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Summary 

 

Despite the interventional and pharmacological advances in treatment in ST elevation 

myocardial infarction in recent decades it continues to be a significant cause of morbidity 

and mortality in Scotland and around the world. The diagnosis and treatment of ST 

elevation myocardial infarction has been the subject of intense investigation and the focus 

of numerous randomised clinical trials over the past few decades. In an attempt to 

minimise adverse sequelae it is imperative that in patients with ST elevation myocardial 

infarction (STEMI) the immediate goal of therapy is to rapidly achieve patency of the 

epicardial infarct related artery (IRA) and consequently reperfusion of the affected 

myocardium.   

 

Thrombolysis achieves normal flow (TIMI grade 3) in the IRA in around 50% of patients 

compared to around 90% with primary PCI (pPCI). The successful restoration of 

epicardial coronary artery patency with TIMI grade 3 flow, however, does not necessarily 

translate into adequate tissue level perfusion. Inadequate tissue level perfusion in ST – 

elevation myocardial infarction in the presence of a patent epicardial artery is 

characterised by myocardial microvascular dysfunction. Evidence of microvascular 

obstruction (MVO) regardless of how it is assessed is associated with adverse clinical 

outcomes in this patient group. A series of consistent data has clearly shown that MVO 

has a strong negative impact on outcome.  
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The index of microvascular resistance is a marker of myocardial microvascular resistance 

which be validated in vitro and in vivo and has been shown to be independent of 

variations in haemodynamic state. By incorporating collateral flow IMR has been 

validated in the presence of an epicardial stenosis and therefore can be calculated prior 

and and following stenting. Calculation of IMR at the time of emergency PCI for STEMI 

could potentially provide a marker of microvascular and myocardial injury in the very 

early post infarct period when further potential interventions would be most beneficial to 

the patient. 

 

Cardiac MRI imaging is the current gold standard for assessment of left ventricular 

ejection fraction and infarct volumes. Using Gadolinium contrast agent CMR can 

characterise microvascular obstruction and calculate infarct volumes. This useful 

information is normally available at the time of emergency PCI.  

 

The principle aim of this thesis is to compare pressure wire derived markers of 

microvascular obstruction, principally IMR,  calculated at the time of emergency PCI for 

STEMI with evidence of microvascular and myocardial damage as assessed by ceCMR 

scanning at 2 days and 3 months post PCI. In particular I will look at whether IMR at the 

time of PCI for STEMI can be used as a predictor of myocardial damage on ceCMR. 
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I will also compare IMR the “traditional” indices currently used to assess microvascular 

perfusion and assess the impact that stenting itself has on the coronary microvasculature 

by comparing IMR prior and following PCI. 

 

CMR imaging is not commonly available in the early post infarct period. I will therefore 

also look at the safely, feasibility and clinical utility of ceCMR imaging in the 24 to 48 

hour period following PCI for STEMI. 

 

Patients who were undergoing emergency PCI for STEMI were recruited They 

underwent pressure wire assessment at the time of emergency PCI and had ceCMR scans 

at 2 days and 3 months following their myocardial infarction. A total of 77 patients were 

consented for the study between 04/01/2007 and 28/02/2008 and 69 patients had 

successful coronary physiological studies at the time of PCI. Two hundred patients in 

total underwent early ceCMR post STEMI over a longer time period. The funding for my 

study from the CSO Scotland allowed the evolved project to run for a further 18 months 

(and indeed still continues following further funding from the BHF) after I went back into 

clinical work therefore I was able to use extra patients whom underwent early CMR for 

that aspect of the thesis.  

 

In summary the findings of this thesis are: 
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 IMR is significantly higher in patients in whom there is evidence of MVO in 

ceCMR scanning at 48h but does not predict the amount of MVO present. 

 

  IMR is a strong independent predictor of LVEF, infarct volumes and LVESV on 

ceCMR imaging at 48h and 3 months. 

 

 IMR was an independent predictor of transmurality score on ceCMR 

 

 IMR does not alter significantly following stenting in emergency PCI indicating 

that stenting itself does not significantly alter the coronary microvasculature. 

 

 IMR correlates closely with the “traditional” markers of myocardial damage and 

myocardial infarction in ST – elevation myocardial infarction. 

 

 Anatomical site if myocardial infarction and therapeutic interventions at the time 

of emergency PCI do not significantly influence coronary pressure wire derived 

markers of microvascular obstruction taken immediately post – procedure. 
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 There was a nearly exact relationship between the presence of “early” and “late” 

MVO assessed by ceCMR imaging 48h post STEMI 

 

 CMR in the early post infarct period is safe, feasible and provides useful 

diagnostic information 

 

This was the first study to directly compare IMR with ceCMR assessment of MVO and 

myocardial damage. I feel that my results complement the other work done in this field 

both in stable patients and in the STEMI population. I have shown that an elevated IMR 

is linked to microvascular and myocardial damage as revealed by ceCMR in the early 

post infarction period and at longer term follow up. Accordingly, I suggest measurement 

of IMR represents a new approach to risk assessment at the very earliest stage of acute 

MI management, and potentially, therefore enables triage of higher risk patients to more 

intensive therapy. 

 

 

 

 

 

 

 

 



36 

 

 

 

 

 

 

Chapter 1: Introduction 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



37 

 

1.1Background 

 

Improvements in the primary prevention of coronary artery disease, predominantly 

through more rigorous diagnosis and aggressive control of classical cardiac risk factors, 

have led to a decline in premature coronary heart disease in the Western world
1
. Despite 

this acute myocardial infarction (AMI) remains a significant problem at a local and 

national level as well as on a global scale.  

 

In one Scottish study looking at patients presenting to their general practitioner with 

angina as a first manifestation of potential ischaemic heart disease the investigators found 

that of these 1785 patients, within the five years’ follow-up, 152 (8.5%) patients
 

underwent coronary artery bypass grafting, 108 (6.1%) underwent
 
percutaneous coronary 

angioplasty, 116 (6.5%) had
 

an acute myocardial infarction, 84 (4.8%) died from 

ischaemic
 
heart disease, and 175 (9.8%) died from any cause.

2
 In Scotland, although the 

age-standardised mortality rates following AMI have fallen between 1994 and 2004 

(from 223 to 140 per 100 000), cardiovascular morbidity and mortality remain high.
3
 

 

In the United Kingdom, based on incidence rates of AMI of 600 per 100 000 in men and 

200 per 100 000 in women under the age of 70 years, an estimated 123 000 persons aged 

75 or less will suffer an AMI per year. 
3
These data are thought to be a under-

representation given the relative young age of the patients involved.
4
 The combined 

expense of direct treatment, loss of earnings by the workforce, and informal caring for 
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these patients is estimated at over £7.9 billion per annum to the United Kingdom 

economy. 
1
 

 

Coronary heart disease (CHD)
 
caused about 1 of every 5 deaths

 
in the United States in 

2005.
 
CHD mortality in 2005 was 445

 
687. Current estimates in America state that each 

year, an estimated 785
 
000 people will suffer a first AMI, and about 470

 
000 will have a 

recurrent attack.
 

It is estimated that an additional
 

195 000 silent first myocardial
 

infarctions occur each year. In addition, in 2005 1
 
in 8 death certificates (292 214 deaths) 

in the United
 
States

 
mentioned heart failure.

5
 

 

The detrimental effect of heart failure after presenting with AMI is well established.
6-8

 In 

an analysis of the VALsartan In Acute myocardial iNfarcTion study (VALIANT) of 

11 040  post-MI patients deemed to be stable (no major non-fatal cardiovascular events or 

deaths within 45 days of randomization and without a prior history of HF), 1139 (10.3%) 

developed HF during the median 25-month follow-up at a rate of 3.4% per year.
9
 United 

Kingdom data from a large, single centre that followed up AMI patients who had a first 

or recurrent myocardial infarction in 1998 reported that 63% developed heart failure over 

the subsequent 6 years. This group also reported 84% of those who died during follow-up 

first developed HF.
10

 

 

 A North American study which looked at population-based cohort of 7,733 patients ≥65 

years of age hospitalized for a first MI between 1994 and 2000 in Alberta, Canada found 

that 2,831 (37%) MI patients were diagnosed with new HF and 1,024 (13%) died. Among 
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hospital survivors who did not have HF during their index hospitalization (n = 4,291), an 

additional 3,040 patients (71%) developed HF by 5 years, 64% of which occurred in the 

first year.
11, 12

 

 

The diagnosis and treatment of ST elevation myocardial infarction has been the subject of 

intense investigation and the focus of numerous randomised clinical trials over the past 

few decades. In an attempt to minimise adverse sequelae it is imperative that in patients 

with ST elevation myocardial infarction (STEMI) the immediate goal of therapy is to 

rapidly achieve patency of the epicardial infarct related artery (IRA) and consequently 

reperfusion of the affected myocardium.   

 

Thrombolysis achieves normal flow (TIMI grade 3) in the IRA in around 50% of patients 

compared to around 90% with primary PCI (pPCI). A meta-analysis of 23 randomised 

controlled trials has shown that primary PCI (pPCI) is superior to intravenous 

thrombolytic therapy for the prevention of death, stroke and reinfarction
13

. Evidence also 

states that in cases of failure to reperfuse following intravenous thrombolysis rescue 

percutaneous coronary intervention is the treatment of choice
14

 The successful restoration 

of epicardial coronary artery patency with TIMI grade 3 flow, however, does not 

necessarily translate into adequate tissue level perfusion.  

 

Inadequate tissue level perfusion in ST – elevation myocardial infarction in the presence 

of a patent epicardial artery is characterised by myocardial microvascular dysfunction. 

Evidence of microvascular obstruction (MVO) regardless of how it is assessed is 
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associated with adverse clinical outcomes. A series of consistent data has clearly shown 

that MVO has a strong negative impact on outcome. 
15-21

 Indeed, patients with no-reflow 

exhibit a higher prevalence of: 1) early post-infarction complications (arrhythmias, 

pericardial effusion, cardiac tamponade, early congestive heart failure); 2) left ventricular 

impairment; 3) late repeat hospital stays for heart failure; and 4) mortality.
22

 

 

 As a consequence attention in recent years has shifted from merely achieving epicardial 

artery patency towards the status of the coronary microvasculature. Restoration of 

epicardial vessel patency does not mean complete perfusion recovery and perfusion of the 

microvasculature is an additional prerequisite for optimal recovery.  However, there is 

not, as yet, a defined gold – standard for assessment of microvascular dysfunction in the 

cardiac catheterisation laboratory when intervention to minimise microvascular damage 

would be potentially of maximal benefit to the patient. Advances in the early 

identification of these patients and the pathophysiology of MVO in ST – elevation 

myocardial infarction could aid the development of preventative and therapeutic 

strategies.
23

  

 

Hence, this thesis will concentrate on novel methods for early assessment of MVO using 

a coronary pressure wire at the time of emergency PCI for STEMI using contrast enhance 

cardiac magnetic resonance imaging (ceCMR) as the gold standard for assessment of left 

ventricular function and microvascular obstruction. 

 



41 

 

1.2Pathophysiology of microvascular obstruction in myocardial 

infarction 

 

1.2.1Background 

 

Myocardial microvascular obstruction was first described as no – reflow phenomenon in 

1974
24

. In relation to this the working hypothesis is that ST elevation myocardial 

infarction is primarily an epicardial arterial event, with acute thrombus formation on the 

background of local atherosclerotic plaque rupture. This results in occlusion of the culprit 

vessel with subsequent downstream hypoxic myocardial damage and cell death. 
25

 The 

most prominent hypothesis is that coronary microvasculature damage is as a result of this 

acute insult secondary to mechanical and functional obstruction and reperfusion injury. 

However primary microvascular dysfunction must also be considered in this patient 

population.
26

 

 

1.2.2Mechanical obstruction of the microcirculation 

 

Distal embolisation of atherosclerotic material has been recognised as an important factor 

in decreased myocardial perfusion in the setting of ST elevation myocardial infarction. 

