement of this lemma H is also

basic in G, completing the proof. �
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3.3 A complex of regions for a normal subgroup

Let N be a �xed pure normal subgroup of Mod(Σ) with a small element. We can now

de�ne a complex of regions associated to N . We �rst de�ne C]N(Σ) to be the complex

of regions whose vertices correspond to the supports of the basic subgroups of N . From

Lemma 3.2.1(1) we have that this complex of regions has no corks and from Lemma

3.2.1(3) we have that it contains a both a g-small and an n-small vertex. This complex

may however be disconnected and may contain holes.

Recall from Section 1.4.3 that if v is a hole corresponding to the region R then the

�lling of v is the union of R and the complementary regions containing no subregions

represented in A. If a complex of regions has holes then we de�ne its �lling to be the

complex de�ned by replacing holes with vertices corresponding to their �llings.

We de�ne C[N(Σ) to be the �lling of C]N(Σ). Brendle-Margalit show that the complex

C[N(Σ) has no holes, no corks, and contains a small vertex [13, Lemma 2.4]. Further-

more, they show that the small vertices of C[N(Σ) lie in the same connected component

of the complex [13, Lemma 6.5]. We de�ne this connected component to be the com-

plex of regions CN(Σ). It is easy to check that since C[N(Σ) has no holes and no corks

the complex CN(Σ) has no holes and no corks. We have therefore proven the following

result.

Proposition 3.3.1. Let N be a pure normal subgroup of Mod(Σ) that contains a small

element. Then the natural map

Mod±(Σ)→ Aut CN(Σ)

is an isomorphism.

3.3.1 Action of the group of abstract commensurators

Recall from Section 1.2 that the group of abstract commensurators is the group of

equivalence classes of isomorphisms between �nite index subgroups of G, where two

isomorphisms are equivalent if they agree on some �nite index subgroup. Now, for any

basic subgroup B we de�ne vB to be the vertex corresponding to the support of B. We

can de�ne the map

CommN → Aut CN(Σ)

as follows: if α : H1 → H2 is an isomorphism between �nite index subgroups of N and

α? is the image in Aut CN(Σ) of the equivalence class of α, then for any basic subgroup

B of N we have

α?
(
vB
)

= vα(B∩H1).

The fact that this makes sense is a consequence of Lemma 3.2.1(2). Explicitly, B ∩H1

is a basic subgroup of H1 and since α is an isomorphism, α(B∩H1) is a basic subgroup

of H2, therefore it is a basic subgroup of N .
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As well as being a set map, Brendle-Margalit show that this construction yields a

well de�ned group homomorphism [13, Proposition 6.8].

Proposition 3.3.2 (Brendle-Margalit). Let N be a pure normal subgroup of Mod(Σ)

that contains a small element. The map

CommN → Aut CN(Σ).

de�ned above is a well de�ned homomorphism.

3.4 Geometric normal subgroups with small elements

In this section we will prove Theorem 1.2.1 which states that any member of a wide class

of normal subgroups of Mod(Σ) are geometric. To simplify notation, we will denote

mapping classes by lower case letters, for example f ∈ Mod(Σ). Note that in other

sections of this thesis we tend to write homeomorphisms in this way. We denote by

αf the automorphism of Mod(Σ) given by conjugation by f ∈ Mod±(Σ). If f belongs

to the normaliser of N then we may consider αf as an element of AutN . If there is a

restriction of αf that is an isomorphism between �nite index subgroups of N then we

can think of the equivalence class [αf ] as an element of CommN . For f ∈ Mod(Σ) let

f? be its image in Aut CN(Sn) by the isomorphism in Proposition 3.3.1. Throughout

this section we will use the fact that f?(vB) = vfBf−1 [13, Lemma 6.7(4)].

Proof of Theorem 1.2.1. Let N be a normal subgroup of Mod(Σ). Let M be the

normaliser of N in Mod±(Σ), either Mod(Σ) or Mod±(Σ). Let P be a pure normal

subgroup of �nite index inM (this always exists, as shown by Ivanov [38]). We de�ne

the following sequence of homomorphisms;

M Φ1−→ AutN
Φ2−→ CommN

Φ3−→ CommN ∩ P Φ4−→ Aut CN∩P (Σ)
Φ5−→ Mod±(Σ).

• The map Φ1 is de�ned so that Φ1(f) = αf ,

• the map Φ2 sends an element of AutN to its equivalence class in CommN ,

• the map Φ3 sends an element of CommN to the equivalence class of any restric-

tion that is an isomorphism between �nite index subgroups of N ∩ P ,

• the map Φ4 is de�ned in Proposition 3.3.2, and

• the map Φ5 is de�ned in Proposition 3.3.1.

We claim that each Φi is injective and that

Φ5 ◦ Φ4 ◦ Φ3 ◦ Φ2 ◦ Φ1 = IdM .
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We show that Φ1 is injective by using similar methods to that of Lemma 2.1.1. If

f ∈ M commutes with an element h ∈ N then the reduction system of h is �xed by

f . As there exists an element of N with nonempty reduction systems, elements of the

M-orbit of this reduction system �lls an associated region of an arbitrary curve c and

hence �xes c. Similar to Lemma 2.1.1, the injectivity of Φ1 follows.

Now let α ∈ AutN be an element of the kernel of Φ2 and let f, h ∈ N where h

is pseudo-Anosov. Since Φ2(α) is the identity, the restriction of α to a �nite index

subgroup G of N is also the identity. There is some m > 0 so that both hm and

(fhf−1)m lie in G and so

fhmf−1 = (fhf−1)m = α((fhf−1)m) = α(f)α(hm)α(f)−1 = α(f)hmα(f)−1.

It follows that f−1α(f) commutes with hm and so �xes the unstable foliation of h.

Since h was arbitrary and N is normal inM it follows that f−1α(f) �xes all curves.

Again, this implies that f−1α(f) is the identity and so α(f) = f for all f ∈ N .

Now, the map Φ3 is an isomorphism since a �nite index subgroup of N ∩ P is also

�nite index subgroup of N .

To show that Φ4 is injective we �rst �x an isomorphism α : H1 → H2 between

�nite index subgroups that represents an element [α] of CommN ∩ P . We denote

the image of [α] in Aut CN∩P (Σ) by α? as in Proposition 3.3.2. Suppose α? is the

identity. We will show that [α] is the identity. Let h ∈ H1. Since the natural map

Mod±(Σ)→ Aut CN∩P (Σ) is an isomorphism it su�ces to show that the images of α(h)

and h are equal. We denote these images α(h)? and h? respectively.

Let B be a basic subgroup of N . By Lemma 3.2.1 (2) we can assume that B ⊂ H1.

It follows that

h?
(
vB
)

= vhBh−1 = α?
(
vhBh−1

)
= vα(hBh−1) = vα(h)α(B)α(h)−1

= α(h)?
(
vα(B)

)
= α(h)?α?

(
vB
)

= α(h)?
(
vB
)
.

It follows that h? = α(h)?, as desired.

As mentioned previously, the map Φ5 is an isomorphism due to Proposition 3.3.1.

By construction, the composition is the identity on M and the claim follows. This

completes the proof of the �rst statement, that is, ifM = Mod±(Σ) then the natural

homomorphisms

Mod±(Σ)→ AutN → CommN

are isomorphisms. Furthermore, if CommN ∼=M = Mod(Σ) then the composition is

again the identity which implies that Mod(Σ)→ AutN is an isomorphism.

The �nal case we must consider is whenM = Mod(Σ), but the image of Φ5◦Φ4◦Φ3
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is Mod±(Σ). We can now construct the following commutative diagram;

Mod±(Σ)

Aut CN∩P (Σ) Mod(Σ)

CommN ∩ P AutN

CommN

Φ6

Φ5

∼=

Φ1Φ4

Φ3

∼=
Φ2

where Φ6 is the natural homomorphism. We will show that Φ6 is the left inverse of

Φ5 ◦ Φ4 ◦ Φ3, that is,

Φ6 ◦ Φ5 ◦ Φ4 ◦ Φ3([α]) = [α].

We �x an isomorphsim α : H1 → H2 between �nite index subgroups that represents

an element [α] ∈ CommN ∩P ∼= CommN . As usual we denote by α? the image of [α]

in Aut CN∩P (Σ). Assume that Φ5(α?) = f ∈ Mod±(Σ). We need to show that [α] is

equal to the restriction of αf , the conjugation map de�ned by f .

To that end, let h ∈ H1. We want to show that α(h) = fhf−1. For any j ∈
Mod±(Σ) let j? be its image in Aut CN∩P (Σ). In particular, we have that α? = f?.

Since Φ5 is an isomorphism it su�ces to show that (fhf−1)? = α(h)?.

Let B be a basic subgroup of N . Without loss of generality we assume that B is

contained in H1. We now have

(fh)?
(
vB
)

= f?h?
(
vB
)

= α?h?
(
vB
)

= α?
(
vhBh−1

)
= vα(hBh−1)

= vα(h)α(B)α(h−1) = α(h)?
(
vα(B)

)
= α(h)?α?

(
vB
)

= α(h)?f?
(
vB
)

= (α(h)f)?
(
vB
)
.

It follows that (fh)? = (α(h)f)?, that is, α(h) = fhf−1, as required. Thus, we have

shown that Φ6 is a left inverse of Φ5 ◦ Φ4 ◦ Φ3. Since the diagram commutes however,

we have that it is an isomorphism. We can use this to prove that Φ1 is surjective, hence

an isomorphism. Let α ∈ AutN , denote Φ2(α) by [α], and let f = Φ5 ◦ Φ4 ◦ Φ3([α]).

From the argument above we have that Φ6(f) = [α], that is, [αf ] = [α]. We will now

show that αf = α. Since Mod(Σ) is the normaliser of N and the diagram commutes,

this implies that α belongs to the image of Φ1 and that it is surjective.

We want to show that α(j) = fjf−1 for all j ∈ N . Since [α] = [αf ], there is a �nite

index subgroup G of N such that the restriction of α to G agrees with the restriction of

αf to G. Let h be a pseudo-Anosov element of N . There is some m > 0 such that hm

and jhmj−1 lie in G. We have that α(hm) = fhmf−1 and α(jhmj−1) = fjhmj−1f−1

and so

fjhmj−1f−1 = α(jhmj−1) = α(j)α(hm)α(j)−1 = α(j)fhmf−1α(j)−1.
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Hence

(f−1α(j)−1fj)hm = hm(f−1α(j)−1fj),

and therefore f−1α(j)−1fj �xes the unstable foliation of h. As above, this implies that

f−1α(j)−1fj is the identity. So α(j) = fjf−1, as desired. �

3.5 Automorphisms of the braid group

Recall that Theorem 1.3.1 establishes the automorphism group AutN for a normal

subgroup N of the braid group Bn that contains no central elements. In particular,

this result does not apply to Bn itself. We now address this technical issue in order to

recover a result of Dyer-Grossman that computes AutBn [23].

Characteristic subgroups

Let G be any group. Given a characteristic subgroup, that is a subgroup C < G such

that φ(C) = C for all φ ∈ AutG, there is a well de�ned natural group homomorphism

AutG → AutG/C. This is of use to us because the centre of a group is always

characteristic.

It is an interesting property of the braid group that the automorphism groups of

Bn and Bn/Z are isomorphic, see the work of Charney-Crisp [18] for example. We will

show this isomorphism directly using the natural homomorphism discussed above.

Theorem 3.5.1. For n ≥ 3 the natural homomorphism

AutBn → AutBn/Z

is an isomorphism.

Proof. First we will show that the homomorphism is surjective. Any φ ∈ AutBn/Z

is determined by where it sends the generators {[σi]}. Every element of [σi] can be

written as δiz
k for some �xed δi 6∈ Z, and where z is the generator of Z. It can be seen

that the corresponding well de�ned set map φ : Bn → Bn, given by φ(σi) = δi, is an

isomorphism. This de�nes a right inverse for the natural homomorphism AutBn →
AutBn/Z and hence proves it is surjective.