This has been shown by the injection of microspheres to represent atherosclerotic debris 

in the experimental canine setting 
27

 and was first noted in autopsy of 25 cases of sudden 

death due to acute coronary thrombosis. Falk noted that in 73% of cases there was 
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fragmentation of the proximal thrombus with peripheral embolisation causing micro-

embolic occlusion of the small intra-myocardial arterioles associated with 

microinfarcts.
28

 A further autopsy study confirmed this in patients who died within 30 

days of thrombolysis or balloon angioplasty for treatment of ST – elevation myocardial 

infarction.
29

 

 

Initial studies using a distal protection device confirmed a high number of patients in 

whom this was present and suggested improvement in surrogate markers of 

microvascular perfusion.
30

 Systematic evaluation of angiographic evidence reveals distal 

embolisation to be in the region of 15% although due to the visual nature of assessment 

this number is thought to be artificially low.
31

 In this same study, distal embolisation also 

carried an increased risk of poor clinical outcomes and was associated with an eight fold 

increase in 5 – year mortality. On the basis of these findings downstream embolisation of 

thrombus and plaque material is thought to be the major contributor to the mechanical 

element of microvascular obstruction in reperfused myocardial infarction. Hence, it was 

hypothesized the distal protection devices that prevent embolisation during primary PCI 

may improve distal perfusion.  

 

This concept however has not been proven in the numerous randomised controlled trials 

which remained inconclusive despite capture of atheromatous material. The 

DEDICATION study further confirmed that the routine use of distal protection by a 

filterwire system during primary PCI did not seem to improve microvascular perfusion, 

limit infarct size, or reduce the occurrence of MACE.
32-34

 A significant amount of distal 
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embolisation may occur prior to any medical or therapeutic intervention limiting the 

therapeutic benefits of distal protection devices. Therefore, although the presence of 

distal coronary embolisation is well documented its ultimate function and clinical 

significant remains to be further determined. 

 

1.2.3 Functional obstruction of the microcirculation 

 

Distal embolisation of plaque material must not be taken in isolation and it must be 

remembered that these substances are potentially vasoactive and therefore not 

biologically inert. These bioactive materials have the potential to increase the functional 

impairment of the coronary circulation. Experimental models support the hypothesis that 

microcirculatory vasoconstriction plays a part.  

 

The vasoconstricting peptide endothelin-1 is expressed in active plaque as a tissue factor 

which is shown to cause a significant reduction in coronary blood flow when released 

into the coronary circulation.
26

Moreover, ischaemia itself is known to reduce the 

bioavailability of nitric oxide further contributing to the dysfunction of the coronary 

microcirculation. However the extent to which these elements influence outcome in ST – 

elevation myocardial infarction is currently uncertain. 

 

1.2.4 Reperfusion injury 
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This is a controversial issue from a clinical standpoint if not an experimental one. This is 

defined as myocardial injury caused by the restoration of coronary blood flow after an 

ischaemic episode and can occur regardless of whether reperfusion is by medical or 

mechanical means. The coronary microcirculation is thought to be infiltrated by 

neutrophils and platelets at the time of reperfusion.
35, 36

 

 

A number of pathophysiological mechanisms have been postulated with the major focus 

being on the central role of the microcirculation. 
37

 Histological studies have confirmed 

platelet as well as leukocyte accumulation and activation in the myocardial 

microcirculation, leading to vasoconstriction, thrombosis as well as the release of oxygen 

free radicals, proteases and pro-inflammatory mediators that can lead directly to tissue 

and endothelial damage. Neutrophils also form aggregates with platelets that plug 

capillaries, thus mechanically blocking flow.
38

 

 

 Increase in oxidative stress mediates a reduction in nitric oxide bioavailability as well as 

activation of the endogenous endothelin and the local renin-angiotensin system. At the 

time of myocardial reperfusion there is an increase in intracellular calcium and this 

induces cardiomyocyte death by causing hypercontracture of the heart cells and 

mitochondrial PTP opening. Consequently myocyte death is observed as is interstitial 

oedema and further leukocyte adherence. 
26, 36

 

 

The majority of the work relating to reperfusion injury is done in experimental models 

following acute occlusion of a previously normal epicardial artery. The disappointing 
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attempts to convert successful studies in animal experimental models into the clinical 

setting, has raised the question of the suitability of these animal models as representation 

of acute myocardial infarction in humans.  

 

1.2.5Pre-existing dysfunction of the myocardial microcirculation  

 

There is increasing evidence that pre-existing microvascular dysfunction may also part a 

part in outcomes following ST elevation myocardial infarction and in assessment of risk 

of myocardial infarction in patients with angiographically coronary arteries. Coronary 

flow reserve (CFR) is thought to be a marker of microvascular disease. One study that 

looked at 120 patients in whom the epicardial coronary vasculature was angiographically 

normal or mildly disease found that reduced coronary flow reserve was significantly 

associated with a poor long-term outcome.  Cardiovascular events occurred in seven 

(18%) patients in the lowest tertile of coronary flow reserve compared with four patients 

in the middle tertile (10%) and two patients in the upper tertile (5%).
39

 Hence there is 

evidence that myocardial microvascular obstruction could be a predictor of future 

coronary events in the absence of haemodynamically significant coronary artery disease. 

It is likely that in this setting this merely represents a marker of vascular disease which is 

yet to appear significant angiographically rather than an independent contributor towards 

risk of future vascular events. 

 

The impact of pre-existing diabetes mellitus on myocardial perfusion following primary 

angioplasty has also been investigated. One study found that despite similar high rates of 
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TIMI flow grade 3 after primary PCI in patients with and without diabetes, patients with 

diabetes are more likely to have abnormal myocardial perfusion as assessed by both 

incomplete ST segment resolution and reduced myocardial blush grade. Diminished 

microvascular perfusion in diabetics after primary PCI may contribute to adverse 

outcomes. 
40

  

 

A substudy of the EMERALD study confirmed this adverse prognosis in diabetic patients 

concluding that in patients with ST-segment elevation myocardial infarction undergoing 

primary PCI, diabetes is independently associated with decreased myocardial reperfusion, 

larger infarct, development of congestive heart failure, and decreased survival. In this 

study myocardial perfusion was again assessed using myocardial blush grade and ST 

segment resolution index and infarct size was assessed using technetium-99m single 

proton emission computed tomography measured between days 5 and 14 post 

reperfusion.
41

 

 

1.2.6 Summary 

The pathophysiology of myocardial microvascular obstruction in the setting of 

myocardial infarction is multi-factorial, comprising of mechanical obstruction, functional 

obstruction, reperfusion injury and the elements comprising this as well as pre-existing 

microvascular disease in specific patient groups. The exact pathological mechanisms 
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remain to be determined and this may in part be due to the heterogeneous nature of the 

pathophysiological process.  

 

 

Figure 1.1:  Mechanisms Responsible for No-Reflow Four interacting mechanisms (distal 

embolisation, ischemia-related injury, reperfusion related injury, and individual susceptibility to 

microvascular injury) are responsible for no-reflow phenomenon. The individual contribution of 

these mechanisms to the pathogenesis of no-reflow is likely to vary in different patients. 

 

 

 

 

1.3 Current tools for assessment of the coronary microcirculation 
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As previously stated when treating ST – elevation myocardial infarction with primary or 

rescue angioplasty restoration of normal epicardial blood flow (TIMI 3) flow does not 

guarantee sufficient microvascular perfusion or optimal outcomes due to a combination 

of the factors. These patients would need to be identified at the earliest possible 

opportunity in order to maximize the impact of any potential future target therapies. A 

variety of methods ranging from electrocardiographic criteria to magnetic resonance 

imaging and intracoronary pressure assessment can be used for this purpose. 

 

1.3.1 Electrocardiographic ST-segment resolution following reperfusion 

 

The measurement of the degree of resolution of ST segment elevation on the surface 12 

lead ECG has long been used to assess success or failure of reperfusion therapy. It is well 

established that early and complete resolution of ST segment deviation is a powerful 

predictor of infarct-related artery patency, preserved microvascular integrity and low 

mortality in patients with STEMI. When assessed 90 – 180 minutes after the 

administration of thrombolytic therapy, complete resolution of  ST segment elevation is 

associated with a very high (90 – 95%) probability of a patent infarct related artery, and 

around an 80% probability of TIMI (thrombolysis in myocardial infarction) grade 3 flow. 

42, 43
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In contrast, failure to completely resolve ST-segment elevation is not associated with a 

particularly high rate of occluded infarct related artery (around 50%). These patients are 

known to have an adverse prognosis 
44

 and a significant proportion of these patients are 

now known to have decreased microvascular perfusion.  

 

Studies using contrast echocardiography, myocardial blush grade and intracoronary 

pressure assessment among patients with normal epicardial blood flow following STEMI 

have shown inconstant results when comparing persistent ST segment to other markers of 

persisting microvascular dysfunction. 
45-49

 Several studies have failed to show an 

association between ST-segment resolution and extent of microvascular obstruction 

assessed by cardiac magnetic resonance imaging. Furthermore, other published data have 

failed to show a definitive link between ST-segment resolution and infarct size measured 

by single photon emission computed tomography imaging.
46, 50

 

 

The above has looked at ST-segment resolution index, however, there are now a variety 

of ways that the ECG can be assessed to provide further information about reperfusion. 

ST analysis may have a place as a surrogate marker of outcome in STEMI but the 

evidence shows that it cannot be used for accurate quantification of microvascular 

dysfunction. In addition, some patients with acute myocardial infarction have ECGs that 

cannot be interpreted such as left bundle branch block. Furthermore, if ST segment 

analysis is to be accepted as a surrogate measure of outcome in primary PCI studies a 



50 

 

consensus is needed about which measures to analyse, the optimal timing of ECG 

analysis and whether single ECGs or continuous ECG sampling is preferable.
51

 

 

1.3.2 TIMI myocardial blush grade 

 

TIMI myocardial blush grade (MBG) is a semi-quantitive angiographic index of 

microvascular damage after recanalization of the infarct related artery. 
52

 This index is 

graded form 1 to 3, one being what appears to be no apparent  myocardial perfusion and 

grade three being apparently normal myocardial perfusion in the context of TIMI grade 3 

flow in the epicardial artery. MBG is a strong angiographic predictor of mortality in 

patients with TIMI 3 flow after primary angioplasty. Enzymatic infarct size was found to 

be larger and left ventricular ejection fraction was found to be lower in patients with 

MBG 0 or 1 compared with MBG 2 or 3.   
53, 54

  

 

MGB has also been shown to have an association with other potential markers of 

microvascular dysfunction such as ST segment resolution index, TIMI frame counting 

and coronary pressure wire derived markers.
17, 47

 

 

However, MGB can be subjective and as such can be open to differing interpretation by 

different operators. Although MGB has been shown to be associated with enzymatic 
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markers of infarct size 
55

recent studies comparing MBG with more accurate markers of 

myocardial damage post myocardial infarction such as contrast echocardiography, 

cardiac MRI imaging and SPECT scanning have raised doubts about its ability to 

accurately predict myocardial perfusion.
16

  

 

In one study using SPECT scanning for assessment of myocardial viability in patients 

with TIMI 3 flow post angiography found that if MBG 0 and 1 were regarded as a sign of 

nonviable myocardium and MBG 2 and 3 were regarded as viable myocardium the 

sensitivity of MBG for the prediction of myocardial viability was 79%, specificity was 

40%, positive predictive value was 88% and negative predictive value was 27%. This 

showing that although sensitivity is fairly good specificity is very low
56

. 

 

Porto et al analysed the pathophysiological features underlying different blush grades 

using early CMR imaging and concluded that increased MBG was associated in a linear 

fashion with less microvascular obstruction on CMR imaging, concluding that the 

common practice of including MBG grades 2 and 3 into a single “patent 

microcirculation” category may not be justified.
57

 In addition, Fearon et al concluded that 

MBG did not correlate with 3 month echocardiographic wall motion score in patients 

treated with primary PCI in the context of STEMI.
47
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TIMI myocardial blush grade is therefore known to be a useful angiographic predictor of 

outcome in STEMI although given its semi-quantitative nature there can be intra-operator 

variability in its interpretation. While it can serve as a marker of microvascular disease it 

cannot be used for accurate assessment of microvascular dysfunction and myocardial 

viability. 

 

1.3.3 Corrected TIMI frame count 

 

The thrombolysis in myocardial infarction (TIMI) frame count (TFC) was developed as a 

simple objective, quantitative and reproducible method to assess coronary blood flow.
58

 

This method counts the number of cine-angiographic frames required for radio-opaque 

contrast to reach specified landmarks in each coronary artery. The TFC provides a more 

reproducible measurement of infarct-related artery blood flow than the TIMI flow grade. 