To show that it is injective suppose φ ∈ AutBn is sent to the trivial automorphism

of Bn/Z. It follows that for all i there exists some zi ∈ Z such that φ(σi) = ziσi. Since

φ is a homomorphism and each zi is central we have that

φ(σiσi+1σi) = φ(σi)φ(σi+1)φ(σi)

= ziσizi+1σi+1ziσi

= z2
i zi+1σiσi+1σi.
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Similarly φ(σi+1σiσi+1) = ziz
2
i+1σi+1σiσi+1. Since σiσi+1σi = σi+1σiσi+1 it must be that

zi = zi+1 for all i.

Since Z is characteristic and isomorphic to Z, either φ(z) = z or φ(z) = z−1 for all

z ∈ Z. In the second case, since (σ1 . . . σn−1)n ∈ Z we have that

(σ1 . . . σn−1)−n = φ((σ1 . . . σn−1)n) = z
n(n−1)
i (σ1 . . . σn−1)n.

Hence z
(1−n)
i = (σ1 . . . σn−1)2. This implies that (σ1 . . . σn−1)2 ∈ Z and so 2 must be a

multiple of n, which is contradiction as n ≥ 3, so φ(z) = z. Similar to the argument

above it follows that

(σ1 . . . σn−1)n = z
n(n−1)
i (σ1 . . . σn−1)n.

We see then that z
n(n−1)
i is the identity. Since n ≥ 3 it must be that zi is the identity

and so φ(σi) = σi for all i, completing the proof. �

Integral to this proof is the structure of Z and the braid relation σiσi+1σi =

σi+1σiσi+1. If N is normal subgroup of Bn with N ∩ Z ∼= Z then we cannot gen-

eralise the above proof unless similar tricks are found to mirror this manipulation of

the braid relations.



Chapter 4

Subgroups from covering spaces

The work presented in this chapter is joint with Tyrone Ghaswala of the University of

Manitoba. In it, we analyse two subgroups of mapping class groups that arise naturally

from covering spaces; namely the liftable mapping class group and the symmetric

mapping class group. In particular we restrict our focus to case where the surfaces

have non-empty boundary.

We begin in Section 4.1 by giving a proof of the Birman-Hilden Theorem for surfaces

with boundary. In Section 4.2 we review and prove some results concerning the funda-

mental groupoid, a useful tool in studying mapping class groups of covering spaces. In

Section 4.3 we prove Theorems 1.5.2 and 1.5.3, which classify all cases where either of

the liftable or symmetric mapping class groups coincide with the mapping class groups

of their respective surfaces. Finally, we apply some of these results and techniques in

Section 4.4 to investigate an in�nite family of braid group embeddings into mapping

class groups of surfaces.

4.1 The Birman-Hilden Theorem with boundary

In this section we give a proof of the Birman-Hilden Theorem in the case of surfaces with

boundary. The proof relies upon a version of the Alexander trick for arcs and multi-

arcs on surfaces. These are analogous to the more well known notions of curves and

multi-curves. This approach is similar in nature to the proofs given by Winarski [53]

and by Farb-Margalit for the hyperelliptic case [27]. We begin with some background

results on the level of homeomorphisms.

4.1.1 Covering spaces of surfaces with boundary

Let p : Σ̃ → Σ be a regular, �nite-sheeted, possibly branched covering space with

deck group D < Homeo+(Σ̃). Recall that a homeomorphism f̃ ∈ Homeo+(Σ̃) is �bre-

preserving with respect to p if

p(x) = p(y) ⇒ pf̃(x) = pf̃(y) for all x, y ∈ Σ̃.

77
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The set of all �bre-preserving homeomorphisms of Homeo+(Σ̃) forms a subgroup de-

noted SHomeo+(Σ̃). Here, the `S' indicates the intrinsic symmetry of the elements of

SHomeo+(Σ̃) with respect to p. If B is the set of branch points in Σ then there is a

well de�ned homomorphism

Π : SHomeo+(Σ̃)→ Homeo+(Σ,B)

given by Π(f̃)(x) := pf̃(x̃) where x̃ ∈ Σ̃ is any element such that p(x̃) = x. It is easy

to see that for any d ∈ D we have that Π(d) is the trivial homeomorphism of Σ and in

fact we have that D = ker Π. We will write f for the image Π(f̃) and it follows that

the square

Σ̃ Σ̃

Σ Σ

f̃

p p

f

commutes. Furthermore, SHomeo+(Σ̃) is the normaliser of D in Homeo+(Σ̃). One

direction of this proof follows from the commuting square given above and the other

uses the fact that the homomorphism Π is well de�ned.

As stated previously, our focus is on mapping class groups of surfaces with boundary.

Recall from Chapter 1 that the mapping class group of a surface with boundary includes

only the isotopy classes of homeomorphisms that �x the boundary pointwise. We shall

therefore consider the intersection

SHomeo+(Σ̃, ∂Σ̃) := SHomeo+(Σ̃) ∩ Homeo+(Σ̃, ∂Σ̃),

that is, the subgroup of �bre-preserving homeomorphisms that �x the boundary point-

wise. Note that all such homeomorphisms are orientation-preserving, so the superscript

`+' is super�uous. Furthermore, since D is �nite, no nontrivial element of D is an el-

ement of SHomeo+(Σ̃, ∂Σ̃). We do however have the following relationship with the

deck group.

Proposition 4.1.1. Let C be the centraliser of the deck group D in Homeo(Σ̃). Then

SHomeo+(Σ̃, ∂Σ̃) = C ∩ Homeo+(Σ̃, ∂Σ̃).

Proof. It su�ces to show that any homeomorphism f̃ that �xes the boundary and is

in the normaliser of D is in the centraliser of D. Let x̃ ∈ ∂Σ̃ and let d ∈ D. It is

clear then that d(x̃) ∈ ∂Σ̃. Since f̃ �xes the boundary pointwise we have f̃−1df̃(x̃) =

f̃−1d(x̃) = d(x̃). Since f̃ is in the normaliser of D, f̃−1df̃ ∈ D. Since the deck group

acts freely on ∂Σ̃ we have f̃−1df̃ = d, completing the proof. �

Recall that we de�ne B to be the set of branch points in Σ. We say that a home-

omorphism f ∈ Homeo+(Σ,B) lifts if there exists a homeomorphism f̃ ∈ Homeo+(Σ̃)
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T̃

T

Figure 4.1: A 2-sheeted cover p : Σ2
0 → Σ2

0. The lift of Dehn twist T ∈ LHomeo+(Σ2
0)

does not preserve the boundary pointwise.

such that pf̃ = fp. In this case we say that f̃ is a lift of f . As with �bre-preserving

homeomorphisms, the set LHomeo+(Σ,B) ⊂ Homeo+(Σ,B), consisting of homeomor-

phisms that lift, forms a subgroup. It follows then that

Π : SHomeo+(Σ̃)→ LHomeo+(Σ,B)

is surjective. Any �bre-preserving homeomorphism of Σ̃ that �xes ∂Σ̃ pointwise must

project to a homeomorphism of Σ that �xes ∂Σ pointwise. Since the only element of

D < SHomeo+(Σ̃) that �xes ∂Σ̃ pointwise is the identity, restricting the domain of Π

gives us an injective homomorphism

Π : SHomeo+(Σ̃, ∂Σ̃)→ LHomeo+(Σ,B) ∩ Homeo+(Σ, ∂Σ).

We shall de�ne LHomeo+(Σ, ∂Σ,B) := Π(SHomeo+(Σ̃, ∂Σ̃)). That is, the set of home-

omorphisms of Σ �xing ∂Σ pointwise that lift to homeomorphisms of Σ̃ that �x ∂Σ̃

pointwise. While it is tempting to de�ne LHomeo+(Σ, ∂Σ,B) simply as the intersec-

tion of the sets LHomeo+(Σ,B) and Homeo+(Σ, ∂Σ), in general there exist boundary

preserving homeomorphisms of Σ that lift to homeomorphisms of Σ̃ that do not �x the

boundary ∂Σ̃.

For example, Figure 4.1 shows a 2-sheeted covering space p : Σ2
0 → Σ2

0. The deck

group is generated by the hyperelliptic involution de�ned by rotation about the central

vertical axis of the annulus. While this is a well de�ned homeomorphism of Σ2
0, it

does not preserve the boundary pointwise. We see then that T ∈ LHomeo+(Σ2
0,B) but

T 6∈ LHomeo+(Σ2
0, ∂Σ2

0,B). Of course, as this cover is unbranched the set of branch

points B is empty.

From our de�nitions it is clear that

Π : SHomeo+(Σ̃, ∂Σ̃)→ LHomeo+(Σ, ∂Σ,B)
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is an isomorphism. Now, for any surface we may de�ne the natural homomorphism

P : Homeo+(Σ, ∂Σ)→ Mod(Σ).

What the Birman-Hilden Theorem (Theorem 1.5.1) says is that the corresponding

groups

SMod(Σ̃) := P
(

SHomeo+(Σ̃, ∂Σ̃)
)

and LMod(Σ,B) := P
(

LHomeo+(Σ, ∂Σ,B)
)

are also isomorphic. The rest of Section 4.1 will be dedicated to proving this result.

4.1.2 Multi-arcs

Recall that we de�ne an arc in Σ to be a continuous map α̂ : [0, 1] ↪→ Σ if {α̂(0),

α̂(1)} ⊂ ∂Σ and α̂(t) 6∈ ∂Σ for all t ∈ (0, 1). We will abuse notation by writing α̂ for

the image of the arc in Σ. We call the points α̂(0) and α̂(1) the endpoints of the arc α̂.

We call two arcs α̂ and β̂ isotopic if they have the same endpoints and there exists

an isotopy between them that only passes through arcs with the same endpoints. If α̂

and β̂ are isotopic we write α̂ ∼ β̂.

Lemma 4.1.2. Let α̂ and β̂ be isotopic arcs in a surface Σ. There exists an arc γ̂

disjoint from both α̂ and β̂ everywhere except the endpoints such that α̂ ∼ γ̂ ∼ β̂.

Proof. Let α̂ and β̂ have endpoints at x, y ∈ ∂Σ. If they are disjoint everywhere except

at x and y then there exists an isotopy passing thorough some arc γ̂ satisfying the

above conditions.

Suppose then that α̂ and β̂ intersect away from the endpoints. There exists a disc

R ⊂ Σ containing both α̂ and β̂ such that

R ∩ ∂Σ = R ∩ α̂ = R ∩ β̂ = {x, y}.

We de�ne γ̂ to be one of the two segments of ∂R with endpoints at x and y, completing

the proof. �

We de�ne a multi-arc α in Σ to be a set of arcs {α̂i}Ni=1 where α̂i ∩ α̂j = ∅ for all
distinct values of i and j. We call α̂i a component arc of α for each i ∈ {1, . . . , N}.
Note that component arcs of a multi-arc can never intersect at the boundary ∂Σ.

Two multi-arcs α and β are isotopic if they have the same number of component

arcs and for each component arc of α there is a unique isotopic component arc of β.

Let α and β be isotopic such that α̂i ∼ β̂i are the corresponding component arcs where

i = 1, 2, ..., N . If α̂i ∩ β̂j = ∅ for all i 6= j then we say that α and β are distinctly

isotopic.

We will now state and prove a version of the Alexander trick for multi-arcs.
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Lemma 4.1.3 (The Alexander trick). Let Σ be a surface with boundary and let f ∈
Homeo+(Σ, ∂Σ). Let α = {α̂1, . . . , α̂N} be a multi-arc in Σ.

1. If there is a permutation σ of {1, ..., N} so that f(α̂i) is isotopic to α̂σ(i) for each

i, then the multi-arcs f(α) and α are isotopic.

If we regard α as a disconnected graph Γ in Σ, with vertices at the endpoints of arcs,

then the composition of f with this isotopy gives an automorphism f̄ of Γ.

2. Suppose now that α �lls Σ. If f̄ �xes each vertex and edge of Γ with orientations,

then f is isotopic to the identity.

Proof. The arcs f(α̂i) and α̂σ(i) are isotopic for each i and so the multi-arcs f(∪α̂i)
and ∪α̂σ(i) are isotopic. Since ∪α̂σ(i) = ∪α̂i this proves the �rst statement.

As in the statement of the lemma, the homeomorphism f induces an automorphism

f̄ ∈ Aut(Γ). Since f̄ �xes the vertices and edges of Γ with orientations and f is

orientation-preserving, it follows that f preserves the sides of Γ. So, up to isotopy, f

�xes Γ pointwise and sends each component of Σ \ Γ to itself.

To prove the second statement, we have that Σ \Γ is homeomorphic to the disjoint

union of �nitely many discs and discs with a single marked point. Every homeomor-

phism of such a disc is isotopic to the identity homeomorphism and so it follows that

f is isotopic to the identity homeomorphism of Σ. �

Symmetry

We call a multi-arc symmetric with respect to a regular, �nite-sheeted cover p : Σ̃→ Σ

with deck group D if for all d ∈ D we have that d(α) = α.

A symmetric multi-arc α is called self symmetric if there exists some component

arc of α, say α̂i, such that α̂i(0) = d(α̂i(1)) for some d ∈ D. Note that self symmetric

multi-arcs are precisely those with a component arc that intersects a �xed point of

an order two element of D. If a symmetric multi-arc is not self symmetric we call it

properly symmetric.

Lemma 4.1.4. Let α and β be two properly symmetric multi-arcs in Σ̃. If α and β

are distinctly isotopic then there is an isotopy between p(α) and p(β) that does not pass

through a branch point.

Proof. We claim that no isotopy between α and β can pass through a self symmetric

multi-arc. Assume such an isotopy exists. Then both α and β are isotopic to some

self symmetric mult-arc δ. Let δ̂i be a component arc such that δ̂i(0) = d(δ̂i(1)) for

some d ∈ D and α̂i be the unique component arc of α isotopic to δ̂i. It follows that

α̂i(0) = δ̂i(0) = d(δ̂i(1)) = d(α̂i(1)). Since α is properly symmetric we arrive at a

contradiction, proving the claim.

Since α and β are distinctly isotopic, we can de�ne a symmetric multi-arc γ, not

intersecting but isotopic to both α and β where each component arc is de�ned as in
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Lemma 4.1.2. Let {Bi}Ni=1 be the set of bigons de�ned by the isotopic components

{α̂i}Ni=1 and {γ̂i}Ni=1. Both multi-arcs are properly symmetric, so for any choice of i

the bigon d(Bi) is distinct from Bi for all non trivial d ∈ D. It follows then that for

each bigon there is a fundamental domain containing it, and so p(Bi) is a bigon in

Σ for all values of i. If p(Bj) contains a branch point for some j ∈ {1, 2, ..., N} then
{Bi}Ni=1 de�nes an isotopy of α and γ passing through a self symmetric mult-arc, which

we have shown to be a contradiction. The set {p(Bi)}Ni=1 therefore contains N/|D|
distinct bigons in Σ that de�ne an isotopy p(α) ∼ p(γ). Similarly p(β) ∼ p(γ) and the

result follows. �

4.1.3 Proof of the Birman-Hilden Theorem with boundary

Recall that the homomorphism Π : SHomeo+(Σ̃) → Homeo+(Σ,B) restricts to an

isomorphism

SHomeo+(Σ̃, ∂Σ̃)→ LHomeo+(Σ, ∂Σ,B).

We now prove Theorem 1.5.1 by showing that the isomorphism above induces an

isomorphism of SMod(Σ) and LMod(Σ,B).

Proof of Theorem 1.5.1. We take the surjective homomorphism

SHomeo+(Σ̃, ∂Σ)→ LHomeo+(Σ, ∂Σ,B)→ LMod(Σ,B)

de�ned by P ◦ Π. We would like to show that the kernel of this map is precisely

the set of elements isotopic to the identity. First, note that any isotopy between a

homeomorphism f ∈ LHomeo+(Σ, ∂Σ,B) and the identity lifts to an isotopy between

f̃ and the identity. It follows that the kernel ofP◦Π is a set consisting of such elements.

Assume then that f̃ ∈ SHomeo(Σ̃, ∂Σ̃) is isotopic to the identity. Choose a multi-

arc α = {α̂i} in Σ such that Σ \ {α̂i} is a collection of discs, each of which contains at

most one branch point. De�ne multi-arcs in Σ̃ by αi = p−1(α̂i) and βi = f̃p−1(α̂i) for

each i. By de�nition, αi and βi are properly symmetric and distinctly isotopic for each

i. Now, we can apply Lemma 4.1.4 to see that

α̂i = p(αi) ∼ p(βi) = pf̃(αi) = fp(αi) = f(α̂i).

Furthermore, this isotopy does not pass through a branch point. Applying the Alexan-

der trick (Lemma 4.1.3) to the multi-arc α we conclude that f is isotopic to the identity

of LHomeo+(Σ, ∂Σ,B). Therefore the homeomorphism f̃ belongs to the kernel of P◦Π

if and only if it is isotopic to the identity of SHomeo+(Σ̃, ∂Σ̃). By the �rst isomorphism

theorem we conclude that

Π : SMod(Σ̃)→ LMod(Σ,B)

is a well de�ned isomorphism. �
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4.2 Groupoids

In this section we introduce the fundamental groupoid of a surface Σ̃. Roughly, this

can be thought of as a fundamental group of Σ̃ with multiple basepoints. It is useful

tool for studying a regular �nite-sheeted covering p : Σ̃→ Σ as its automorphism group

contains both Mod(Σ̃) and the deck group D associated to the cover. This makes it

a natural choice for studying the relationship between mapping classes and covering

spaces.

4.2.1 Connected groupoids

A groupoid is a small category (a category whose classes of objects and homomorphisms

are sets) where every morphism is an isomorphism. Equivalently, a groupoid G is

a disjoint collection of sets {Gij}i,j∈I together with an associative partial operation

· : Gij ×Gjk → Gik such that;

1. for each i ∈ I there is an identity ei ∈ Gii such that eig = g and hei = h for all

g, h such that the products eig and hei are de�ned, and

2. for each g ∈ Gij there is an inverse g−1 ∈ Gji such that gg−1 = ei and g
−1g = ej.

We will call I the object set of G. If |I| = 1 then we recover the de�nition of a group.

A groupoid is connected if Gij 6= ∅ for all i, j ∈ I. Notice that Gii is a group for all

i ∈ I. Furthermore, if G is connected then the groups Gii and Gjj are isomorphic for

all i, j ∈ I. We call these groups the vertex groups of G.
Let G be a connected groupoid and �x 0 ∈ I. For each i ∈ I choose an element

ιi ∈ G0i such that ι0 = e0 ∈ G00. Given such a choice, the groupoid G is generated by

the vertex group G00 and the set {ιi}i∈I . In fact, every element in Gij can be uniquely

written as the product ι−1
i gιj for some g ∈ G00. We call {ιi}i∈I a star based at 0 ∈ I.

From now on we will assume G is a connected groupoid.

Subgroupoids and quotients

A subgroupoid H < G is a collection of sets {Hij}i,j∈J for some non-empty J ⊂ I

where Hij ⊂ Gij such that H is a groupoid with the inherited operation from G.
A subgroupoid H < G is normal if g−1Hiig ⊂ Hjj for all g ∈ Gij. It follows that

h 7→ g−1hg is an isomorphism of the vertex groups Hii and Hjj of H.
Of interest to this chapter will be connected normal subgroupoids of connected

groupoids. To that end, let H be a connected normal subgroupoid of G. Construct

the quotient groupoid G/H to be a group, that is, a groupoid with one object, as

follows. We say for elements g1, g2 ∈ G that g1 ∼ g2 if there exists h1, h2 ∈ H such that

g1 = h1g2h2. We write [g1] for the equivalence class of g1 and we call the equivalence

classes the cosets of H in G. We de�ne the elements of the quotient G/H to be the

cosets ofH in G. De�ne an operation on the cosets by [g1][g2] = [g1hg2] for some h ∈ H.
This is a well de�ned group operation on G/H.
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Automorphisms of groupoids

We now restrict our attention to connected groupoids G whose object sets are �nite.

Let G and H be groupoids with �nite object sets I and J respectively. A morphism

φ : G → H is a function φ̂ : I → J together with a family of functions φ̂ij : Gij →
Hφ̂(i)φ̂(j) for all i, j ∈ I such that φ̂ij(g1)φ̂jk(g2) = φ̂ik(g1g2) for all g1 ∈ Gij, g2 ∈ Gjk.

It follows that φ̂ii(ei) = eφ̂(i) and that φ̂ji(g
−1) = φ̂ij(g)−1 for all i, j ∈ I an g ∈ Gij.

We will suppress the subscripts and simply write φ̂ij(g) as φ(g).

An automorphism of G is a morphism φ : G → G with a two-sided inverse. The set

of automorphisms of G forms a group under composition, denoted Aut(G).

We de�ne the pure automorphism group of G by

PAut(G) := {φ ∈ Aut(G) : φ̂(i) = i for all i ∈ I}.

If H < G is a normal subgroupoid and φ ∈ Aut(G) such that φ(H) ⊂ H, then φ

induces an automorphism φ ∈ Aut(G/H) given by φ([a]) = [φ(a)]. We can now de�ne

the liftable automorphism group LAutH(G) < PAut(G) by

LAutH(G) = {φ ∈ PAut(G) : φ(H) = H and φ = id ∈ Aut(G/H)}.

As the notation suggests, this subgroup is linked to the liftable mapping class group.

The next lemma, due to Ghaswala, gives the index of LAutH(G) in PAut(G) [28, Lemma

6.1.3].

Lemma 4.2.1 (Ghaswala). Let G be a connected groupoid with object set I and let H
be a connected normal subgroupoid. Let G = G00 and H = H00. Suppose G is �nitely

generated and H is �nite index in G. Then LAutH(G) is �nite index in PAut(G).

In the next section we de�ne the groupoid of most importance to this chapter.

4.2.2 The fundamental groupoid

Here, we give an introduction to the fundamental groupoid of a topological space X.

In practice, we are only concerned with the case where X is a surface with boundary.

For a deeper study of this topic see Brown [17, Chapter 6] and Higgens [33, Chapter

6].

Let X be a topological space and A ⊂ X a subset. The fundamental groupoid

π1(X,A) is the set of homotopy classes of arcs whose endpoints are in A. The partial

operation is de�ned by concatenation of arcs and in particular the object set of π1(X,A)

is A. When A is a single point x ∈ X we recover the standard fundamental group

π1(X, x).

Now, if f : X → X is a homeomorphism preserving the subset A then it induces

an automorphism f∗ : π1(X,A)→ π1(X,A). Furthermore, if two homeomorphisms are

homotopic relative to A then the induced groupoid automorphisms are equal.
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The fundamental groupoid arises from the study of covering spaces. Indeed, let

p : X̃ → X be a covering space and let x ∈ X be the basepoint of the fundamental

group π1(X, x). An interesting and natural object to study is the fundamental groupoid

π1(X̃, p−1(x)).

We can de�ne source and target maps by s([α̂]) = α̂(0) and t([α̂]) = α̂(1) for any

arc α̂. For any x ∈ A, we de�ne the sets

S(x) := {g ∈ π1(X,A) : s(g) = x} and T (x) := {g ∈ π1(X,A) : t(g) = x}.

The next lemma gives us the �rst tool in studying groupoids arising from covering

spaces.

Lemma 4.2.2. Let p : X̃ → X be a covering space, A ⊂ X a subset, and π1(X̃, p−1(A)),

π1(X,A) the corresponding fundamental groupoids. The maps p∗ : S(x̃)→ S(p(x̃)) and

p∗ : T (x̃)→ T (p(x̃)) are bijections for all x̃ ∈ p−1(A).

The result follows from the path and homotopy lifting properties for covering spaces

and the details are left to the reader. Let p : X̃ → X be a regular, �nite-sheeted,

covering space with deck groupD. Let A = {x0, . . . , xm−1} ⊂ X, and B = p−1(A) ⊂ X̃.

For each i ∈ {0, . . . ,m − 1}, choose x̃i ∈ p−1(xi). Let Ã = {x̃0, . . . , x̃m−1}. We now

de�ne the following groupoids.

G := π1(X,A), H := p∗(π1(X̃, Ã)), K := π1(X̃, B).

The deck group D acts freely on B and so D injects into Aut(K). In order to make the

notation of the following de�nition simpler, we consider D as a subgroup of Aut(K).