The TFC has also been shown to be associated with prognosis with one study finding that 

the corrected TIMI frame count (cTFC) three weeks after myocardial infarction was an 

independent predictor of five-year survival, but not 10-year survival in patients treated 

with thrombolysis for STEMI. 
59

 In the setting of percutaneous intervention for STEMI 

Handama et al found that lower cTFC of the infarct-related artery immediately after PCI 

was associated with greater functional recovery; and hence, cTFC could predict clinical 

and functional outcome in patients undergoing successful angioplasty.
60
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It has been postulated previously that in the setting of PCI for STEMI cTFC may be 

suitable to assess the degree of microvascular injury. However when Ohara et al 

investigated the relationship between cTFC and coronary blood flow velocity parameters 

(using a coronary Doppler wire) reflecting the degree of microvascular injury, in patients 

with acute myocardial infarction, they found that cTFC reflected epicardial coronary 

blood flow velocity but was not accurate to assess the degree of microvascular injury 

after primary coronary intervention. 
61

 

 

From a practical aspect these angiographic assessments can rely on performing very long 

acquisitions at high frame rates particularly if there is slow flow or no-flow and this 

generates technical problems for some catheter laboratory x-ray systems as well issues 

about radiation exposure. 

 

1.3.4 Assessment of microvascular integrity using myocardial contrast 

echocardiography  

 

Myocardial contrast echocardiography (MCE) is a technique that uses micro-bubbles 

during transthoracic echocardiography(TTE). These micro-bubbles (typically 2 to 6 µm 

in diameter) remain exclusively within the intravascular space, and their status within any 

myocardial territory can be used to assess the status of microvascular perfusion within 

that area.
62

 Micro-bubbles are biologically inert and purely act as tracer agents. They are 
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able to pass through an intact microcirculation. After bolus injection of micro-bubbles, 

contrast intensity seen within the myocardium reflects the concentration of bubbles. 

During a constant infusion of bubbles and resultant full saturation of the myocardium, the 

signal intensity represents the capillary blood volume. During high powered imaging, 

micro-bubbles are destroyed and the rate of replenishment can be measured.  Myocardial 

blood flow at tissue level can thus be determined from the product of capillary blood 

volume and rate of micro-bubble replenishment after destruction by high powered 

imaging. Decreases in myocardial blood flow are associated with a proportionate 

prolongation of replenishment time
63

.
64

  

 

Ito et al first described the significance of no reflow detected by intracoronary MCE 

despite apparently successful reperfusion therapy. In 39 patients with anterior STEMI 

treated with thrombolysis they found that patients demonstrating no-reflow had 

significantly reduced left ventricular ejection fraction and lower regional wall motion 

scores at 1 month follow-up.
65

 

 

MCE was compared with corrected TIMI frame count, myocardial blush grade and 

percentage ST segment resolution at 90 and 180 minutes to predict left ventricular 

function assessed by regional wall motion score index (WMSI) at one month. In the small 

study (n=15) MCE was found to be the best predictor of improvement in LV function 

with sensitivity and specificity of 88 and 74% respectively.
66
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Intracoronary MCE can be performed at the time of emergency PCI by injection of 

contrast agent into the coronary ostium. Myocardial perfusion can be graded semi – 

quantitavely using an MCE score index (MCESI) from averaging the scores in each of 

the American Heart Association 16 segment model for myocardial perfusion (0 = not 

visible, 1 = patchy, 2 homogeneous contrast effect)
16

. In a study of 124 patients when 

MCESI ≥ 1 is considered adequate reperfusion, those with evidence of MVO defined by 

MCESI = 0 had higher mean creatinine kinase, lower baseline ejection fraction on TTE 

and higher adverse remodeling at 6 month follow up. MCESI = 0 patients also showed 

worse survival in terms of cardiac death (p=<0.0001) and combined events (p<0.0001)
16

. 

 

The multicentre prospective cohort study AMICI (Acute Myocardial Infarction Contrast 

Imaging) evaluated the extent of microvascular damage assessed by MCE in comparison 

with tradition markers of microvascular damage in the prediction of LV remodeling after 

emergency PCI in ST elevation myocardial infarction. At multivariate analysis only TIMI 

grade < 3 flow and endocardial length of contrast defect (expressed as a percentage of 

endocardial length) were independently associated with adverse LV remodeling. Among 

patents with TIMI grade 3 flow endocardial length of contrast defect was the only 

independent variable associated with adverse LV remodeling. 
49

In this study MCE was 

performed 12-24 post PCI. 
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In the majority of studies MCE examination using intravenous contrast the first 

examination is performed between 12 – 24h flowing PCI. This could potentially result in 

a delay in identification of “at risk” patients. In addition some studies thus far in the field 

have concentrated on anterior myocardial infarction although not the case in the AMICI 

study. Inadequate echocardiographic image quality is another potential pitfall of this 

imaging modality especially in patients with inferior/posterior or apical myocardial 

infarction, patients with chronic lung disease or with a high body mass index (BMI). Of 

note, inadequate echocardiographic image quality was an exclusion from the AMICI 

study therefore it is not possible to tell how many patients were excluded on this basis.
21

  

 

Intracoronary MCE has been used to assess microvascular perfusion in the early post 

intervention period (5 – 60 minutes). One study evaluated this in 199 patients following 

PCI however was limited to anterior myocardial infarction
66

 The semi-quantitative 

mature of the indices used in these situations can also make interpretation open to 

observer variability and examinations require appropriate technical expertise especially in 

patients who are overweight.  

 

Despite the evidence for MCE in the diagnostic assessment of microvascular damage and 

prediction of LV remodeling in some circumstances, currently available contrast agents 

are not yet approved for myocardial perfusion, only for LV opacification. Thus, their use 

is limited to clinical studies and consequently restricted in the clinical area.  
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1.4 Cardiac magnetic resonance imaging following acute myocardial 

infarction 

1.4.1 Background 

 

European and American guidelines recommend that all patients who have suffered AMI 

should undergo a formal evaluation of LV function, ideally pre-discharge. The exact 

means of LV assessment is not stipulated in the American College of 

Cardiology/American Heart Association (ACC/AHA) guidelines, while the European 

Society of Cardiology (ESC) guidelines recommend that TTE should be performed in all 

patients; other modalities may be used if available.
67, 68

 

 

Unenhanced 2-dimensional (2-D) TTE is the most widely-used method of assessing LV 

function following AMI
69

. It is widely available and portable, but operator and acoustic 

window dependent. Even with a skilled operator and good acoustic windows a major 

limitation in LV function assessment in the post AMI period is the necessary geometrical 

assumptions required to produce volumes from two-dimensional echocardiography. 
70

 
71

 

While subjective assessment of LVEF by an experienced operator is normally sufficient 

in clinical practice 
72

 there are potential pitfalls when accurate LV assessment is needed 

for research purposes. 
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ECG-gated myocardial perfusion tomography has been validated in the assessment of 

ventricular volumes. As with 2-D echocardiography, it is reasonably reliable in the 

normal heart but can be limited by low special and temporal resolution. 
73, 74

 The use of 

ionizing radiation limits the utility of nuclear techniques for serial follow up studies, 

especially in research.  

 

Cardiac magnetic resonance imaging (CMR) has many advantages in the assessment of 

ventricular mass and function and has rapidly become the reference standard against 

which other techniques are measured.
75

 CMR is non-invasive, uses no radiation, and has 

been shown to be safe early after AMI, although specific safety questionnaires must be 

completed prior to consenting to the investigation and entering the designated MRI 

scanning room. CMR scanning has also been shown to be safe in the early post infarct 

period.
76

  

 

CMR scanning affords not only the gold-standard means of assessment of LV volumes 

and ejection fraction, but also allows assessment of myocardial viability, perfusion and 

regional function. Without any geometric assumptions, excellent accuracy can be 

maintained in abnormally shaped hearts, for example after myocardial infarction, where 

other techniques could be prone to error.
77-82, 82-84
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Excellent reproducibility is essential for follow up studies of patients, and especially in 

research as the better the inter-study reproducibility the smaller the sample size needed to 

detect a true clinical difference between patient populations. CMR has been shown to 

have the best inter-study reproducibility of any imaging technique for both mass and 

volumes of the left and right ventricles and specifically it is considered superior to two 

dimensional echocardiography.
70, 85, 86

 

 

In summary, CMR is now considered the gold-standard means of measurement of LV 

mass, volumes and LVEF, particularly in patients with LVSD in whom the geometrical 

assumptions on which planar imaging techniques necessarily depend, fail to account for 

the changes that occur in LV morphology. Volumetric analysis is performed on CMR by 

dividing the LV into a stack of short-axis slices, which removes the need for any 

geometric assumption. In addition, the excellent spatial and temporal resolution afforded 

by CMR allows accurate delineation of endocardial and epicardial borders.  

 

1.4.2 Late gadolinium contrast enhancement CMR (ceCMR) 

 

Although several techniques CMR techniques can be used for the diagnosis of 

myocardial infarction, the most accurate and best validated is ceCMR. The technique 

involves inversion recovery imaging 5-10 minutes after administration of intravenous 
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gadolinium contrast agent. With appropriate settings the normal myocardium appears 

black or nulled, whereas the non-viable regions appears bright or hyper-enhanced.  

 

The exact mechanism of hyper-enhancement has not as yet been clearly elucidated but 

the postulated theory is based on 2 principles. Myocytes in normal myocardium are 

densely packed and tissue volume is predominantly intracellular, therefore the 

predominantly extra-cellular gadolinium contrast agent cannot cross the intact myocytes 

cellular membranes. Consequently gadolinium distribution is small and the volume is low 

in an area of normal myocardium. In AMI there is membrane rupture which allows 

gadolinium to diffuse into the damaged myocytes, resulting in increased gadolinium 

concentration, shortened T1 relaxation and subsequent hyper-enhancement. In the 

chronic setting, scar has replaced necrotic tissue and the interstitial space has expanded 

again leading to increased gadolinium concentration and hyper-enhancement.  

 

In animal models, numerous studies have shown an almost exact relationship between the 

size and shape of infarcted myocardium as assessed by ceCMR to that of 

histopathological examination. 
87-91

  

 

Studies in humans have shown that infarct size measured by ceCMR is closely associated 

with peak cardiac enzyme release and to measurements performed by positron emission 

tomography.
92-95

 Furthermore, ceCMR appears to be superior to single photon emission 

computed tomography (SPECT) in detecting sub-endocardial infarcts and infarcts in non-
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anterior locations.
96, 97

 In humans with ischaemic LVSD, the transmural extent of the 

delayed enhanced region on ceCMR correlates inversely with improvement in regional 

contractility following revascularisation.
94

 It should be stressed, however, that delayed 

enhancement on ceCMR is not a specific sign of infarction – it simply indicates that the 

normal fluid homeostasis within the abnormal segment has been disrupted. Delayed 

contrast enhancement has been reported in a variety of conditions including 

myopericarditis, hypertrophic and dilated cardiomyopathies, infiltrative cardiac disorders, 

cardiac neoplasia and in the transplanted heart. 

 

A recent multi-centre international study assessed the performance of ceCMR. In total, 

282 patients with acute and 284 with chronic first time MI were scanned in 26 centres. It 

concluded that when a dose of gadolinium of 0.2mmol/kg (the dose used in this study) or 

higher was used, when MI was identified, its location was correct in more than 97% of 

patients (the location of the hyper-enhancement matched the perfusion territory of the 

infarct related artery). Of note this study also looked at chronic MI a subset of patients on 

whom less data exists, and in whom infarcts are thought to be more difficult to detect 

given the shrinkage that can occur during healing. 
88

 

 

Therefore in summary, the data indicates that ceCMR is a well validated and robust 

technique, with an effectiveness that rivals (and many say surpasses) the current best 

available imaging techniques for the detection and assessment of MI. 

 

1.4.3 CMR for the assessment of MVO 
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In the 1990’s MRI hardware improvement and pulse sequence advances allowed 

development of first pass and delayed enhancement contrast sequences which resulted in 

accurate assessment of tissue perfusion and necrosis. Early AMI studies using these 

techniques, principally in non reperfused infarcts, observed the heterogeneous nature of 

infarcted tissue. In particular areas of hypo-enhancement on contrast imaging were 

thought to represent diminished tissue perfusion. These areas were therefore thought to 

represent “no-reflow” also known as MVO. Further work in reperfused infarcts also 

suggested a relationship between this phenomenon and MVO. 