SAut(K) := PAut(K) ∩ CAut(K)(D) = {φ̃ ∈ PAut(K) : [φ̃, d] = 1 for all d ∈ D}.

The covering space p is regular so H is a normal subgroupoid of G. Recall the

de�nition of the subgroup LAutH(G) < Aut(G) from Section 4.2.1. The next lemma is

a kind of Birman-Hilden theorem for groupoid automorphisms. This leads us to reuse

the notation for the homomorphism between symmetric and liftable mapping class

groups. To that end, we de�ne a map Π : SAut(K)→ LAutH(G) by Π(φ̃)(g) = p∗φ̃(g̃)

where g̃ is any element of p−1
∗ (g).

Lemma 4.2.3. The group homomorphism

Π : SAut(K)→ LAutH(G)

is an isomorphism.

Throughout this proof, we will use without mention the fact that p∗ : K → G
satis�es the conditions from Lemma 4.2.2. Furthermore, given an element g ∈ G we

call the elements of p−1
∗ (g) the lifts of g.
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Proof of Lemma 4.2.3. First we prove that this makes sense as a well de�ned set map.

Suppose g̃1 and g̃2 are two lifts of g ∈ G. There exists some d ∈ D such that g̃1 = d(g̃2).

It follows that for φ̃ ∈ SAut(K)

p∗φ̃(g̃1) = p∗φ̃d(g̃2) = p∗dφ̃(g̃2) = p∗φ̃(g̃2).

We now let g̃, h̃ be lifts of g, h respectively such that g̃h̃ ∈ K and is a lift of gh. We

have

Π(φ̃)(gh) = p∗(φ̃)(g̃h̃) = p∗φ̃(g̃)p∗φ̃(h̃) = Π(φ̃)(g)Π(φ̃)(h),

hence Π(φ̃) is a well de�ned groupoid morphism. To see that it is an isomorphism we

note that

Π(φ̃)Π(φ̃−1)(g) = Π(φ̃)(p∗φ̃
−1(g̃)) = p∗φ̃( ˜p∗φ̃−1(g̃)) = p∗φ̃φ̃

−1(g̃) = p∗(g̃) = g,

so Π(φ̃−1) is a right inverse for Π(φ̃). It can also been seen that Π(φ̃−1) is a left inverse,

and so Π(φ̃) is an isomorphism. Hence, Π is a well de�ned map from SAut(K) to

Aut(G).

Let g ∈ G and let φ̃ ∈ SAut(K) as above. In particular φ̃ is pure and so s(φ̃(g̃)) =

s(g̃). Now,

s(g) = s(p∗(g̃)) = s(p∗φ̃(g̃)) = s(Π(φ̃)(g)),

therefore Π(φ̃) ∈ PAut(G). We still need to show that Π(φ̃) ∈ LAutH(G). To that end,

let g ∈ G. We will show that there exists some h ∈ H such that Π(φ̃)(g) = hg, hence φ̃

induces the identity element of Aut(G/H). Suppose then that g̃ is a lift of g such that

s(g̃) ∈ Ã and that h = p∗(φ̃(g̃)g̃−1). By de�nition of H we have that h ∈ H and so

hg = p∗(φ̃(g̃)g̃−1)g = p∗φ̃(g̃)p∗g̃
−1p∗g̃ = p∗φ̃(g) = Π(φ̃)(g).

This completes the proof that Π : SAut(K) → LAutH(G) is a well de�ned set map.

Furthermore, we have that

Π(φ̃1φ̃2)(g) = p∗(φ̃1φ̃2)(g̃) = p∗φ̃1p∗φ̃2(g̃) = Π(φ̃1)Π(φ̃2)(g),

and so Π is a group homomorphism.

Given an element g ∈ G we de�ne g̃x to be the unique lift of g such that s(g̃x) = x.

We will now construct a set map which we optimistically label Π−1 : LAutH(G) →
SAut(K) and de�ne it by Π−1(φ)(k) = (φ̃p∗(k))s(k). In particular this means that k

and Π−1(φ)(k) start at the same basepoint. We will now show that t(k) = t(Π−1(φ)(k)),

that is, k and Π−1(φ)(k) terminate at the same basepoint.

Let k ∈ K such that s(k) = d1(x̃i) and t(k) = d2(x̃j) for d1, d2 ∈ D and x̃i, x̃j ∈ A.
By de�nition we have that s(p∗(k)) = xi and t(p∗(k)) = xj. Now, since φ ∈ PAut(G) it

follows that s(φp∗(k)) = xi and t(φp∗(k)) = xj also. Furthermore, since φ ∈ LAutH(G)

there exists h1, h2 ∈ H such that φp∗(k) = h1p∗(k)h2. Now, de�ne h̃1 and h̃2 to be the
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unique lifts of h1 and h2 such that s(h̃1) = t(h̃1) = x̃i and s(h̃2) = t(h̃2) = x̃j as in the

de�nition of H. We now have

p∗(Π
−1(φ)(k)) = φp∗(k) = h1p∗(k)h2 = p∗(h̃1)p∗(k)p∗(h̃2) = p∗(d1(h̃1)kd2(h̃2))

and s(Π−1(φ)(k)) = s(d1(h̃1)) = d1(x̃i), so Π−1(φ)(k) = d1(h̃1)kd2(h̃2). We also have

that t(Π−1(φ)(k)) = t(d1(h̃1)kd2(h̃2)) = t(d2(h̃2)) = d2(x̃j). Thus, we have shown that

k and Π−1(φ)(k) start and terminate at the same basepoints.

In order to show that Π−1(φ) : K → K is a groupoid homomorphism, we choose

k, l ∈ K such that the product kl is well de�ned. Since t(k) = t(Π−1(φ)(k)) and

s(l) = s(Π−1(φ)(l)), the product Π−1(φ)(k)Π−1(φ)(l) is well de�ned in K. Therefore,

p∗(Π
−1(φ)(k)Π−1(φ)(l)) = φp∗(k)φp∗(l) = φp∗(kl) = p∗(Π

−1(φ)(kl)).

Since s(Π−1(φ)(k)Π−1(φ)(l)) = s(Π−1(φ)(kl)) we can conclude that Π−1(φ)(k)Π−1(φ)(l)

is equal to Π−1(φ)(kl) and hence Π−1(φ) is indeed a groupoid homomorphism. Similar

to the argument above, it can be shown that Π−1(φ−1) is a right and left inverse of

Π−1(φ), therefore both are automorphisms of K. It has already been shown that Π−1(φ)

preserves source and target basepoints and so it follows that Π−1(φ) ∈ PAut(K).

For any d ∈ D we have that

p∗(Π
−1(φ)d(k)) = φp∗d(k) = φp∗(k) = p∗(Π

−1(φ)(k)) = p∗(dΠ−1(φ)(k)).

Furthermore, s(Π−1(φ)d(k)) = s(d(k)) = s(dΠ−1(φ)(k)) so Π−1(φ)d = dΠ−1(φ), that

is, Π−1(φ) ∈ SAut(K). This completes the proof that Π−1 : LAutH(G → SAut(K) is a

well de�ned set map.

It only remains to show that Π−1 is in fact an inverse to Π, as the notation suggests.

We have that

Π(Π−1(φ))(g) = p∗(Π
−1(φ))(g̃) = p∗(φ̃p∗(g̃))s(g̃) = φp∗(g̃) = φ(g)

and so ΠΠ−1 = id. Furthermore,

p∗(Π
−1(Π(φ̃))(k)) = Π(φ̃)p∗(k) = p∗φ̃(p̃∗(k)) = p∗φ̃(k),

and since s(φ̃(k)) = s(k) = s(Π−1(Π(φ̃))(k)) it follows that Π−1Π(φ̃)(k) = φ̃(k), that

is, Π−1Π = id. This completes the proof that Π : SAut(K)→ LAutH(G) is an isomor-

phism. �

4.2.3 The liftable mapping class group

In the last section we looked at two subgroups of groupoid automorphisms that arise

naturally from the study of covering spaces of topological spaces. We can now apply



CHAPTER 4. SUBGROUPS FROM COVERING SPACES 88

this knowledge to the regular, �nite-sheeted covers of surfaces with boundary that are

of interest to this chapter. To that end, let Σ be a surface with m > 0 boundary

components and let each boundary component of Σ contain a basepoint xi where

i ∈ {0, . . . ,m− 1}. Consider the fundamental groupoid π1(Σ, {x0, . . . , xm−1}). It easy
to see that the natural group homomorphism

Mod(Σ)→ PAut(π1(Σ, {x0, . . . , xm−1})).

is injective. For a mapping class in Mod(Σ) represented by the homeomorphism f we

write f∗ for the induced automorphism on the groupoid.

Suppose the cover p : Σ̃ → Σ is branched at �nitely many points B ⊂ Σ. We

will write Σ̃◦ = Σ̃ \ p−1(B) and Σ◦ = Σ \ B and abusing notation, denote the re-

sulting unbranched cover p : Σ̃◦ → Σ◦. As discussed in Chapter 1 we have an

isomorphism LMod(Σ,B) ∼= LMod(Σ◦), and therefore by Theorem 1.5.1 we have

SMod(Σ̃) ∼= SMod(Σ̃◦). Some results are easier to prove in the unbranched case and

these isomorphisms allow us to do so without loss of generality.

As above suppose Σ◦ hasm boundary components and let A = {x0, x1, . . . , xm−1} ⊂
∂Σ◦ be such that each boundary component contains exactly one of the xi. For each xi,

choose a point x̃i ∈ p−1(xi) and let Ã = {x̃0, x̃1, . . . , x̃m−1} ⊂ ∂Σ̃◦. Let B = p−1(A) and

denote the fundamental groupoids G = π1(Σ◦, A), H = p∗π1(Σ̃◦, Ã), and K = π1(Σ̃◦, B)

as in Section 4.2.2.

We have a useful commutative diagram

SMod(Σ̃) SAut(K)

LMod(Σ,B) LAutH(G)

Ψ

Π Π

Ψ

where the horizontal injections are given by the action of the mapping class group

on the fundamental groupoid discussd above, and the vertical maps are the Birman-

Hilden isomorphisms from Theorem 1.5.1 and Lemma 4.2.3. Note that the horizontal

maps are actually the composition of the action on the fundamental groupoid with the

isomorphisms SMod(Σ̃) ∼= SMod(Σ̃◦) and LMod(Σ,B) ∼= LMod(Σ◦).

Theorem 4.2.4 (Ghaswala). Using the notation introduced above, the liftable mapping

class group LMod(Σ,B) is given by

{[f ] ∈ Mod(Σ,B) : f∗ ∈ LAutH(G)}.

The proof of Theorem 4.2.4 can be found in Section 6.2 of Ghaswala's thesis [28].

Heuristically, this is true as being in LAutH(G) ensures a trivial permutation of Ã,

hence B. This, in turn, ensures that the mapping class [f ] preserves the boundary

pointwise. The result gives the following useful corollary which we will use in the proof

of Theorem 1.5.2.
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Corollary 4.2.5. Suppose Σ has one boundary component. Choose a basepoint x0 ∈
∂Σ◦ and some x̃0 ∈ p−1(x). Then

LMod(Σ,B) = {[f ] ∈ Mod(Σ,B) : qf∗ = q}

where q : π1(Σ◦, x0)→ π1(Σ◦, x0)/p∗π1(Σ̃◦, x̃0) is the quotient map.

We also arrive at a direct way to check whether or not a mapping class lifts in the

case where Σ has m > 1 boundary components. Choose a point x0 ∈ ∂Σ and a lift

x̃0 ∈ p−1(x0). Furthermore, choose a generating set {γ1, . . . , γN} of π1(Σ◦, x0). The

cover is regular and so we let

q : π1(Σ◦, x0)→ π1(Σ◦, x0)/p∗(π1(Σ̃◦, x̃0)) ∼= D

be the quotient map as in the statement of Corollary 4.2.5, where D is the deck group.

Let xi be a point on a unique boundary component for all i ∈ {1, . . . ,m− 1}. Let the
set {ιi}m−1

i=1 be a star in the fundamental groupoid π1(Σ◦, {x0, . . . , xm−1}) such that ιi

is represented by an arc starting at x0 and ending at xi. Recall from Section 4.2.1 that

π1(Σ◦, x0) and {ιi}m−1
i=1 generate the fundamental groupoid G = π1(Σ◦, {x0, . . . , xm−1}).