 

Judd et al compared CMR findings with pathological assessment of infarcts in a two day 

old canine model. They correlated regional blood flow as assessed by microspheres in the 

hyper and hypoenhanced areas with pathological assessment of infarct using thioflavin-S 

staining. They found that hypoenhanced areas on CMR scanning had significantly 

reduced blood flow in comparison with remote areas and that the special location of these 

areas correlated closely with the pathological staining. These findings provided support 

for the concept that the hypo-enhanced core within the hyper-enhanced area following 

contrast injection represented MVO.
98

  

 

 In 1995 Lima et al reported two distinct infarct types in humans with reperfused 

myocardial infarctions, those with hypo-enhancement surrounded by hype-renhanced 

regions, and those with hyper-enhanced regions alone. By time intensity curve analysis 

the investigators found that these different areas of enhancement occurred secondary to 
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differences in wash in kinetics of gadolinium. The hypo-enhanced regions exhibited 

delayed contrast “wash-in” kinetics secondary to a delay and or absence of the contrast 

agent perfusing the affected tissue. These findings were consistent with what was 

postulated to be found in areas of microvascular damage. 
99

 

 

1.4.4 CMR methodology for assessment of MVO 

 

The literature reveals that there is, as yet, no standard approach to imaging microvascular 

obstruction using MRI. The most commonly used methods are first pass perfusion 

techniques, early MVO assessment (normally 2 minutes following gadolinium injection) 

and late MVO assessment also known as late gadolinium enhancement from images 

acquired more than 10 minutes after gadolinium administration. 
15, 100-102

 

 

In theory, first pass perfusion should allow the most accurate assessment of MVO size as 

it allows less time than the other methods for diffusion of the gadolinium contrast agent 

to diminish the size of the defect. However, conventional first pass perfusion imaging 

affords significantly less spatial resolution than the other methods and typically does not 

cover the whole heart using only 3 slices the cover the left ventricle. In addition since 

first pass perfusion functions by highlighting differences in relative perfusion between 

areas of myocardium anything which causes a perfusion defect, for example a scar caused 

by a chronic infarct, could be interpreted as an area of MVO. 
103

 
104
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A proportion of patients whom have a defect of first pass scanning do not have evidence 

of MVO on late gadolinium imaging. This ranges from 26% to 31%. It has been 

hypothesised that the reduction in the size of the hypo-enhanced area indicated that the 

edges of the perfusion defect were filled in over time by gadolinium through collateral 

flow or by slow diffusion. It was therefore suggested that MVO on late gadolinium 

images reflected the presence of extensive and severe myocardial damage. Perhaps 

unsurprisingly it is this method for assessment of MVO which is most strongly linked 

with prognosis. 
105, 106

 

 

Recently, high resolution first pass assessment has been shown to be potentially superior 

to early and late gadolinium enhancement and may in the future become the method of 

choice for assessment and quantification of MVO
104

 however at the time of our study 

these sequences were not available and given the higher temporal resolution, particularly 

with delayed gadolinium enhancement we concentrated of assessment of MVO using 

“early” and “late” gadolinium enhancement also known as early and persistent MVO.  

 

One study which compared first pass and persistent MVO found a good level of 

concordance between the two methods. 
107

 Furthermore this thesis will document the 

comparison of early and persistent assessment of MVO in my study population. 

 

There are few papers directly comparing ceCMR assessment of MVO with other imaging 

modalities. One study, comparing MRI with 
201 

T1 SPECT for assessment of infarct size, 

found that those with MVO as assessed by ceCMR had larger infarcts on 
201 

T1 SPECT 
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imaging. There was no direct comparison between the 2 modalities for assessment of 

MVO. 
108

 

 

There has been a direct comparison between ceCMR and contrast echocardiography in a 

reperfused dog infarct model using thioflavin-S staining as the gold standard. They found 

a good correlation between the 2 methods. The threshold for detecting MVO as defined 

by microsphere flow was lower for ceCMR ( <40% of remote regions) than for contrast 

echocardiography ( <60% of remote regions) suggesting that ceCMR may be less 

sensitive but more specific than echocardiography for the detection of MVO.
109

 

 

1.4.5 Clinical and prognostic implications of MVO as assessed by ceCMR 

 

The presence of persistent MVO on ceCMR imaging in reperfused STEMI treated by 

primary angioplasty has been shown to be a significant factor on detrimental LV 

remodeling and ejection fraction at 6 months post reperfusion. 
110

 

 

Wu et al analysed early MVO defined as early hypo-enhancement, in 44 AMI patients 

(eight patients with primary PCI, 20 patients with elective PCI >48h). In patients with 

MVO, more cardiovascular events occurred than in those without MVO and 

microvascular status predicted the occurrence of cardiovascular complications. The 

combined cardiovascular risk of death, re-infarction, congestive cardiac failure or stroke 

increased with infarct extent (30%, 43% and 71% respectively) for small, medium and 
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large infarcts. Even if the analysis was adjusted for infarct size the presence of early 

MVO remained a prognostic marker for post MI complications.
111

  

 

The first study to link persistent MVO to prognosis was published in the European Heart 

Journal in 2005 by Hombach et al. They found using Kaplan-Meier curves a significant 

event free survival for patients without persistent microvascular obstruction. At 100 days 

follow up, the difference in occurrence of major adverse cardiac events (MACE) between 

patients with and without MVO was 12.6% (95% confidence interval, 1.4% - 23.8%). 

Furthermore, they found that the presence of early MVO was a predictor for the 

occurrence of MACE.
15

 

 

The largest and most recent study linking persistent MVO with prognostic impact in 

reperfused AMI was published by Cochet et al.
106

 They looked at 190 patients whom 

underwent primary PCI for treatment of STEMI. They found that persistent MVO was 

relatively common, occurring in around 50% of reperfused infarcts, a finding in keeping 

with work from our own group. 
112

  In addition they compared MVO assessed by first 

pass and persistent MVO. They found that persistent MVO was associated with a 

dramatically higher risk of cardiovascular events, even when adjusted for major markers 

of prognosis after AMI. In addition their data suggested that the prognostic value of 

persistent MVO was superior to MVO determined by first pass images.  

 

Therefore to summarise, MVO assessment by late gadolinium is thought to represent 

potentially severe cases with persistent contrast filling defects. It is also known to be 
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common in reperfused AMI and is linked with prognosis more strongly than the other 

methods for assessment of MVO. For these reasons I have chosen to look at persistent 

MVO primarily in my work but will also record early MVO and therefore also allow 

comparison between the two methods. 

 

1.4.6 The optimal timing for CMR scanning following STEMI 

 

Animal studies have shown that MVO whether early or late as assessed by ceCMR can 

increase in size up to 48 hours.
113

 A further study in the canine model has shown that 

MVO remains essentially unchanged at 2 days and 9 days post infarct.
114

 However 

further work by Albert et al revealed that in 96 patients imaged on different days 

following AMI, MVO prevalence fell dramatically beyond 48 hours from the recorded 

time of infarction (with a decrease in prevalence of greater than 50% within the first 7 

days). 
107

Therefore as can be seen there is as yet no consensus on the optimal timing for 

imaging in this patient group. Given the evidence available my aim was to perform all 

ceCMR scans at around 48h following reperfusion. This could not be done exactly given 

the 24 hours nature of recruitment in the study. I also felt that given average stay in 

hospital following STEMI is gradually decreasing this methodology did not result in 

ceCMR scanning delaying the patients discharge or transfer back to their base hospital.   

 

Although important prognostic information can be gained from ceCMR scans performed 

after successful reperfusion this diagnostic tool is not available in the very early post 

infarct period for a variety of reasons, clinical, logistical and theoretical. The result is that 
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this useful information is not available at the time of emergency PCI when interventions 

in an “at risk” patient group would potentially be most beneficial. Therefore this thesis 

will look also at the feasibility, safety and clinical utility of ceCMR in the very early post 

infarct period. 
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1.5 Novel invasive markers for microvascular dysfunction using a 

coronary temperature/pressure wire at the time of emergency PCI 

 

1.5.1 Coronary microvascular resistance 

 

Resistance equals pressure gradient divided by flow. In the case of the coronary 

circulation, the mean aortic to distal coronary back pressure gradient divided by total 

sinus blood flow over time yields total coronary resistance (mmhg/ml/min). Under 

normal conditions the epicardial arteries which run over the surface of the heart do not 

create any significant resistance to blood flow. Even at high flow rates only a negligible 

pressure difference exists between the central aorta and the most distal part of the 

angiographically smooth epicardial artery.
115

  

 

Under normal physiological conditions, resistance is principally determined by 

vasomotor regulation of the arterioles with a diameter of less than 400 μm and flow is 

kept constant over a wide level of perfusion pressures by auto-regulation. The control 

mechanisms of auto-regulation are numerous and beyond the remit of this thesis. 
116-119

 

Therefore, under baseline conditions the knowledge of coronary resistance reflects basal 

metabolism, but when auto-regulation is exhausted, as in under pharmacological 

hyperaemia, minimal resistance can be calculated.  
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Thus, in order to evaluate the performance of the microvascular bed and quantify 

microvascular resistance the following conditions should ideally be met: (1) exclude the 

presence of obstructive epicardial coronary artery disease or determine the pressure distal 

to the stenosis, (2) quantify flow, (3) induce maximal vasodilation while recording 

pressure and flow, and (4) correct for coronary back pressure. 
120

 

 

The difficulties involved in accurate quantification of coronary flow in vitro have given 

rise to the use of thermodilution as a surrogate marker. According to thermodilution 

theory
121, 122

 flow equals V/Tmn where V represents the vascular volume between the 

injection site (the tip of the guiding catheter) and the location of the sensor, in the distal 

part of the RADI 
TM 

 coronary pressure/temperature wire, and Tmn is the mean time taken 

from a bolus of saline to travel from the sensor in the proximal shaft of the guidewire to 

the distal sensor. Given that these measurements are taken under conditions of 

pharmacological induced maximal hyperaemia V should remain static while Tmn 

becomes representative of flow. Upon these principles the first coronary 

pressure/temperature wire based assessment of the coronary microcirculation was 

developed drawing on the previous Doppler wire experience.
123

 

 

1.5.2 Thermodilution derived coronary flow reserve 

 

The validity of the thermodilution principle to demonstrate CFR on a commercially 

available guide-wire (PressureWire 3, Radi Medical Systems) was first validated in an 
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experimental dog model by De Bruyne et al in 2001
124

. In this in-vitro model, absolute 

flow was compared with the inverse mean transit time (1/Tmn) of a thermodilution curve 

obtained after a bolus of 3ml saline at room temperature. A very close correlation 

(r>0.95) was found between absolute flow and 1/Tmn. In the canine model a significant 

correlation was found between CFR, calculated from the ratio of hyperaemic to resting 

flow velocities using a Doppler flow wire, and the CFR derived from the ratio of resting 

to hyperaemic Tmn (r=0.76;p = <0.001) 

 

Therefore thermodilution derived CRF is calculated as follows
124

. Coronary flow reserve 

(CFR) is defined as the ratio of peak hyperaemic to resting flow (F). 
123

 

 

  1.  CFR = F at hyperaemia / F at rest 

 

Flow is the ratio of the volume (V) divided by Tmn. Thus, CFR can be expressed as 

follows. 

 

  2.  CFR = (V/Tmn) at hyperaemia / (V/Tmn) at rest 

 

Assuming the epicardial volume (V) remains unchanged, CFR can be calculated as 

follows. 

 

  3.  CFR = Tmn at rest / at hyperaemia 
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This was then validated in humans by comparison with what was at the time the current 

gold standard for invasive CFR calculation, the Doppler flow wire. In 103 coronary 

artery territories in 50 patients, in a variety of angiographically normal and stenotic 

vessels the correlation between the two methods was close (r = 0.80; P < 0.001).
125

 

 

However, rather than being simply a measure of microvascular resistance, CFR accounts 

for both epicardial and microvascular resistance. Fractional flow reserve (FFR) is derived 

from the ratio of distal coronary pressure (beyond the stenosis in question) to the pressure 

proximal to the stenosis (in most cases taken as the aortic pressure). FFR, therefore 

accounted for the contribution of the epicardial artery to the total coronary resistance. 

Initially when thermodilution derived CFR was validated it was thought that CFR and 

FFR could provide the clinician with complimentary data. 
115, 125, 126

 

 

Therefore, while FFR went onto everyday use in our catheter laboratories for the 

evaluation of epicardial stenoses
127

 the limitation of CFR to independently assess the 

coronary microvasculature limited its clinical utility. 
128

 Furthermore CFR is limited by 

its dependence on heart rate and blood pressure, thereby calling into question its 

reproducibility.
129, 130

 

 

1.5.3 The index of microcirculatory resistance 
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Fearon et al 
131

 postulated that the calculation of the microvascular resistance by dividing 

the distal coronary pressure by absolute coronary blood flow would provide an 

independent assessment of microcirculatory function. Their theory was that a novel index 

of microcirculatory resistance (IMR), defined as a distal coronary pressure divided by the 

inverse of the hyperaemic mean transit time (a correlate to absolute flow), measured 

simultaneously with a coronary pressure wire would independently evaluate 

microvascular resistance. Or put more simply IMR would equal distal coronary pressure 

multiplied by the hyperaemic mean transit time.  

    IMR = Pd. Tmn  

 

A fundamental assumption in the theory is that Tmn is inversely proportional to 

hyperaemic blood flow. Because 

    F = V/ Tmn 

Where flow (F) equals the ratio of epicardial vascular volume (V) and mean transit time 

(Tmn). Because true microvascular resistance (TMR) equals distal perfusion pressure 

divided by flow: 

    TMR = Pd/F 

And because the vascular volume (V) may be assumed to remain constant at maximal 

hyperaemia by combining equations 1 and 2, can be derived that TMR is proportional to 

the product of distal coronary pressure and Tmn: 
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    TMR = Pd.Tmn 

 

Because both distal pressure and flow would drop in the presence of an epicardial 

stenosis, IMR should remain unaffected.  The investigators validated IMR against true 

microvascular resistance (TMR) in an open chested porcine model using embolised 

microspheres for disruption of the microcirculation. They found that changes in IMR 

between various epicardial and microcirculatory conditions mirrored those of TMR, their 

gold standard reference for microvascular resistance. 
131

  

 

This work was further corroborated by Aarnoudse et al
132

 who not only added to the 

weight of evidence of the close relationship between inverse Tmn and absolute coronary 

flow but further validated IMR as an independent marker of microvascular resistance in 

an in vitro physiological model. They found a close correlation between inverse Tmn and 

absolute blood flow (R
2 
= 0.93) and IMR and TMR (R

2
 = 0.94)

132
 

 

1.5.4 IMR in the presence of an epicardial stenosis 

 

While the initial IMR (IMR = Pd.Tmn) validation had pointed to the fact that IMR was 

independent of an epicardial stenosis
131, 132

 some subsequent studies suggested that the 
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minimum achievable myocardial resistance actually increased with the severity of the 

epicardial arterial stenosis. 
133-135

 Those studies calculated microvascular resistance using 

a coronary pressure wire to calculate distal pressure and a Doppler flow wire to estimate 

coronary flow. Resistance was calculated by dividing pressure by coronary flow. Of note 

however, changes in collateral flow, which may occur with increasing severity of stenosis 

and which may affect the calculation of resistance, were not incorporated into the 

formula.   

 

By working on the basis that myocardial blood flow is the sum of antegrade coronary 

flow and collateral flow, with collateral flow increasing with the severity of an epicardial 

stenosis. As a result of collateral flow, the distal perfusion pressure will not reach zero 

but rather but will approach the coronary wedge pressure as the epicardial stenosis 

reaches total occlusion at maximal hyperaemia. Therefore, the increase in collateral flow 

results in an increase in myocardial flow that is reflected in the distal pressure 

measurement (the numerator in the equation of resistance) but not incorporated into the 

previous method for assessment of flow (the denominator in the equation of resistance) 

resulting in an overestimation of microvascular resistance. Once the epicardial stenosis is 

removed and collateral flow is thought to diminish minimal vascular resistance will 

appear to decrease.   
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By measuring collateral flow by measuring distal coronary wedge pressure and 

incorporating it into the calculation Fearon et al 
136

 found no change in the minimal 

microvascular resistance with an increasing epicardial stenosis. 

  IMR = [(Pa – Pv) x Tmn] x [(Pd – Pw)/(Pa – Pw)]
136

 

Where Pd, Pa, Pw and Pv are distal coronary pressure, aortic pressure, distal coronary 

wedge pressure and central venous pressure respectively.  

Assuming Pv is around 0 then, 

    IMR = Pa.Tmn x [(Pd – Pw)/(Pa – Pw)]
136

 

 

Concurrent work by Aarnoudse et al
137

 tested this hypothesis in humans. They performed 

a total of 90 measurements in 30 patients whom were scheduled to undergo PCI. They 

found that when coronary wedge pressure (Pw) was appropriately accounted for 

microvascular resistance did not change significantly with the severity of the epicardial 

stenosis. Therefore, not only concluding that IMR was safe and feasible in humans with 

commercially available equipment, but that IMR was a specific index of microvascular 

resistance when collateral flow was properly taken into account. 
137

 

 

More recently IMR incorporating coronary wedge pressure has been termed IMRtrue and 

IMR in the absence of an epicardial stenosis has been termed IMRapp.
138

 I will use this 

terminology when directly comparing the two prior to and post stenting in chapter 6. 
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1.5.5 The clinical utility of IMR 

 

In comparison with CFR, IMR had been shown to be a specific index for microvascular 

resistance whereas CFR took into account epicardial and microvascular resistance. 

However, one of the other limitations of CFR was that it was shown to vary with 

haemodynamic conditions thereby limiting its reproducibility
129

 and hence it’s clinical 

utility. 

 

Ng et al
130

 compared the reproducibility and haemodynamic dependence of IMR, CFR 

and FFR in humans under different haemodynamic conditions, including baseline, right 

ventricular pacing at 110 beats per minute, nitroprusside infusion, and dobutamine 

infusion. In comparison with CFR, IMR and FFR values remained similar throughout all 

haemodynamic conditions suggesting that IMR provided a reproducible interrogation of 

microcirculatory resistance, which was independent of haemodynamic changes, 

suggesting therefore, that IMR could be used across a patient population rather than 

between two time-points in one patient. 

 

1.5.6 IMR in STEMI 
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As the last decade progressed the significance of the microcirculation in the context of 

reperfused STEMI became more topical.
23, 139

  An editorial in the New England Journal 

of Medicine suggested the need for sensitive diagnostic techniques to evaluate the 

microcirculation in patients with acute myocardial infarction.
140

 

 

Fearon et al 
47

evaluated IMR in 29 patients undergoing primary PCI for STEMI. They 

compared IMR with other known markers of microvascular damage TIMI perfusion 

grade, TIMI frame count, CFR and ST – segment resolution index in there ability to 

predict peak creatinine kinase (CK) as a marker of infarct size and recovery in wall 

motion scoring (WMS) as assessed by echocardiography. On multivariate analysis IMR 

was the most significant predictor of peal CK and three month WMS. IMR was also the 

only significant predictor of recovery of left ventricular function on the basis of 

percentage change in WMS (R = 0.50, p = <0.01)
47

 

 

It had therefore been shown that IMR was a feasible and safe, specific assessment of the 

coronary microcirculation which could potentially be used as a marker for microvascular 

resistance at the time of STEMI. 

 

1.5.7 Pressure derived collateral flow index 
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Pressure derived collateral flow index (CFIp) can be quantified on a pressure wire. This 

can only de done in the setting of PCI as it requires knowledge of Pw. The ratio of Pw to 

Pa during balloon inflation is thought to represent CFIp.  

  CFIp = (Pw – Pv/Pa – Pv) 

In practice the measurement of Pv is not routinely taken and has been assumed to have 

been 0. 
141

 

 

CFIp is hypothesized to increase with collateral flow and has been shown in a prospective 

study to predict future ischaemic events after PCI in patients with stable angina and 

normal left ventricular function
142

. In the infarcted heart, however, CFIp is not thought to 

solely reflect collateral supply but is influenced by microvascular dysfunction. A higher 

CFIp has been linked to other surrogate markers of poor microvascular perfusion, being 

significantly higher when no reflow
143

 is seen by contrast echocardiography and being 

associated with poor ST segment resolution
144

. 

 

Previous work by our own group found that increased CFIp and Pw in the patient group 

TIMI grade 3 flow following rescue PCI for STEMI was associated with poor left 

ventricular function adding weight to the theory that raised CFIp and Pw in the setting of 

STEMI may reflect a dysfunctional microcirculation rather than good collateral 

protection.
141
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Sezer et al measured CFIp in patients whom underwent PCI a mean of 3.3 days following 

successful thrombolysis for STEMI. They found that raised CFIp was an independent 

predictor for left ventricular dilatation assessed one year following infarction by 

echocardiography.
45

 

 

CFIp is therefore postulated to be a surrogate marker of MVO in STEMI
23

 although as 

can be seen it does not have the physiological data behind it that IMR has. It does appear 

however, from the work done previously that it does have an effect of left ventricular 

function following rescue PCI
141

, successful thrombolysis
145

 and primary PCI
146

, further 

strengthening this argument. 

 

1.6 Aims of this thesis 

 

Microvascular dysfunction is a significant problem linked with increased morbidity and 

mortality despite patency of the infarct related artery in STEMI. Contrast enhanced CMR 

scanning in the post infarct period allows assessment of left ventricular injury, can 

determine and allows quantification of MVO and allows quantification of infarct 

volumes. Cardiac MRI is thought to be the current gold standard for assessment of these 
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measures following STEMI. This important prognostic information is not however 

available until around 48h following PCI.  

 

IMR has been validated in vitro and in stable patients as a quantitative marker of 

myocardial resistance. It can be calculated as the time of PCI using a commercially 

available guidewire and software. IMR has been shown in a small study to be more 

predictive of peak CK rise (a biochemical marker for infarct size) and left ventricular 

damage by echocardiography than traditional markers for MVO at the time of emergency 

PCI. 

 

The hypothesis that this thesis will test is whether pressure wire derived markers on 

microvascular dysfunction, principally IMR, measured at the time of emergency PCI for 

STEMI, are associated with MVO and can predict left ventricular damage and infarct 

volumes on subsequent ceCMR imaging. A full outline of the aims of this thesis are 

stated below 

The aims of this thesis are:  

 To assess the relationship between pressure wire derived markers microvascular 

resistance, principally IMR, and MVO assessed of ceCMR imaging at 48h post 

emergency PCI for STEMI. 
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 To assess the ability of pressure wire derived markers microvascular resistance, 

principally IMR, at the time of emergency PCI to predict LVEF, LVESV, 

LVEDV and infarct volumes on ceCMR imaging at 48h and 3 months. 

 To assess the relationship between pressure wire derived markers microvascular 

resistance and adverse ventricular remodeling 

 To assess the relationship between pressure wire derived markers microvascular 

resistance and transmurality score on ceCMR 

 To assess the influence of anatomical site of myocardial infarction and therapeutic 

interventions at the time of emergency PCI on coronary pressure wire derived 

indices of microvascular obstruction. 

 

 To assess the relationship between coronary pressure wire derived markers of 

microvascular obstruction and “traditional” indices of myocardial damage and 

microvascular obstruction in ST – elevation myocardial infarction, in particular, 

TIMI flow grade, ST-segment resolution index, corrected TIMI frame count, peak 

troponin I and time to reperfusion. 

 

 To assess the relationship between coronary pressure wire derived indices of 

microvascular dysfunction prior to and following stenting in emergency PCI for 

ST elevation myocardial infarction.  

 The relationship between IMR, CFIp and Pw at the time of emergency PCI 
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 To assess the correlation between early and late/persistent MVO assessed by 

ceCMR scanning 48 following STEMI 

 To assess the feasibility, safety and clinical utility of ceCMR in the early post 

infarct period 

 To assess the impact of IMR measured at the time of STEMI on clinical outcomes 

(in collaboration with other groups) See Appendix V 
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Chapter 2: Pharmacological options for 

inducing maximal hyperaemia during 

studies of coronary physiology 
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2.1 Introduction 

The coronary pressure wire is used for physiological assessment of the coronary 

vasculature increasingly frequently in clinical practice. Fractional flow reserve can now 

be used to assess lesion severity in a variety of anatomical situations. Increasingly the 

coronary pressure wire is being used to interrogate the coronary microvasculature. 

Coronary flow reserve (CFR) and Index of microcirculatory resistance (IMR) require 

hyperaemia to accurately assess thermodilution – derived mean transit times, and 

pressure derived collateral flow index (CFIp) is calculated from coronary wedge pressure 

and aortic pressure at hyperaemia. In addition coronary flow velocity as assessed by a 

coronary Doppler flow wire needs appropriate induction of hyperaemia. However, the 

majority of this article will however focus on hyperaemia induction for pressure wire 

studies. 