Given an element [f ] ∈ Mod(Σ,B) we have that f∗(ιj) = ajιj for some aj in the

fundamental group π1(Σ◦, x0) [28].

Proposition 4.2.6 (Ghaswala). A mapping class [f ] is in LMod(Σ) if and only if;

1. for all i we have qf∗(γi) = q(γi), and

2. if f∗(ιj) = ajιj then aj ∈ ker q for all j.

Proof. Choose a lift x̃0 ∈ p−1(x0). For all i choose lifts ι̃i of ιi such that s(ι̃i) = x̃0 and

let x̃i = t(ι̃i). De�ne the groupoids

G = π1(Σ◦, {x0, . . . , xm−1}) and H = p∗π1(Σ̃◦, {x̃0, . . . , x̃m−1}),

as before. Theorem 4.2.4 states that

[f ] ∈ LMod(Σ) ⇔ f∗ ∈ LAutH(G).

We notice that qf∗(γi) = q(γi) for all i if and only if f∗ acts trivially on the cosets of

p∗π1(Σ̃◦, x̃0) in π1(Σ◦, x0). Furthermore, if aj ∈ ker q then aj ∈ p∗π1(Σ̃◦, x̃0) for each

j. The result follows from the fact that G is generated by the sets {γ1, . . . , γN} and
{ι1, . . . , ιm−1}. �

4.3 Classi�cation results

In this section we give proofs of Theorems 1.5.2 and 1.5.3. Recall that these results

give the necessary and su�cient conditions for the liftable and symmetric mapping class
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Figure 4.2: A basic generating set of π1(Σ1
1,2, x0) and an essential generating set of

π1(Σ2
1,1, x0).

group to coincide with their respective mapping class groups. In the �rst instance we

make extensive use of the results concerning the fundamental groupoid discussed in the

last section. We prove the second classi�cation by showing that if SMod(Σ̃) = Mod(Σ̃)

then the action on the �rst homology of Σ̃ provides restrictions on the possible covering

spaces.

4.3.1 The case where everything lifts

For any element c of π1(Σ◦, x0) we will abuse notation by writing c for a loop in Σ◦

representing c. Furthermore, if c is a simple loop, we will write c for the corresponding

unique free isotopy class of simple closed curves in Σ◦.

If m > 1 let {ι1, . . . , ιm−1} be a star of the fundamental groupoid π1(Σ◦, A) based

at x0 where each representative of ιi terminates at a point xi on a unique boundary

component ∂i of Σ◦. We now give two types of generating set for the fundamental

group of a surface with boundary.

Basic and essential generating sets

If m = 1 we call a �nite generating set S = {a1, b1, . . . , ag, bg, γ1, . . . , γn} of π1(Σ◦, x0)

a basic generating set if each element is represented by a simple loop, each γi bounds

a subsurface homeomorphic to a punctured disk, and

i(ai, aj) = i(bi,bj) = 0 for all i, j,

i(ai,bj) =

1 if i = j, and

0 otherwise.

If m > 1 we call a �nite generating set S of π1(Σ◦, x0) essential with respect to the

star {ιi}m−1
i=1 if for all c ∈ S there exists an i ∈ {1, . . . ,m − 1} such that i(ιi, c) = 1.

Here, the name comes from the fact that each generator has essential intersection with

at least one element of the star.

The fact that basic generating sets exist is well known; see [31, Section 1.2]. The

next lemma shows the existence of essential generating sets of fundamental groups.

Lemma 4.3.1. Let Σ◦ be a surface with m > 1 boundary components and let x0 ∈ ∂Σ◦.

There exists an essential generating set S of π1(Σ◦, x0) with respect to a star {ιi}m−1
i=1 .
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Proof. It follows from [31, Section 1.2] that we have a generating set

{a1, b1, . . . , ag, bg, c1, . . . , cm−1, γ1 . . . γn},

where each ci is represented by a simple loop around a boundary component other

than the unique component ∂0 containing x0 and each γi is represented by a simple

loop around a puncture. Furthermore, we can choose elements ci such that i(ιi, ci) = 1

for all i ∈ {1, . . . ,m − 1}. To see this we will abuse notation by writing ιi for a

representative of the element of the star. The only isotopy class of simple closed curve

represented in a regular neighbourhood of ιi ∪ ∂i contains the simple loop around a

boundary component which we can de�ne to be a representative of ci.

For each i there exist representatives of the groupoid elements γi and ιj that do not

intersect for any choice of j. If d is the free isotopy class of curves corresponding to

γic1 it follows that i(ι1,d) = 1 for all i. Similar arguments can be used to show that

{a1c1, b1c1, . . . , agc1, bgc1, c1, . . . , cm−1, γ1c1 . . . γnc1}

is an essential generating with respect to the star {ιi}m−1
i=1 . �

We now move on to proving Theorem 1.5.2. As such, we return to the setting of

the original branched cover p : Σ̃ → Σ branched at B ⊂ Σ \ ∂Σ. If [f ] ∈ Mod(Σ,B)

we will abuse notation and denote by f∗ ∈ Aut(π1(Σ◦, A)) the automorphism induced

by any representative homeomorphism for [f ]. The abuse of notation is legal since any

representative homeomorphism for [f ] �xes A pointwise, and isotopic homeomorphisms

induce the same groupoid automorphism.

Proof of Theorem 1.5.2. We �rst prove that LMod(Σ,B) = Mod(Σ,B) if and only if

p : Σ̃→ Σ is a Burau cover. Let p : Σ̃◦ → Dn be the associated unbranched cover of a

Burau cover. Let x0 ∈ ∂Dn and let {γ1, . . . , γn} be a basic generating set for π1(Dn, x0).

LetHci ∈ Mod(Dn) be a half twist whose support (a disk with two punctures) intersects

all representative loops of γi and γi+1 and is disjoint from representatives of γj for all

j 6= i, i+ 1. If we consider each Hci as an automorphism of π1(Dn, x0) we can assume

that Hci(γi) = γiγi+1γ
−1
i and Hci(γi+1) = γi. From the de�nition of Burau covers we

have that

qHci(γi) = q(γiγi+1γ
−1
i ) = q(γi)q(γi+1)q(γ−1

i ) = 1,

qHci(γi+1) = q(γi) = 1, and

qHci(γj) = q(γj) = 1 for all j 6= i, i+ 1.

By Corollary 4.2.5 we have that Hci ∈ LMod(Dn). It follows from the fact that

the set {Hc1 , . . . , Hcn−1} generates Mod(Dn) that every mapping class lifts, that is,

LMod(Dn) = Mod(Dn). As discussed at the beginning of Section 4.2.3 this is equiva-

lent to showing that LMod(Σ1
0,B) = Mod(Σ1

0,B).
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To prove the other direction we �rst assume that Σ has m > 1 boundary compo-

nents. Let {ιi}m−1
i=1 be a star in the fundamental groupoid and let S be an essential

generating set of π1(Σ◦, x0) as in Lemma 4.3.1. Let c ∈ S and let Tc be the corre-

sponding Dehn twist about a simple clsoed curve freely isotopic to c. Without loss of

generality we have that Tc(ιi) = cιi, as an element of the fundamental groupoid for

some i. If Tc ∈ LMod(Σ◦) then from Proposition 4.2.6 it follows that c ∈ p∗π1(Σ̃◦, x̃0)

and since c ∈ S was arbitrary we have that every element of S belongs to p∗π1(Σ̃◦, x̃0),

hence the image of the quotient map is trivial. This is a contradiction and so we have

shown that Σ must have a single boundary component.

We now assume that Σ has positive genus g. Let S be a basic generating set of

π1(Σ◦, x0), we denote by γ1, . . . , γn ∈ S the simple loops around the removed branch

points. For all i ∈ {1, . . . , n} we can �nd an element [f ] ∈ Mod(Σ◦) such that f∗(γi) =

γ1. It follows from Corollary 4.2.5 that q(γi) = qf∗(γi) = q(γ1) for all i.

We label the 2g elements of S that do not bound a disk by a1, b1, . . . , ag, bg. Each

representative loop belongs to a di�erent free isotopy class of non-separating simple

closed curves and so ai, bi belong to the Mod(Σ◦)-orbit of a1 for all i = 1, . . . , g.

Similarly, as representative loops of the elements γ1b1a1 and b1a1 belong to free iso-

topy classes of non-separating simple closed curves we have that there exist [f ], [h] ∈
Mod(Σ◦) such that f∗(a1) = γ1b1a1 and h∗(b1) = b1a1. We now have that

q(b1) = qh∗(b1) = q(b1a1) = q(b1)q(a1).

Hence q(a1), and therefore each q(ai) and q(bi), is equal to the identity element of the

deck group D for any value of i. Furthermore, it follows that

q(γ1) = q(γ1)q(b1)q(a1) = q(γ1b1a1) = qf∗(a1) = q(a1).

Again, this implies that the image of the quotient map is trivial, which is a contra-

diction. The genus of Σ must therefore be zero and, as shown above, Σ has a single

boundary component, that is, Σ is a disk. We have already shown that q(γi) = q(γ1)

for all i = 1, . . . , n and so it follows that p : Σ̃→ Σ is a Burau cover.

We would also like to show that LMod(Σ,B) is always �nite-index in Mod(Σ,B).

Recall the de�nitions of the fundamental groupoids H and G from Section 4.2.3.

Let Ψ : Mod(Σ,B) → PAut(G) be the injective homomorphism given by the ac-

tion of Mod(Σ,B) on the fundamental groupoid G. By Theorem 4.2.4 it follows that

Ψ(LMod(Σ,B)) is contained in LAutH(G). We have

[Mod(Σ,B),LMod(Σ,B)] = [Ψ(Mod(Σ,B)),Ψ(LMod(Σ,B))]

≤ [PAut(G) : LAutH(G)]

<∞,
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where the last inequality is by Lemma 4.2.1. �

While we have shown that there are in�nitely many covering spaces with the prop-

erty that LMod(Σ,B) = Mod(Σ,B), it is clear that this occurs only in a distinct

minority of cases. We will see in the next section that the conditions for a covering

space to satisfy SMod(Σ̃) = SMod(Σ̃) are even more severe.

4.3.2 The case where everything is symmetric

In this section we prove Theorem 1.5.3. In particular, we show that the symmetric

mapping class group SMod(Σ̃) coincides with the mapping class group Mod(Σ̃) in a

very small number of cases. To prove the result we make use of the mapping class

group action on homology. Recall that the Lefschetz �xed point theorem for smooth

manifolds states

∑
p∈fix(f)

i(f, p) =
∞∑
i=0

(−1)i tr(f∗ : Hi(Σ;Q)→ Hi(Σ;Q)).

where i(f, p) is the index of the �xed point p of the homeomorphism f [48]. We will

apply this result to our context of surfaces with boundary.

Lemma 4.3.2. Let Σ be an oriented surface with boundary. Let f be a �nite-order,

orientation-preserving homeomorphism of Σ. Then the �xed points of f are isolated

and the number of �xed points is equal to

1− tr(f∗ : H1(Σ;Z)→ H1(Σ;Z)).

Proof. We will �rst prove that the �xed points are isolated. Let f have order k and

let µ be a Riemannian metric on Σ. De�ne the Riemannian metric

µ :=
k∑
i=1

(fk)∗µ.

Then f ∗µ = µ and so f is an isometry. Since f is orientation-preserving its �xed points

must be isolated. Let p ∈ Σ be such a �xed point and let TpΣ ∼= R2 be the tangent

space. Now, all orientation-preserving isometries of R2 that �x the origin are rotations

about the origin. We therefore have that f induces a rotation TpΣ → TpΣ and so

i(f, p) = 1.

For a surface with boundary,Hi(Σ;Q) ∼= {0} for all i ≥ 2. Furthermore,H0(Σ;Q) ∼=
Q and f∗ : H0(Σ;Q)→ H0(Σ;Q) is the identity map. It follows that tr(f∗ : H0(Σ;Q)→
H0(Σ;Q)) = 1. Note that since the �rst homology group is free abelian we may replace

the coe�cients with Z. Finally, since the index of each �xed point is 1, we have that

the number of �xed points is equal to

1− tr(f∗ : H1(Σ;Z)→ H1(Σ;Z))
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completing the proof. �

Corollary 4.3.3. Suppose Σ is an orientable surface of genus g with m ≥ 1 boundary

components other than a disk or an annulus. Let f ∈ Homeo+(Σ) be a �nite-order,

orientation-preserving homeomorphism of Σ. Then f acts non-trivially on H1(Σ;Z).