 

Significant clinical decisions are made as a result of fractional flow reserve readings 

therefore it is imperative that they are carried out correctly.  Maximal coronary 

hyperaemia is essential in producing accurate, reproducible measurements. This article 

focuses on the pharmacological agents that can be used for this purpose, discusses which 

agents can be used in specific situations, and briefly addresses the future of 

pharmacological stress in the catheter laboratory. 
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2.2 Fractional Flow Reserve 

Measurement of pressure derived fractional flow reserve (FFR) is a widely used 

technique in cardiac catheterisation laboratories to determine the functional significance 

of coronary artery stenoses
127

. FFR is defined as the ratio of the maximal blood flow 

achievable in a stenotic vessel to the theoretical maximal flow in the same vessel if no 

stenosis was present. In a normal coronary artery there should be no pressure gradient 

between the aorta and the distal artery resulting in a FFR value of 1. These simultaneous 

measurements can be made in a stenosed coronary artery using a pressure tipped 

coronary guide wire to record distal pressure and a guide catheter to record pressure in 

the aorta. Studies have shown that a FFR < 0.75 reliably identifies a stenosis with the 

potential to induce reversible myocardial ischaemia. A multicentre registry study has also 

shown that post stenting FFR is a strong independent predictor of outcome at six months, 

the higher the post stenting FFR the lower the event rate.
147

 Furthermore, in patients with 

multivessel disease FFR can be used as a reliable and lesion-specific index of stenosis 

severity.
127

 Pullback of the pressure wire can be used to determine which of two or more 

serial stenosis is more functionally significant, Due to the interaction of serial stenosis 

determination of the exact FFR of distal lesions requires knowledge the coronary pressure 

proximal to that particular lesion and not the aortic pressure that is used in routine clinical 

practice.  The FAME trial was a multicentre randomised study comparing FFR guided 

PCI with angiographically guided PCI in patients with multi-vessel disease and 

determined that an FFR guided strategy results in superior clinical outcomes.
127 
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The achievement of maximal hyperaemia is a prerequisite for the accurate determination 

of all pressure wire derived markers of lesion severity and microvascular resistance.  

 

The available pharmacological agents for inducing maximal coronary hyperaemia can be 

given by intracoronary injection (ic) or intravenous infusion (iv). The most commonly 

used agent in clinical practice is adenosine, both ic and iv and intracoronary papaverine. 

For the sake of completeness this article will also cover dobutamine, sodium 

nitroprusside and contrast media although these should not be viewed as routine, 

effective options for induction of hyperaemia for pressure wire studies.  

 

2.3 Adenosine 

Adenosine was identified in the myocardium in 1929. It is synthesised in the myocardium 

and interstitial adenosine concentration rises as a result of increased metabolic oxygen 

requirements and ischaemia.
148

 Exogenously administered adenosine causes profound 

microvascular dilatation mediated by an adenosine receptor (A2) on the cell membrane of 

resistance vessel myocytes. Therefore adenosine induces near-maximal coronary 

vasodilation primarily through activation of adenosine receptors in vascular smooth 

muscle and hyperaemia is independent of metabolic demand.
149

However the exact 

physiological role of adenosine in the regulation of coronary blood flow is as yet 

unknown. The pharmacological profiles of adenosine differ depending on the mode of 

administration.
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2.3.1 Intracoronary adenosine 

Intracoronary adenosine is an extremely safe agent to induce maximal hyperaemia.
150

 The 

peak effect occurs less than 10 seconds after administration but has a duration of action 

of less than 20 seconds. There have been numerous studies looking at the appropriate 

doses of intracoronary adenosine needed to achieve hyperaemia. Initial thinking that 

lower doses of the drug (15 – 20 micrograms in the right coronary artery and 18 – 24 

micrograms in the left system)
 151

 have been superseded in recent years by evidence that 

administration at these levels may result in an overestimation of FFR in a significant 

number of patients, specifically those with an FFR between 0.75 and 0.80, the so called 

“grey area”.  It has been shown that intracoronary doses of ic adenosine are safe at higher 

doses, with minimal side effects. While initial high doses of ic adenosine are not always 

necessary, incremental dose escalation is recommended in those with an intermediate 

FFR value of 0.75-0.80.
151

 Current thinking is that to achieve optimal hyperaemia 

patients should be administered an intracoronary dose of 40 micrograms into the right 

coronary artery and 60 micrograms into the left coronary. This should be increased in 20-

30mcg increments to a maximum of 150 micrograms if the FFR remains between 0.75 

and 0.80. 
150 

The main side effect associated with this method of administration is short lasting, 

transient atrio-ventricular block, which is understandably, most frequently noted after 

administration of the drug into the right coronary artery.  
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2.3.2 Practical considerations when using intracoronary adenosine 

Prior to administration of ic adenosine it is prudent to administer a standard dose if ic 

nitrate to decrease the possibility of arterial spasm influencing the FFR measurements. In 

order to achieve maximal drug delivery to the coronary artery and to obtain accurate 

measurements of the aortic pressure it is essential to use a guide catheter without side 

holes and to ensure co-axial engagement. For all pressure wire studies it is important not 

to use a guide catheter that is too large for the ostuim of the artery as this may cause 

pressure damping to occur. This can be recognised by the presence of a ventricularised 

aortic pressure tracing. 

 

The more specific limitations encountered when using ic adenosine relate to both its rapid 

onset of peak effect and the short duration of peak hyperaemia. It is not possible to make 

a pull back curve to assess the potential severity of serial stenosis in the same epicardial 

artery. Given the short time scale involved in taking these measurements it is important 

that the readings are measured on a beat to beat basis rather than from a mean, which is 

the default setting in some analysers. Mean readings are likely to result in an 

underestimation of the maximum gradient. A further point to ensure an accurate FFR 

measurement is that the interruption in aortic pressure (Pa) recorded from the guide 

catheter should be as short as possible after the ic injection. A significant delay may 

result in the period of peak hyperaemia being over by the time aortic pressure is read. The 

use of an ic bolus of adenosine does however allow repeated measurements to be made 
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over a short period provided enough time is taken between readings for the effects of the 

previous dose to have waned. 

 

2.3.3 Intravenous adenosine 

In contrast with dosages used to achieve hyperaemia using ic adenosine there is 

widespread consensus regarding the appropriate dose of iv adenosine. When administered 

through the femoral vein or a large cubital vein the usual dose in clinical practice is 

140/micrograms/kg/min. 
 
This should achieve a peak effect in around 1 minute. Similarly 

the effect wears off approximately 1 minute after the infusion is stopped.  In the case of 

an intermediate FFR measurement of 0.75-0.80 the dose of the IV infusion can be safely 

increased to 180micrograms/kg/min.
115 

 

AV block is much less common with a continuous infusion of iv adenosine than with ic 

adenosine and is rarely seen in clinical practice. Adenosine can provoke 

bronchoconstriction so the main contraindication to iv adenosine is significant 

bronchoconstrictive lung disease such as asthma or chronic obstructive pulmonary 

disease. Intravenous adenosine is frequently accompanied by an unpleasant angina like 

sensation in the chest and throat which can be associated with dyspnoea.
149

 This sensation 

is harmless and does not indicate myocardial ischaemia. The patient should be suitably 

reassured prior to the procedure to prevent any undue alarm. This course of action should 

allow the vast majority of patients to tolerate the sensation. This feeling should pass 

quickly after ending the infusion. If the patient remains asymptomatic throughout the 
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administration of adenosine then the physician should question whether the drug us being 

appropriately delivered. Administration of the drug should also cause a decrease in blood 

pressure of around 10-20% and a similar increase in heart rate. These should also act as 

markers that the drug is being delivered effectively.   

 

2.3.4 Practical considerations when using an intravenous adenosine infusion 

General rules with regard to intravenous infusions should be followed to ensure the 

maximal amount of the pharmacological agent reaches the coronary vasculature. These 

include using a volume controlled infusion pump with sufficient capacity and ensuring 

the patients arm is extended if a brachial vein is used for the infusion. As with ic 

adenosine it is prudent to administer an ic dose of nitrate prior to commencing the 

infusion. One of the main advantages of using an IV infusion of adenosine is that it 

produces a steady state hyperaemia, which allows a pullback curve to be recorded. This 

allows physiological assessment of the entire coronary artery and assessment of serial 

stenoses and/or stent placements. Due to the short half-life of adenosine it is essential that 

venous return to the heart should not be interrupted by valvalsa-like manoeuvres. This 

can result in significant pressure signal fluctuations, which in turn can cause an 

overestimation of fractional flow reserve. The patient should therefore be instructed to 

breathe normally.  
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2.3.5 The effects of methylxanthines on adenosine 

It is postulated that caffeine can blunt the hyperaemic response by blocking the A2a 

receptors. Caffeine is a competitive inhibitor of adenosine at cellular level. There is not, 

as yet, definitive evidence that caffeine intake prior to a procedure which requires 

hyperaemia alters the fractional flow reserve. One small study (n=10) concluded that 

fractional flow reserve was not affected by an intravenous caffeine infusion at doses 

comparable to oral consumption. 
152

 Until further work is published in this area it is 

prudent to advise patients against caffeine ingestion for 24h prior to any procedure. 

Nahser et al looked at changes in coronary flow velocity measured by intracoronary 

Doppler catheter receiving 140 mcg/kg/ml of adenosine before and after an intravenous 

infusion of aminophylline. Although the numbers were again small (n=12), they found 

that the coronary haemodynamic effects of adenosine were attenuated by aminophylline 

concluding that the utility of myocardial imaging techniques using coronary vasodilation 

by adenosine as a prerequisite may be reduced in those patients treated with theophylline 

containing preparations.
153 

 

2.3.6 Adenosine 5’-triphosphate (ATP) 

ATP has a short half-life in plasma and is rapidly degraded into adenosine diphosphate, 

adenosine monophosphate, and adenosine. Although the effects of ATP are proposed to 

depend on its degradation to adenosine, neither direct stimulation of adenosine receptors 

by ATP nor an endothelium-dependent vasodilatory action of ATP via a P2-purinorecetor 

can be fully excluded.   
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Yamada et al reported that 50 mcg of ic ATP would induce the same amount of 

vasodilation as 10 mg of papaverine without any significant haemodynamic or 

electrocardiographic changes.
154

  

 

Perhaps the most comprehensive study looking at this pharmacological agent was by De 

Bruyne et al when comparing intracoronary and intravenous ATP with adenosine, 

papaverine and contrast medium. Their data indicated an equipotency of ATP and 

adenosine with no difference in their times of onset or duration of effect. They 

recommended the use of this agent at the same doses as that of adenosine. Increasing the 

intravenous infusion to greater than 140mcg/kg/min did not induce a further decline of 

the resistance index but induced a marked decline in systemic blood pressure in some 

patients.
155

 

    2.4 Other vasodilator agents    

2.4.1 Sodium nitroprusside 

This pharmacological agent has been looked at primarily in respect to no reflow in the 

acute myocardial infarction setting rather than its ability to achieve hyperaemia capable 

of producing reproducible physiological measurements. Nitroprusside relaxes arterial and 

venous smooth muscle without effects on other types of smooth muscle or myocardial 

contractility. Although it is thought that its actions are in some way mediated through the 

sympathetic nervous system they are not dependent on any specific adrenergic receptor or 

ganglion. Therefore, unlike drugs acting through sympathetic blockade, regional 

distribution of blood is virtually unchanged by sodium nitroprusside. Nitroprusside 
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induces hyperaemia by its ability to preferentially vasodilate the coronary 

microcirculation.
156

Amit et al enrolled 98 patients into a randomized, double-blind, 

placebo controlled trial looking at whether intracoronary SNP injected into a coronary 

artery prior to percutaneous intervention affected vessel flow and myocardial perfusion. 

They found that selective intracoronary administration of a fixed dose of SNP failed to 

improve coronary flow and myocardial tissue reperfusion but improved clinical outcomes 

at 6 months.
157

 

 

Parham et al compared the hyperaemic and haemodynamic responses of intracoronary 

nitroprusside to intracoronary adenosine in patients during cardiac catheterisation with 

normal left anterior descending arteries. Using a Doppler wire time to peak and average 

peak velocity were similar with SNP and adenosine with the three doses of intracoronary 

SNP that were administered. (0.3, 0.6, and 0.9 microgrammes/kg). The duration of 

coronary hyperaemia is approximately 25 % greater with intracoronary SNP in 

comparison with adenosine. Significantly when used for coronary lesion assessment they 

found that intracoronary SNP produced identical FFR values to those obtained with 

adenosine.
158

 

 

The data, thus far, indicates that intracoronary administration of sodium nitroprusside is 

safe and effective for the induction of maximal coronary hyperaemia. It produces a 

slightly prolonged maximal hyperaemic effect, in comparison with adenosine, however 
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given the small body of evidence it is currently difficult to advocate its use in routine 

clinical practice as a viable alternative. 

 

2.4.2 Dobutamine 

Dobutamine is not commonly used as an agent to induce hyperaemia in the cardiac 

catheterisation laboratory but is used frequently as a stressor agent for SPECT and stress 

echocardiography. Dobutamine is a sympathomimetic amine that acts through alpha and 

beta adrenoceptors stimulating positive inotropic and chronotropic effects as well as 

enhancing myocardial blood flow principally through metabolic vasodilation.
159, 160

  

 

In keeping with the clinical environment in which dobutamine is used the literature 

contains very little about its potential use in the cardiac catheterisation laboratory during 

invasive pressure wire measurements. Meimoun P et al compared dobutamine and 

adenosine in assessment of transthoracic coronary flow velocity reserve. They found in 

the 47 patients they studied that dobutamine could be a good alternative to adenosine in 

this setting, particularly if the patient has a contraindication to adenosine
161

. Numerous 

other papers on the topic of dobutamine stress echocardiography exist, however, given 

the lack of evidence for the accuracy of dobutamine with regard to coronary pressure 

wire physiological assessment, its relatively long half-life and other possible alternatives 

to adenosine it is difficult to advocate its use in the catheterisation laboratory. 
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2.4.3 Papaverine 

Intracoronary papaverine induces maximal coronary vasodilation and has a short duration 

of action. Peak effect after administration is at 10-30 seconds and the duration of plateau 

is around 45-60 seconds. The recommended dosages for intracoronary papaverine are 12-

16mg in the right coronary artery and 16-20 mg in the left system.
155, 162

 Historically 

papaverine was the pharmacological agent of choice in the assessment of coronary flow 

reserve but has been superseded by adenosine because of concerns about complications. 

Specifically papaverine may induce Q-T prolongation which can lead to polymorphic 

ventricular tachycardia and ventricular fibrillation.
163

 Correcting hypokalaemia pre-

procedure and ensuring patients are not taking other drugs which cause Q-T prolongation 

(class I and III anti-arrhythmic drugs) can minimise the potential for this serious side 

effect. Pijls NHJ and De Bruyne B reported that in over 1000 patients whilst Q-T 

prolongation was common ventricular fibrillation occurred no more commonly than after 

contrast injection.
155 

However, several studies have demonstrated that ic papaverine 

induces a significant increase in coronary venous lactate in both canine models and in 

patients with normal coronary arteries and these results suggest that papaverine may 

produce myocardial ischaemia.
164, 165 

 

De Bruyne B et al compared intracoronary and intravenous adenosine 5’-triphosphate, 

adenosine, papaverine and contrast medium to assess fractional flow reserve and found 

that only intracoronary papaverine (20mg) and intravenous adenosine (140mcg/kg/h) 

induce complete, true steady state hyperaemia to enable a pressure pullback curve. They 
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stated that the latter was the easiest means for this, especially in cases with diffuse 

disease.
155 

 

Papaverine is essentially the only intracoronary injection, which can allow production of 

a pressure pullback curve although it is not ideal given the time constraints. Its half-life 

also means that the operator should wait five minutes between successive measurements 

using ic papaverine and should limit the number of doses to three in any one patient to 

reduce the risk of side effects. 

 

Over the years for both practical and safety issues intracoronary papaverine has been 

superseded by adenosine for the production of coronary hyperaemia in assessment of 

fractional flow reserve.  However papaverine still has a place in the cardiac 

catheterisation lab in those in whom adenosine is contra-indicated when appropriate 

precautions are taken. 

 

2.4.4 Radiographic Contrast media 

Both ionic and non-ionic radiographic contrast media cause vasodilation and associated 

increases in coronary blood flow when injected into the coronary arteries at the time of 

angiography.
166

 Hodgson and Williams compared ic papaverine to radiographic coronary 

flow reserve in patients with ischaemic heart disease and patients with normal coronary 

vasculature.  They concluded that papaverine was superior to contrast media because of 

the greater degree of hyperaemia and the ability to more accurately differentiate non-
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ischaemic from ischaemic vascular regions in individual patients.
167  

Radiographic 

contrast media does not therefore produce sufficient coronary vasodilation for accurate 

assessment of fractional flow reserve. 

 

2.5 The future of pharmacological stress 

Work in this field has concentrated on synthetic selective A2A receptor adenosine 

agonists. As well as stimulating the A2A receptor, adenosine itself also non-selectively 

activates A1, A2b and A3A receptor. Such nonselectivity is thought to contribute to the 

side effects that are seen during pharmacological stress testing (eg bronchospasm and A-

V block). Theoretically selective A2A adenosine receptor agonists would provide 

selective coronary vasodilation, rapid onset and termination of action and bolus 

administration as well as being tolerated in those in whom adenosine is currently thought 

to be contra-indicated.
168

 

 

Initial small studies looking at the selective A2A receptor agonist’s binodenoson and 

regadenoson have been reasonably encouraging in the field of nuclear myocardial 

perfusion imaging. Both showed a reproducibility of results in patients receiving 

clinically indicated adenosine single-photon emission computed tomography scans 

(SPECT) and both were noted to have a reduced subjective side effect profile at lower 

doses.
169, 170 
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On the basis of these and other studies three selective A2A receptor agonists, 

regadenoson, binodenoson and apadenoson are now in larger phase III clinical trials as 

pharmacological stress agents. Quite how these agents will be used in the future remains 

to be seen. The work so far has concentrated, predictably, on non-invasive nuclear 

perfusion imaging. Whether they can be useful in the cardiac catheterisation laboratory in 

the context of coronary pressure measurements will be decided in the future. 

 

2.6 Conclusions 

In conclusion, adenosine whether used intravenously or intracoronary is a safe and 

reliable method for the induction of coronary hyperaemia. The context in which the study 

is performed as well as operator preference should determine the route through which the 

drug is delivered. The authors believe this should be the first choice vasodilator to be 

used in coronary physiological assessment using a pressure wire. Intracoronary 

papaverine is a viable alternative in those in whom adenosine is contra-indicated.  
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Dosage tables 

 

Weight (lb) Weight (kg) Infusion  (ml/hr) 

99 45 378 

110 50 420 

121 55 462 

132 60 504 

143 65 546 

154 70 588 

165 75 630 

176 80 672 

187 85 714 

198 90 756 

209 95 798 

220 100 840 

231 105 882 

243 110 924 

254 115 966 

265 120 1008 

 

Table 2.1: Dosage table for IV adenosine at 140 micrograms/kg/min 
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Table 2.2: Dosage table for IV adenosine at 180 micrograms/kg/min 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Weight (lb) Weight (kg) Infusion (ml/hr) 

99 45 486 

110 50 540 

121 55 594 

132 60 648 

143 65 702 

154 70 756 

165 75 810 

176 80 864 

187 85 918 

198 90 972 

209 95 1026 

220 100 1080 

231 105 1134 

243 110 1188 

254 115 1242 

265 120 1296 
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Chapter 3: Methods 
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3.1 Study overview and recruitment 

 

The principal techniques used for this thesis were intracoronary physiological assessment 

and contrast-enhanced cardiac magnetic resonance imaging (ceCMR). In this chapter the 

background, methods, apparatus and protocols for these techniques will be outlined. 

 

3.1.1 Inclusion and exclusion criteria  

 

Patients were prospectively enrolled when the following inclusion criteria were present: 

 Age  18 years with ECG and symptomatic evidence of acute STEMI and in 

whom emergency PCI was intended 

 Written informed consent. 

 

 Exclusion criteria were:  

 

 Standard contraindications to MRI: pacemakers; cochlear implants; some types of 

prosthetic heart valves, surgical prostheses, or vascular clips; metal intraocular 

foreign bodies 

 Contraindications to gadolinium: eGFR <30 mL/min/1.73m
2
; sickle cell anaemia; 

haemolytic anaemia  

 Contraindications to adenosine  

 Cardiogenic shock  

 Previous myocardial infarction  

 Pregnant.  
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3.1.2 Recruitment 

 

STEMI patients referred to our institution within 12 hours of symptom onset for primary 

PCI or after failed intravenous thrombolytic therapy for rescue PCI, or who underwent 

cardiac catheterization within 24 h of successful thrombolytic therapy  were considered 

for enrollment.  

 

During the time of the study the Western Infirmary in Glasgow was a tertiary referral 

centre for coronary intervention for the West of Scotland.  Patients were referred to the 

Western infirmary from other hospitals for emergency or urgent coronary angiography or 

referred to the cardiology department for assessment from the accident and emergency 

department. At the time of the study the hospital ran a 24h emergency percutaneous 

intervention (PCI) service for acute ST-elevation myocardial infarction (STEMI).  

 

Only consultant interventional cardiologists from the Western Infirmary took part in the 

study (KGO, MML, SDR, WSH, CB). The West of Scotland emergency PCI rota at this 

time was also staffed by consultant cardiologists from Glasgow Royal Infirmary and 

Stobhill Hospital who did not participate. Accordingly we did not recruit consecutive 

patients. Patients were screened and consented by myself or by the Consultant 

cardiologist on-call who was performing the PCI if I was not in the hospital. The 

consultants were fully aware of the study protocols and procedures and were involved in 

the development of the study. 
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3.1.3 Consent and ethics 

 

The research protocol was approved by the West Glasgow Ethics committee and 

informed consent was obtained from each patient. Given the time constraints involved in 

recruiting patients in the acute setting a shortened patient information sheet was used for 

initial consent prior to PCI. (Appendix I) Patients who agreed to enter the study were then 

asked to sign consent form one. A member of on-site staff not involved in the study was 

also asked to sign this consent form. (Appendix II) Following emergency PCI and before 

cardiac magnetic resonance imaging (CMR) patients were then given a longer, more 

detailed patient information sheet. (Appendix III)  If, after further consideration and 

discussion they agreed to continue in the study they were asked to sign consent form 2. 

(Appendix IV) 

 

3.1.4 Acute management of patients 

 

The trial did not interfere with routine patient management. Only patients in whom the 

decision for emergency coronary angiography had been made were considered for the 

study. If at the time of angiography the patient was deemed too unstable or had coronary 

artery disease not suitable for PCI by the operator the patient was excluded. The type and 

size of intracoronary balloons, type, size and number of stents and the use of 

thrombectomy catheters and glycoprotein 2b/3a inhibitors was at the discretion of the 
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primary operator. Vascular access route was also at the discretion of the primary operator 

although radial arterial access was the primary option of choice at our institution. 

 

Following emergency PCI patients were managed in the coronary care unit in the 

Western Infirmary. Length of stay and the prescription of standard medical secondary 

prevention including ACE inhibitors and β-blockers were entirely at the discretion of the 

admitting consultant and their team.  

 

If patients were deemed too unwell by myself or by the admitting consultant to tolerate a 

cardiac MRI scan or if was thought unsafe for the patient to leave the coronary care unit 

the patient was excluded from the study. 

 

Flow diagram of study (Figure 3.1) 

 

 

Patient admitted to or referred to WIG for emergency PCI 

 

 

Initial consent 

 

 

      Emergency PCI with pressure wire assessment  

         

 

 

  Re-consent 

 

 

                                               Contract-enhanced CMR at 24-48 hours 
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                                            Repeat Contrast-enhanced-CMR at 3 months 

 

 

               END OF TRIAL 

 

 

3.1.5 Index event and hospital admission 

 

After obtaining written, informed consent enrolled patients were assigned a unique study 

code number. They then underwent emergency PCI with physiological coronary pressure 

assessment. Thereafter they were re-consented and underwent ceCMR at 24-48h 

following re-perfusion.  

 

In addition to coronary angiography, pressure wire assessment and ceCMR the following 

were performed and recorded during the patient’s initial hospital admission: 

 

 Physical examination, including measurement of height, weight and resting 

haemodynamics prior to ceCMR scan 

 Retrieval and photocopying of diagnostic ECG (acute MI), post reperfusion 

ECG/90 minute ECG 

 Recording of baseline blood results on admission 

 12h troponin I 

 Patient demographics, past medical history, cardiac risk factors, admission and 

discharge medication 
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 Accurate recording of timings in the patient journey from onset of pain to 

reperfusion 

 

The above information and was recorded for each patient in the study on paper and 

electronically on a Microsoft Access database on a secure computer. 