Proof. If f acts trivially onH1(Σ;Z) then tr(f∗ : H1(Σ;Z)→ H1(Σ;Z)) = 2g+m−1 by

choice of a natural basis ofH1(Σ;Z). By Lemma 4.3.2 we must have 1−(2g+m−1) ≥ 0

and so 2g + m ≤ 2. This only occurs when g = 0 and m = 1, 2, or equivalently, when

Σ is a disk an annulus. �

The next result shows that a hyperelliptic involution has a unique action on homol-

ogy up to conjugation. The proof follows from Lemma 4.3.2 and an argument similar

to that of [27, Proposition 7.15].

Lemma 4.3.4. Let Σ be a surface of genus g ≥ 1 with a single boundary component.

Suppose f1, f2 ∈ Homeo+(Σ) are order 2 homeomorphisms such that (f1)∗ = (f2)∗ =

−I : H1(Σ;Z)→ H1(Σ;Z). Then f1 and f2 are conjugate in Homeo+(Σ).

Throughout the proof of Theorem 1.5.3 we will repeatedly use the fact that if c is

an isotopy class of simple closed curves then every power of the Dehn twist Tc is an

element of SMod(Σ̃) if and only if d(c) = c for all d ∈ D, where D is the deck group.

Proof of Theorem 1.5.3. We start by proving that SMod(Σ̃) = Mod(Σ̃) in the three

cases stated in the theorem. First, if Σ̃ is a disk then SMod(Σ̃) = Mod(Σ̃) trivially. If

Σ̃ is an annulus, let c be the unique unoriented isotopy class of an essential simple closed

curve. For every homeomorphism f of Σ̃ we have that f(c) = c. Since Mod(Σ̃) = 〈Tc〉 it
follows that SMod(Σ̃) = Mod(Σ̃). Finally, suppose Σ̃ is a torus with a single boundary

component, and let ι ∈ Homeo+(Σ̃) be a hyperelliptic involution. There exist two

simple closed curves a and b whose isotopy classes are �xed by ι such that the Dehn

twists Ta, Tb generate Mod(Σ̃). Therefore we have that SMod(Σ̃) = Mod(Σ̃).

Conversely, suppose SMod(Σ̃) = Mod(Σ̃) and Σ̃ is neither a disk nor an annulus.

Suppose Σ̃ is a surface of genus g with m ≥ 1 boundary components. There is a

generating set S = {a1, . . . , a2g, x0, . . . , xm−1} of H1(Σ̃;Z) where each generator ai is

represented by an essential simple closed curve and each xi is the homology class of a

curve isotopic to a boundary component.

Let d be a non-trivial element of the deck group D. It must be that d preserves

the unoriented isotopy class of every essential simple closed curve and so we see that

d∗ : H1(Σ̃;Z)→ H1(Σ̃;Z) is given by the diagonal matrix
ε1

. . .

ε2g+m−1
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Figure 4.3: The picture shows a curve whose isotopy class is not preserved by the
hyperelliptic involution for a surface with boundary Σ of genus at least two.

with respect to the generating set S, where εi = ±1 for all i. However, since d is

orientation-preserving, it must preserve the orientation of every boundary component,

therefore εi = 1 for all i > 2g.

We now argue that Σ̃ must have exactly one boundary component. Since d is not the

identity, Lemma 4.3.3 implies that there must be at least one i ∈ {1, . . . , 2g} such that

εi = −1. If m ≥ 2 then there is at least one element in S that is the homology class of a

boundary component. Consider the homology classes x0 + ai and x0− ai. One of these
is the homology class of an essential simple closed curve c. Since d∗(x0 ± ai) = x0 ∓ ai
we have that d∗(c) 6= ±c and so the unoriented isotopy class of c is not preserved by

d. Therefore Tc 6∈ SMod(Σ̃) and so SMod(Σ̃) 6= Mod(Σ̃), a contradiction. It follows

then that m = 1.

The next step is to show d is a hyperelliptic involution. Suppose not, then by

Lemma 4.3.3 there are i, j ∈ {1, . . . , 2g} such that εi = 1 and εj = −1. Similar to the

above argument, we can �nd a curve c such that Tc /∈ SMod(Σ̃). This implies that

d∗ = −I : H1(Σ̃;Z)→ H1(Σ̃;Z)

for all non-trivial d ∈ D. By Lemma 4.3.4 we may conclude that D is generated by a

hyperelliptic involution ι. Finally, if g ≥ 2 then we can �nd a curve that is not �xed

by ι (see Figure 4.3), completing the proof of the �rst statement.

If SMod(Σ̃) 6= Mod(Σ̃) then we may choose a Dehn twist Tc 6∈ SMod(Σ̃) and note

that each power belongs to a di�erent coset of SMod(Σ̃) in Mod(Σ̃). Since Dehn twists

have in�nite order, it follows that SMod(Σ̃) is in�nite-index in Mod(Σ̃). �

Remark 4.3.5. Suppose p : Σ̃→ Σ is a �nite-sheeted, regular, possibly branched cover

of surfaces without boundary with deck group D. Combining the proof of Theorem 4

in [7] with the Neilsen realisation theorem for �nite groups [42] allows one to conclude

that SMod(Σ̃) is the normaliser of D in Mod(Σ̃).

When the surfaces in question have boundary, then D is not a subgroup of Mod(Σ̃).

However, D and Mod(Σ) are both subgroups of Aut(K), where K is the groupoid

de�ned in Section 4.2.2.

In light of both the normaliser result just stated for closed surfaces, and Theorem

4.2.4 for LMod(Σ,B), we conjecture that SMod(Σ̃)) = {[f ] ∈ Mod(Σ̃) : f∗ ∈ SAut(K)}.
Unfortunately, a proof seems out of reach at the moment.
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4.4 Non-geometric embeddings of braid groups

In this section we will investigate a family of injective homomorphisms from the braid

group to mapping class groups. We will refer to such a homomorphism as a braid group

embedding. We �rst recall the de�nition of the Burau covers from Section 1.

Burau covers

Pick a point x ∈ ∂Dn and let γi ∈ π1(Dn, x) be the homotopy class of a loop surround-

ing solely the ith puncture anti-clockwise. Then {γ1, . . . , γn} generates π1(Dn, x). For

each k ≥ 2, de�ne a homomorphism

qk : π1(Dn, x)→ Z/kZ

γi 7→ 1

for all i. The kernel of qk determines a k-sheeted cyclic branched cover pk : Σm
g → Σ1

0

branched at n points. Here m = gcd(n, k) and g = 1− 1
2
(k + n− nk +m).

In Theorem 1.5.2 it was shown that LMod(Σ,B) = Mod(Σ,B) if and only if Σ is

a disk and pk : Σm
g → Σ1

0 is a k-sheeted Burau cover. We can therefore de�ne the

following braid group embedding;

βk : Bn
∼= Mod(Σ1

0,B) = LMod(Σ1
0,B) ∼= SMod(Σm

g ) ↪→ Mod(Σm
g ).

The �rst isomorphism is well known, the equality comes from Theorem 1.5.2, and the

second isomorphism is a consequence of the Birman-Hilden theorem.

Let {σ1, . . . , σn−1} be the standard generators of Bn. It is known that β2(σi) = Tci
where ci is some non-separating curve for all i ∈ {1, . . . , n− 1}. Furthermore, the deck

group D ∼= Z/2Z is generated by a hyperelliptic involution [27, Section 9.4].

In this section we will describe the image of the standard braid generators under

βk where k ≥ 3. In particular we show that βk is a non-geometric embedding of the

braid group, that is, βk(σi) is not a Dehn twist. In order to describe the image of a

single braid generator it su�ces to consider the embeddings

β2g+1 : B2 ↪→ Mod(Σ1
g) and β2g+2 : B2 ↪→ Mod(Σ2

g),

for integers g > 0. In other words, we will study the Burau covers

p2g+1 : Σ1
g → Σ1

0 and p2g+2 : Σ2
g → Σ1

0,

in each case branched at two points. We will deal with the two cases separately although

the techniques used in each case are similar.
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ι ι

Figure 4.4: A generator of the deck group D ∼= Z/3Z of the 3-sheeted Burau cover,
and a generator of the deck group D ∼= Z/4Z of the 4-sheeted Burau cover.

4.4.1 Odd Burau

First we consider the braid group embedding β2g+1 given above. We will de�ne an

element N of Mod(Σ1
g) and then prove that the isomorphism

Π : SMod(Σ1
g)→ LMod(Σ1

0,B)

sends N to the standard generator of Mod(Σ1
0,B). Recall that we can represent a closed

surface of genus g by a regular (4g + 2)-gon, centred at the origin, with opposite sides

identi�ed. If we remove an open disk about the centre we arrive at a representation

of Σ1
g. Label this representation P and let ι be the anti-clockwise rotation of P about

its centre by 2π/(2g + 1). The two unique vertices of P are �xed by ι. We see that

the quotient space Σ1
g/〈ι〉 is homeomorphic to Σ1

0, and the quotient map is a covering

map branched at two points. Furthermore, around both �xed points ι is locally a

rotation by 2π/(2g + 1) anti-clockwise, therefore the associated covering space is the

(2g + 1)-sheeted Burau cover of Σ1
0 with deck group D ∼= Z/(2g + 1)Z.

We will write p2g+1 : Σ1
g
◦ → D2 for the assocatied unbranched cover. Let x ∈ ∂D2

and let a and b be elements of π1(D2, x) such that a is represented by a loop that

surrounds a single marked point and b is represented by a loop isotopic to ∂D2 as in

Figure 4.5(i).

(i) (ii) (iii)

a

b a0 a2

a1

a0

a1

a2

a3

Figure 4.5: (i) Generators of the fundamental group of D2. (ii) Generators for the
fundamental groupoid π1(Σ1

1
◦
, {x̃0, x̃1, x̃2}). (iii) Generators for π1(Σ2

1
◦
, {x̃0, x̃1, x̃2, x̃3}).

The elements a and b generate π1(D2, x). Denote the full preimage p−1
2g+1(x) by

{x̃i} indexed by elements of Z/(2g + 1)Z such that ι(x̃i) = x̃i+1. Similarly we de�ne

(p2g+1)−1
∗ (a) = {ai} and (p2g+1)−1

∗ (b) = {bi} such that ι∗(ai) = ai+1 and ι∗(bi) = bi+1,

see Figure 4.5(ii). The set {ai, bi}, indexed by elements of Z/(2g + 1)Z, generates the
fundamental groupoid π1(Σ1

g
◦
, {x̃i}), a fact which follows from Lemma 4.2.2.
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H H

N N

Figure 4.6: The mapping class H ∈ Mod(D2) and its lifts in the 3 and 4-sheeted Burau
covers. Lemma 4.4.1 shows that N is the lift of H.

The odd notch

We let N denote the mapping class in Mod(Σ1
g) represented by the homeomorphism

that rotates the edges of P by 2π/(4g + 2) and �xes the single boundary component

at the centre. See Figure 4.6 for an image of N when g = 1.

In the following lemma we will write H for the half twist in Mod(Σ1
0,B) and for the

induced automorphism of π1(D2, x) such that H(a) = ba−1.

Lemma 4.4.1. Given the Burau cover p2g+1 : Σ1
g → Σ1

0 the half twist H ∈ Mod(Σ1
0,B)

lifts to the mapping class N ∈ Mod(Σ1
g).

Proof. Let G = π1(D2, x) and let K be the fundamental groupoid

π1(Σ1
g
◦
, {x̃i}). We will abuse notation by writing N for its image in Aut(K) and H

for its image in Aut(G) under the injective natural homomorphisms. We need to show

that N ∈ SAut(K) as de�ned in Section 4.2.2. Since the deck group D is generated by

ι, this is equivalent to showing that Nι = ιN as automorphisms of K. It can be seen

from Figure 4.6 that N(ai) = bia
−1
i+1+g and that N(bi) = bi.

It follows then that

Nι(ai) = N(ai+1) = bi+1a
−1
i+2+g = ι(bia

−1
i+1+g) = ιN(ai), and

Nι(bi) = N(bi+1) = bi+1 = ι(bi) = ιN(bi).

Since the set {ai, bi} generates the fundamental groupoid, we are done.

We will now show that the image of N in LAutH(G) under the isomorphism Π of

Lemma 4.2.3 is equal to H. This makes sense since LMod(Σ1
0,B) = Mod(Σ1

0,B) and

so from Theorem 4.2.4, we conclude that H ∈ LAutH(G). We now have

Π(N)(a) = p∗N(ai) = p∗(bia
−1
i+1+g) = ba−1 = H(a), and

Π(N)(b) = p∗N(bi) = p∗(bi) = b = H(b).
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So Π(N) = H and since the diagram

SMod(Σ1
g) SAut(K)

Mod(Σ1
0,B) LAutH(G)

Ψ

Π∼= Π∼=

Ψ

commutes, the mapping class N is indeed the lift of the half twist H. �

4.4.2 Even Burau

We will now move on to the braid group embedding β2g+2 : B2 ↪→ Mod(Σ2
g) given

above. As in the odd case we will de�ne an element of Mod(Σ2
g) and then prove that

it is the lift of a half twist H. We take H to be the half twist such that H∗(a) = ba−1

for a, b ∈ π1(D2, x) as before. We want to �nd a polygonal representation of Σ2
g. We

take a regular (4g + 2)-gon with opposite sides identi�ed. This time, we remove two

open disks as shown in Figure 4.4 and label the representation P .

We de�ne an order 2g + 2 homeomorphism ι as follows:

1. Cut P along a straight line connecting the top and bottom vertices and label the

resulting (2g + 2)-gons PL and PR.

2. Rotate both PL and PR anti-clockwise by 2π/(2g + 2) and re-attach them along

the straight line connecting top and bottom vertices.

3. Rotate P by π.

While this homeomorphism of Σ2
g is substantially more complicated than the one de-

scribed in the Section 4.4.1 it shares many properties. Both vertices of P are �xed by

ι however, this time, locally ι is a clockwise rotation by 2π/(2g + 2). It follows that

the quotient space Σ2
g/〈ι〉 is homeomorphic to Σ1

0 and the associated covering space is

the (2g + 2)-sheeted Burau cover of Σ1
0 with deck group D ∼= Z/(2g + 2)Z.

The even notch

We de�ne N ∈ Mod(Σ2
g) to be the mapping class represented by the homeomorphism

that rotates the edges of both PL and PR by 2π/(2g + 2) and �xes the boundary

components. See Figure 4.6 for an image of N when g = 1.

Using the same method as the proof of Lemma 4.4.1 we arrive at the following

result.

Lemma 4.4.2. Given the Burau cover p2g+2 : Σ2
g → Σ1

0 the half twist H ∈ Mod(Σ1
0,B)

lifts to the mapping class N ∈ Mod(Σ1
g).

The proof of Lemma 4.4.2 is identical to the odd case, except that while N(bi) = bi

as before, we now have N(ai) = bia
−1
i+1.
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d d1

d2

Figure 4.7: A 4-chain and a 5-chain. The 4-chain has a single boundary curve and the
5-chain has two boundary curves.

4.4.3 Chain twists

We will now describe the two maps de�ned in the previous section as products of Dehn

twists. We will often abuse notation by referring to an isotopy class of curves by the

name of a single representative curve.

Chains

Recall that a sequence of curves {c1, c2, . . . , ck} is called a k-chain if i(ci, cj) = 1 if

j = i±1 and i(ci, cj) = 0 otherwise. If k = 2g for some g then the closed neighbourhood

of ∪ci is a subsurface homeomorphic to Σ1
g with boundary component isotopic to the

curve d. Furthermore, if k = 2g+1 then the closed neighbourhood of ∪ci is a subsurface
homeomorphic to Σ2

g with boundary components d1 and d2 (see Figure 4.7).

By considering the braid group embedding β2 : Bk+1 ↪→ Σ̃ it can be shown that

(Tc1Tc2 . . . Tc2g)4g+2 = Td and (Tc1Tc2 . . . Tc2g+1)
2g+2 = Td1Td2 ,

see Farb-Margalit [27, Section 4.4] for more details. Given a k-chain C = {c1, c2, . . . , ck},
we call the product TC := Tc1Tc2 . . . Tck a k-chain twist (or a chain twist). Now, let

p2g+1 : Σ1
g → Σ1

0 be a Burau cover and let N be the lift of the half twist as discussed

in Lemma 4.4.1. If the curve d is isotopic to the boundary of Σ1
g then it is clear that

N4g+2 = Td = (TC)
4g+2

for any 2g-chain C in Σ1
g. Similarly, suppose p2g+2 : Σ2

g → Σ1
0 is a Burau cover and N

is the lift of the half twist discussed in Lemma 4.4.2. If the curves d1,d2 are isotopic

to the boundary components of Σ2
g then we have

N2g+2 = Td1Td2 = (TC)
2g+2

for any (2g+1)-chain C in Σ2
g. In Proposition 4.4.3 we will prove that as well as having

the same power as a chain twist, the notch N is in fact equal to a chain twist in both

the odd and even cases, proving Theorem 1.5.4. This implies that there exist chains

A,B (of any length) whose corresponding chain twists TA, TB satisfy the braid relation.

In Section 4.4.4 we will give the explicit combinatorial data required for two k-

chains to admit chain twists satisfying the braid relation. Furthermore, we show that
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(i) (ii)

c1 c2

c1

c2

c3

Figure 4.8: The 2-chain and 3-chain shown have corresponding chain twists equal to
the notch N coming from the 3-fold and 4-fold Burau covers respectively.

this data encodes the braid relation on the level of Dehn twists.

Proposition 4.4.3. Given a Burau cover pk : Σ̃→ Σ1
0 the half twist H ∈ Mod(Σ1

0,B)

lifts to a (k − 1)-chain twist.

Proof. Given Lemmas 4.4.1 and 4.4.2 we need only show that the mapping class N ∈
Mod(Σm

g ) is equal to a (k − 1)-chain twist TC, for some (k − 1)-chain C. To do this

we will show that the image of TC and N are equal in the group Aut(K) where K is a

fundamental groupoid of Σm
g with basepoints on all boundary components.

To that end, let k = 2g+ 1 and let K be the fundamental groupoid of Σ1
g generated

by the set depicted in Figure 4.5(ii). Note that this set was also used to de�ne a

fundamental groupoid of Σ1
g
◦
. In this setting however, the vertices of the polygon are

not punctures. Furthermore, in order to facilitate the proof we change the indexing so

that α2i := ai. We de�ne the curve c0 uniquely by the groupoid element α0α1b
−1
0 . We

then de�ne ci to be N i(c0) for all i ∈ Z/(2g + 1)Z, see Figure 4.8(i). Now, we de�ne
the 2g-chain C := {c1, . . . , c2g}. In fact, we may choose C to be any 2g-chain consisting

of the curves ci. Now, by construction it can be seen that

Tci(αi) = N(αi),

Tcj(αi) = αi for j > i,

TcjN(αi) = N(αi) for j < i.

It follows then that for any i ∈ {1, . . . , 2g} we have

TC(αi) = Tc1Tc2 . . . Tc2g(αi)

= Tc1Tc2 . . . Tci(αi)

= Tc1Tc2 . . . Tci−1
N(αi) = N(αi).

It remains to show that TC(α0) = N(α0). The curve c2g intersects the representative

of α0 once and by de�nition i(ci, ci+1) = 1. It therefore follows that the product TC

adds a copy of each of the ci to α0. It is shown in Figure 4.9 that this is in fact equal

to N(α0) in the case where g = 1, and indeed, this is true for any g > 0. It follows

that TC = N as groupoid automorphisms, and hence, they are equal as elements of

Mod(Σ1
g). The case where k = 2g + 2 is similar to that of 2g + 1. We can use the
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c1 c2

α0

c1

Tc2(α0) TC(α0)

Figure 4.9: All arcs on the bottom row of hexagons are isotopic to the arc shown in
the hexagon on the top right. The arcs TC(α0) and N(α0) are isotopic and so are equal
as elements of the fundamental groupoid.

groupoid generators shown in Figure 4.5(iii) and the details are left to the reader. �

Note that Proposition 4.4.3 proves Theorem 1.5.4 in that it completely determines

the image of each braid group generator σi by the homomorphism βk.

4.4.4 Intersection data

In Section 4.4.3 we saw that half twists lift to (k − 1)-chain twists with respect to

any k-sheeted Burau cover where k ≥ 3. We will now explicitly describe a su�cient

combinatorial condition for two chains that implies their chain twists satisfy the braid

relation. We will assume that k ≥ 3 for the remainder of this section.

Bracelets

Let C = {c1, . . . , ck−1} be a (k − 1)-chain and let c0 = TC(ck−1). We call the set

{ci : i ∈ Z/kZ} a k-bracelet (or a bracelet). Such a bracelet is called the bracelet

completion of the chain C.

Lemma 4.4.4. Let C = {c1, . . . , ck−1} be a chain and {ci : i ∈ Z/kZ} the bracelet

completion of C. Then

(i) i(ci, cj) =

1 if i = j − 1, j + 1

0 otherwise,

(ii) TciTci+1
· · ·Tci−2

= Tci+1
Tci+2

· · ·Tci−1
for all i ∈ Z/kZ.

Proof. Note that Tc0 = Tc1 · · ·Tck−1
T−1
ck−2
· · ·T−1

c1
. Any solution to the word problem for

the braid group (Dehornoy's handle reduction [22] for example) can be used to show

[Tc0 , Tci ] = 1 if i 6= 1, k − 1 and Tc0TciTc0 = TciTc0Tci if i = 1, k − 1. This proves

property (i).
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For (ii), note Tc0 · · ·Tck−2
= Tc1 · · ·Tck−1

from the de�nition of c0. Suppose now

Tcj · · ·Tcj−2
= Tcj+1

· · ·Tcj−1
for some j ∈ Z/kZ. Then

Tcj+2
· · ·Tcj = T−1

cj+1
Tcj+1

Tcj+2
· · ·Tcj−1

Tcj

= T−1
cj+1

TcjTcj+1
· · ·Tcj−2

Tcj

= TcjTcj+1
T−1
cj
Tcj+2

· · ·Tcj−2
Tcj

= Tcj · · ·Tcj−2

completing the proof. �

Note that property (ii) in Lemma 4.4.4 implies that a k-bracelet is the completion

of any of the (k − 1)-chains obtained by deleting a curve. Abusing notation, suppose

C is a k-bracelet. In light of this fact, de�ne the bracelet twist TC as the chain twist

about any of the (k − 1)-chains obtained by deleting a curve from C.

Mesh intersection

Let A = {ai : i ∈ Z/kZ} and B = {bj : j ∈ Z/kZ} be two k-bracelets. We say A and

B have mesh intersection if there exists t ∈ Z/kZ such that

i(ai,bj+t) =

1 if i = j, j + 1

0 otherwise.

In practice, we may simply relabel the curves in B and assume t = 0.

Fix k ≥ 3 and let βk : B3 → Mod(Σm
g ) be the embedding of the braid group arising

from the k-sheeted Burau cover. Proposition 4.4.3 shows that each standard generator

is sent to a (k − 1)-chain twist. The proof proceeds by �rst constructing a set of k

curves, and then arbitrarily discarding one. The set of k curves constructed is in fact

the completion of the (k − 1)-chain. Furthermore, it can be checked that βk sends the

two standard generators to bracelet twists about bracelets with mesh intersection. In

fact, in the discussion following the statement of Proposition 4.4.6 we will see that if

A and B are two bracelets with mesh intersection such that all 2k curves are distinct,

then there exists a Burau cover that lifts two half twists satisfying a braid relation to

TA and TB. It follows from Theorem 1.5.2 that TA and TB satisfy the braid relation. By

leveraging the algebraic properties of Dehn twists, we may arrive at the same conclusion

without mention of such a covering space.

Theorem 4.4.5. If two k-bracelets A and B have mesh intersection then TATBTA =

TBTATB.

Proof. Be relabelling the curves in B, we may assume t = 0 in the de�nition of mesh
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a0
c

a2

b0

b1

Figure 4.10: Two 3-bracelets A = {a0, c, a2} and B = {b0,b1, c} with mesh intersec-
tion.

intersection. We �rst show that TATBTai
= Tbi

TATB as follows;

TATBTai
= Tai+1

· · ·Tai−1
Tbi
· · ·Tbi−2

Tai

= Tai+1
Tbi

Tai+2
· · ·Tai−1

Tbi+1
· · ·Tbi−2

Tai

= Tai+1
Tbi

Tai+2
· · ·Tai−1

Tai
Tbi+1

· · ·Tbi−2

= Tai+1
Tbi

Tai+1
· · ·Tai−1

Tbi+1
· · ·Tbi−2

= Tbi
Tai+1

Tbi
Tai+2

· · ·Tai−1
Tbi+1

· · ·Tbi−2

= Tbi
Tai+1

Tai+2
· · ·Tai−1

Tbi
Tbi+1

· · ·Tbi−2

= Tbi
TATB.

The second and third equalities come from the intersection data of curves bi and ai−1

respectively. The fourth equality comes from property (ii) of Lemma 4.4.4. The �fth

and sixth equalities come from property (i) of Lemma 4.4.4 applied to B.
This allows us to achieve the braid relation as follows:

TATBTA = TATBTa0Ta1 · · ·Tak−2

= Tb0TATBTa1 · · ·Tak−2

= · · ·

= Tb0Tb1 · · ·Tbk−2
TATB

= TBTATB. �

When k ≥ 4, it can be shown that if two k-bracelets have mesh intersection, then

all 2k curves in question are distinct. However, this is not the case when k = 3. Figure

4.10 shows two 3-bracelets {ai : i ∈ Z/3Z} and {bi : i ∈ Z/3Z} with mesh intersection

such that a1 = b2.

Intersection data for chains

We now shift our attention to �nding a su�cient combinatorial condition for two (k−
1)-chains A and B to have the property that their bracelet completions have mesh

intersection. We will then be able to conclude, by Theorem 4.4.5, that the two chain

twists TA and TB satisfy a braid relation.
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c1

c2

c3
Tc1(c3)

c2

Figure 4.11: The triple (c1, c2, c3) bounds a positively oriented triangle. The right
image shows the bigon between Tc1(c3) and c2, implying i(Tc1(c3), c2) = 0.

Suppose α1, α2, α3 are curves on a surface in minimal position such that i(αi, αj) = 1

if i 6= j. The graph given by the three curves de�nes two triangles and a hexagon on the

surface. Suppose one of the triangles bounds a disk D. We say the triple (α1, α2, α3)

bounds a positively oriented triangle if you can traverse ∂D in a anti-clockwise direction

from the intersection point x ∈ α1∩α3 and travel along a segment of α1, then a segment

of α2, then a segment of α3 in that order and return to x. See Figure 4.11 for a local

picture of three curves bounding a positively oriented triangle.

We say a triple (c1, c2, c3) of isotopy classes of curves bounds a positively oriented

triangle if there exist representatives γi of ci such that (γ1, γ2, γ3) bounds a positively

oriented triangle.

Note that if (c1, c2, c3) bounds a positively oriented triangle and σ ∈ S3 is a per-

mutation, then (cσ(1), cσ(2), cσ(3)) bounds a positively oriented triangle if and only if σ

is an even permutation.

The importance of the de�nition of a triple bounding a positively oriented triangle

is that if (c1, c2, c3) bounds a positively oriented triangle, then i(Tc1(c3), c2) = 0. This

can be seen in Figure 4.11.

Proposition 4.4.6. Suppose A = {a1, . . . , ak−1} and B = {b1, . . . ,bk−1} are two

(k − 1)-chains with the property that

(i) i(ai,bj) =

1 if i = j, j + 1

0 otherwise
, and

(ii) The triples (ai,bi, ai+1) and (bi, ai+1,bi+1) bound positively oriented triangles for

all i ∈ {1, . . . , k − 2}.

Then the chain twists TA and TB satisfy a braid relation.

If each of the 2k − 2 curves in A and B are distinct then we may view them as

depicted Figure 4.12.

De�ning Σm
g to be the regular neighbourhood of the curves and triangles it can be

seen that m = gcd(3, k). Furthermore, an Euler characteristic argument shows that

g = k − 2 if m = 3 and g = k − 1 if m = 1. These are precisely the values of m and g

that give rise to a k-sheeted Burau cover pk : Σm
g → Σ1

0 with three branch points. By

using a variation of the change of coordinates principle (see [27, Section 1.3.2]) we may
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conclude that TA and TB are lifts of half twists that satisfy a braid relation. Hence

from Theorem 1.5.2 we conclude that TA and TB satisfy a braid relation.

Unlike the discussion above, the following proof of Proposition 4.4.6 does not make

use of the Birman-Hilden Theorem. As such, it provides a more intrinsic perspective

of chain twists satisfying a braid relation, and deals with the case when the curves in

A and B are not distinct.

Proof of Proposition 4.4.6. Let a0 = TA(ak−1) and b0 = TB(bk−1). To ease notation

let ∆ = Tb1 · · ·Tbk−2
and ∇ = Tb2 · · ·Tbk−1

. Note that Tb0 = ∆Tbk−1
∆−1 = ∇−1Tb1∇.

By Theorem 4.4.5 it su�ces to show

i(a0,bj) =

1 if j = 0, k − 1

0 otherwise
and i(ai,b0) =

1 if i = 0, 1

0 otherwise.

Let i 6= 0, 1. Since (bj, aj+1,bj+1) bounds a positively triangle for all j ∈ {1, . . . , k−2},
we have i(Tbj

(bj+1), aj+1) = 0 so [Tbj
Tbj+1

T−1
bj
, Taj+1

] = 1. Rearranging and relabelling

we get

T−1
bi
T−1
bi−1

Tai
Tbi−1

Tbi
= T−1

bi−1
Tai

Tbi−1

for all i 6= 0, 1. We have

[Tb0 , Tai
] = ∆Tbk−1

∆−1Tai
∆T−1

bk−1
∆−1T−1

ai

= ∆Tbk−1
T−1
bk−2
· · ·T−1

bi+1
T−1
bi
T−1
bi−1

T−1
ai

Tbi−1
Tbi

Tbi+1
· · ·Tbk−2

T−1
bk−1

∆−1T−1
ai

= ∆Tbk−1
T−1
bk−2
· · ·T−1

bi+1
T−1
bi−1

T−1
ai
Tbi−1

Tbi+1
· · ·Tbk−2

T−1
bk−1

∆−1T−1
ai

= Tb1 · · ·Tbi−1
Tbi

T−1
bi−1

T−1
ai
Tbi−1

T−1
bi
T−1
bi−1
· · ·T−1

b1
T−1
ai

= Tb1 · · ·Tbi−1
T−1
bi−1

Tai
Tbi−1

T−1
bi−1
· · ·T−1

b1
T−1
ai

= Tb1 · · ·Tbi−2
Tai

T−1
bi−2
· · ·T−1

b1
T−1
ai

= 1.

Therefore i(ai,b0) = 0. When i = 1 we have

Ta1Tb0Ta1 = Ta1∇−1Tb1∇Ta1

= ∇−1Ta1Tb1Ta1∇

= ∇−1Tb1Ta1Tb1∇

= ∇−1Tb1∇Ta1∇−1Tb1∇

= Tb0Ta1Tb0

so i(a1,b0) = 1. Similar arguments show i(a0,bj) = 0 for j 6= 0, k−1 and i(a0,bk−1) =

1.
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Figure 4.12: Intersecting circles describing two 5-chains satisfying the conditions of
Proposition 4.4.6. The regular neighbourhood of this collection of curves and triangles
is homeomorphic to Σ3

4.

It remains to show i(a0,b0) = 1. We have

Ta0Tb0Ta0 = Ta0∆Tbk−1
∆−1Ta0

= ∆Ta0Tbk−1
Ta0∆

−1

= ∆Tbk−1
Ta0Tbk−1

∆−1

= ∆Tbk−1
∆−1Ta0∆Tbk−1

∆−1

= Tb0Ta0Tb0

completing the proof. �

See Figure 1.9 for two 3-chains on Σ1
3 satisfying the conditions of Lemma 4.4.6. The

positively oriented triangles are shaded in grey.

4.4.5 Open Questions

Here are a few natural questions relating to the braid group embeddings constructed

above. Recall that for each k ≥ 3 and n ≥ 2 we have constructed an embedding

βk : Bn ↪→ Mod(Σm
g ) arising from the k-sheeted Burau cover. Here, m = gcd(n, k) and

g = 1− 1
2
(k + n+m− nk).

Necessity of mesh intersection

When two simple closed curves a and b on a surface intersect once, then Ta and Tb

satisfy a braid relation. In fact, this condition is necessary. That is, TaTbTa = TbTaTb

if and only if i(a, b) = 1 (see [27, �3.5]). The next question asks the analogous question

for chain twists.

Question 4.4.7. Suppose A and B are k-chains for k ≥ 2, and let TA and TB be

the corresponding chain twists. Is it true that if TATBTA = TBTATB, then the bracelet

completions of A and B have mesh intersection?

Automorphisms of free groups

For a surface Σ with non-empty boundary, there is a homomorphism Mod(Σ) →
Aut(π1(Σ)) given by the action of Mod(Σ) on the fundamental group of Σ with a

basepoint on the boundary. For a surface of genus g and m boundary components,
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π1(Σm
g ) ∼= F2g+m−1. Precomposing with the braid group embeddings above, we get an

induced homomorphism from the braid group into the automorphism group of a free

group.

Question 4.4.8. Let k ≥ 3. For each n ≥ 2 there is a homomorphism φn,k : Bn →
F(n−1)(k−1). What can be said about this family of homomorphisms? Do they give rise

to new embeddings of the braid group in Aut(Fn)?

Triviality of the induced map on stable homology

There is a geometric embedding B2g ↪→ Mod(Σ1
g) for each g. This family of embeddings

gives a map from B∞ = limg→∞B2g to Γ∞ = limg→∞Mod(Σ1
g). In the 1980s J. Harer

conjectured that the induced map on stable homology H∗(B∞;Z/2Z)→ H∗(Γ∞;Z/2Z)

is trivial. The conjecture was proved by Song and Tillman in [63, Theorem 1.1]. A

stronger version of Harer's conjecture was proved for a large family of non-geometric

embeddings of the braid group in [9].

Question 4.4.9. Fix k > 3. Is the map on stable homology H∗(B∞;Z/2Z)→ H∗(Γ∞;Z/2Z)

induced by the embeddings βk : Bn ↪→ Mod(Σm
g ) trivial?

Note that this question is answered a�rmatively for stable homology with any

coe�cients when k = 3 by Kim-Song [44, Theorem 3.4].

Classifying braid embeddings

There are now in�nite families of non-geometric embeddings of braid groups in mapping

class groups.

Question 4.4.10. Is there a classi�cation of all possible conjugacy classes of embed-

dings of the braid group in the mapping class group?

The proof of Theorem 4.4.5 suggests a way to construct more examples as follows.

Suppose we have two subsets of mapping classes {φi} and {θi} indexed by Z/kZ
such that

φiφj =

φjφiφjφ−1
i if j = i− 1, i+ 1

φjφi otherwise,

θiθj =

θjθiθjθ−1
i if j = i− 1, i+ 1

θjθi otherwise.

Suppose further that the following relations are satis�ed;

φiθj =

θjφiθjφ−1
i if i = j, j + 1

θjφi otherwise,
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and for any i ∈ Z/kZ we have

Φ := φi . . . φi−2 = φi+1 . . . φi−1 and Θ := θi . . . θi−2 = θi+1 . . . θi−1.

Then the products Φ and Θ satisfy the braid relation, that is, ΦΘΦ = ΘΦΘ.

We conjecture however, that this is only possible when each φi and θi is a Dehn

twist and the corresponding sets of curves are bracelets with mesh intersection. There

is no particular reason to assume otherwise, except to satisfy our own insatiable desire

for pattern.
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