 

3.1.6 Three month visit  

 

This consisted of a two hour visit to the Glasgow Cardiac MRI Unit at the Western 

Infirmary. 

 

Physical examination, including measurement of height, weight and resting 

haemodynamics prior to ceCMR scan 

 12 lead ECG recording 

 Contrast enhanced cardiac MRI scan with simultaneous electrocardiographic 

recording. 
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3.2 Invasive coronary physiological assessment protocols 

 

PCI was performed in line with current international guidelines. Glycoprotein IIb/IIIa 

inhibitors and thrombectomy catheters were used at the discretion of the primary 

operator. 

 

In this study, a commercially available 0.014-inch floppy pressure
 

guide wire 

(PressureWire-6, RADI Medical Systems) was used with
 
the appropriate software and 

interface (Radi-Analyzer, RADI Medical
 
Systems). This wire has a micro-sensor at a 

location
 
3 cm from the floppy tip, which enables simultaneous recording

 
of coronary 

pressure measurement as well as temperature
 
measurement at the location of that sensor, 

with an accuracy
 
of 0.02°C. The shaft of this wire, acting as an additional

 
electric 

resistance, can be used as a second thermistor, providing
 
the input signal at the coronary 

ostium of any fluid injection
 
with a temperature different from blood. All signals

 
can be 

displayed and recorded on the commercially available analyser for future off-line 

analysis. 

 

3.2.1 Pressure wire preparation 

 

In the majority of cases the coronary pressure/temperature sensitive guidewire was used 

as the primary guide-wire. The guide-wire was calibrated outside the body, equalised 

within the guide catheter, with the pressure sensor positioned at the ostium of the guide 

catheter, and then advanced into the distal segment of the culprit artery.  Meticulous 
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attention was taken to ensure appropriate catheter engagement and only guide catheters 

without side holes were used in the study. Patient details were entered into the analyser 

unit which allowed recording and storage of coronary physiological data. 

 

3.2.2 Hyperaemic agent used during pressure wire studies 

 

Adenosine induces near-maximal coronary vasodilation primarily through activation of 

adenosine receptors in vascular smooth muscle.
171

 In this study we used intravenous 

adenosine administered through an anti-cubital vein at a dose of 140/micrograms/kg/min 

via a volume controlled infusion pump. The patient was then assessed for a symptomatic 

and physiological response to adenosine. When this occurred the physiological 

measurements were taken. This route of adenosine administration was chosen to allow a 

hyperaemic “steady state” to occur allowing time to take the appropriate measurements. 

Prior to administration of the intravenous infusion we administered a bolus of 

intracoronary glyceryl tri-nitrate into the coronary artery to minimise the potential effects 

of arterial spasm on the readings. 

 

Outline and timings of pressure wire readings (Figure 3.2) 
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3.2.3 Measurement of coronary wedge pressure (Pw) 

 

This was measure by balloon inflation prior to stenting within the area of the stented 

segment. When the delivery balloon was inflated, occluding antegrade flow, mean 

pressure distal to the stenosis was recorded as the coronary wedge pressure (Pw) in 

millimetres of mercury (mmHg). Post stenting Pw was recorded with a short non-

compliant balloon inflated within the stented segment to occlude antegrade flow.  
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3.2.4 Measurement of pressure derived collateral flow index (CFIp) 

 

The pressure derived coronary collateral flow index (CFIp) can be obtained from the 

Mean Pw, mean aortic pressure (Pa), and mean central venous pressure (Pv): 

 

    CFIp = Pw - Pv/Pa - Pv 

 

Maximal hyperaemia and Pw were achieved as discussed previously. Distal coronary 

pressure (Pd) was obtained from the pressure wire and aortic pressure was recorded at the 

tip of the guide catheter using a fluid filled system. CFIp (units) was calculated from the 

ratio of mean Pw (Pd during balloon inflation and complete coronary occlusion) and 

mean Pa under conditions of maximal hyperaemia (CFIp = Pw/Pa). Pv was not routinely 

recorded. However, patients who were haemodynamically compromised and likely to 

have increased Pv (cardiogenic shock, right ventricular infarction) were excluded 

 

 

3.2.5 Measurement of the index of microcirculatory resistance (IMR)   

 

IMR is calculated as the product of simultaneously measured distal coronary pressure 

(Pd) and thermodilution-derived mean transit time (Tmn) of a bolus of Saline injected at 

room temperature into the coronary artery during maximal hyperaemia induced by 

continuous intravenous infusion of adenosine (140mcg/kg/min). The inverse of Tmn has 

been shown to correlate with absolute coronary blood flow. In the absence of any stenosis 
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in the epicardial artery IMR is equal to Pd x Tmn at maximal hyperaemia. When an 

epicardial stenosis is present accurate determination of IMR requires knowledge of 

coronary wedge pressure and can be represented by the following equation:  

    

   IMR=Pa.Tmn [(Pd-Pw)/(Pa-Pw)] 

 

where Pa represents the aortic pressure measured by the guiding catheter and Pw is the 

coronary wedge pressure measured by the pressure wire during balloon occlusion as 

described previously. 

 

3.2.6 Thermodilution derived mean transit times 

 

Thermodilution curves were generated prior to and following stenting in the infarct 

related artery. We used guide catheters without side holes to allow accurate delivery of a 

saline bolus into the coronary ostium. Care was also taken to flush the catheter with 

saline thereby removing contrast which could potentially interfere with the 

measurements. Thermodilution curves in the culprit coronary artery were obtained by
 

short manual injections of 3 ml of Saline at room temperature into the coronary ostium as 

described previously. Measurements were performed in triplicate at baseline and at 

hyperaemia. Care was taken not to advance
 

or pull back the wire during these 

measurements and meticulous attention was paid to guide catheter engagement.. 

Simultaneous measurement of mean Pa and Pd in combination with Pw as described 

previously allowed off-line calculation of IMR using both methods. 
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Figure 3.3 – Thermodilution curves at baseline and hyperaemia with simultaneous 

Pa and Pd measurement as represented on the RADI analyser screen 

 

 

 

3.3Assessment of angiographic Thrombolysis In Myocardial Infarction (TIMI) flow 

grade 

 

This was recorded by the primary operator prior to and following PCI and was based on 

the following visual analysis of the coronary vascular anatomy:  

 

0,  no perfusion, no antegrade flow beyond the point of occlusion; 
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1, penetration of the occlusion but no perfusion of the coronary bed distal to the 

obstruction;  

 

2, partial perfusion of the distal coronary bed;  

 

3, complete perfusion of the distal coronary bed. 

 

3.4 ceCMR Protocols 

 

CMR scanning was performed using a Siemens Sonata 1.5 Tesla (Erlangen, Germany) 

scanner using a six channel anterior chest coil and spinal coils within the gantry table, 

during breath-hold, and gated to the ECG. Each scan was performed by one of two 

experienced operators (RM, TS), both of whom are Advanced Life Support-qualified. 

RM was present throughout all scans thereby providing constant medical cover. Prior to 

entering the controlled zone, an MRI safety checklist was performed and signed by both 

patient and qualified MRI personnel. The importance of keeping as still as possible, and 

maintaining adequate breath-holds, was reinforced verbally prior to commencement of 

the scan. End-expiration is optimal for consistent breath-holding and was preferred. 

 

3.4.1 Preparation of patient for the scan 

 

The following steps were performed in all cases: 
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 Patient demographic details entered on scanner database 

 The power injector (Medrad Spectris, Volkach, Germany) for administration of 

the contrast agent (gadolinium diethylenetriaminepentaacetic acid, DTPA, GE 

Healthcare) was prepared. The Medrad injector contains two quick-fit syringes 

connected by a Y-tubed delivery set. Into syringe A, gadolinium-DTPA was 

drawn at a dose of 0.1mmol/kg. Syringe B contained 50ml 0.9% sodium chloride 

 Patient placed on table 

 Siemens active Brooker ECG electrodes placed on patient’s anterior chest wall, 

and position varied to obtain an optimal R wave 

 A 20G IV cannula was placed in a peripheral vein, and connected to the Medrad 

injector. 

 The six channel phased-array chest coil (Siemens CP body array flex) was applied 

and aligned 

 Patient, wearing ear protectors or headphones, enters scanner 

 Medrad power injector armed 

 

 

3.4.2 Clinical assessment prior to ceCMR scan 

 

As part of the larger study assessing safety and feasibility of CMR scanning following 

STEMI, each patient underwent an ECG to assess cardiac rhythm recorded, pulse and 

blood pressure taken and clinically assessed for evidence of heart failure and scored 

according to the Killip classification. 
172
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3.4.3 Left Ventricular structure and function 

 

All CMR scans commenced with a multi-slice breath-hold localiser. Each of the 

localisers described in this section used the same protocol: 

 

Protocol: Multi-slice single-shot breath-hold true fast imaging with steady-state 

precession (trueFISP) localiser with transverse, Sagittal and coronal slices. Settings: field 

of view = 360mm, field of view phase = 81.3%, slice thickness = 6mm, repetition time 

(TR) = 3.41ms, echo time (TE) = 1.71ms, flip angle = 60
o
, averages = 1, phase resolution 

= 80%, phase oversampling = 0% 

 

From these images, the best axial image depicting the LV and septum was selected 

(Figure 3.4 A). If no suitable image was produced by the initial localiser, a second axial 

localiser was performed using the coronal images until the closest match to Figure 3.4 A 

was obtained. This was used to plan 3 vertical long axis (VLA) parallel localisers along 

the long axis of the LV from the mid-point of the mitral valve to the apex. 

 

From the resulting VLA scan, 3 horizontal long axis (HLA) localisers were then planned, 

using the mid-point of the mitral valve and the LV apex to prescribe the orientation 

(Figure 3.4 B). This resulted in 3 HLA slices (Figure 3.4 C). Using the atrioventricular 

groove as a landmark, 3 short axis (SA) localiser slices were planned, with the most basal 

slice positioned in the atria to depict the left ventricular outflow (Figure 3.4 C). From the 
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resulting SA images, 3 long axis views can be prescribed – the 4-chamber, 2-chamber 

and left ventricular outflow tract (LVOT) views (Figure 3.4 D).  

 

3.4.4 Cinematographic (cine) imaging 

 

Having thus acquired 3 orthogonal long axis views, cine studies were acquired in each of 

these 3 orientations, as follows: 

Protocol: trueFISP breath-hold cine. Settings: field of view = 360mm, field of view phase 

= 81.3%, slice thickness = 8mm, TR = 47.4ms, TE = 1.58ms, flip angle = 60
o
, averages = 

1, measurements = 1, phase resolution = 65%, phase overSAmpling = 20%, segments = 

15. 

These images were used for visual analysis of structure and long axis function. 

 

3.4.5 Short axis cine stack 

 

Quantitative volumetric assessment of ventricular function requires that the LV be 

divided into a stack of short axis (SA) slices from base to apex. Measurements from each 

slice are then summed to provide overall ventricular mass and volumes, from which 

LVEF can be calculated. The SA stack was prescribed from the 4-chamber HLA cine 

already acquired. Using the end-diastolic image from this view, the cursor was positioned 

in an orientation across the mitral valve plane through the atrioventricular groove (as a 

marker of the most basal SA slice) as in Figure 3.4 E. The most basal slice that results is 

depicted in Figure 3.4 F. The slice position was then incremented by 10mm moving 
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towards the apex of the LV and repeated until the LV was completely covered; inter-slice 

gaps of 2 mm were used. A representation of the final SA cine stack is shown in Figure 

3.4 G. The Same protocol was used for all SA cine slices: 

 

Protocol: trueFISP breath-hold cine. Settings: field of view = 340mm, field of view phase 

= 81.3%, slice thickness = 8mm, interslice gap = 2mm, TR = 47.4ms, TE = 1.58ms, flip 

angle = 60
o
, averages = 1, measurements = 1, phase resolution = 65%, phase over 

sampling = 20%, segments = 15 
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Figure 3.4 Planning of cine CMR image acquisition. From transverse, Sagittal and 

coronal scout images, the best image of the LV and septum is selected (A) and then 

used to produce a vertical long-axis (VLA) localiser (B). Orientating the next scan 

through the apex and mid-point of the mitral valve (B – orientation line) creates a 

horizontal long-axis (HLA) localiser (C). Using the atrioventricular grooves as 

landmarks (C), a perpendicular plane to this HLA localiser is prescribed (D), based 

on which three orthogonal long-axis planes can be planned (2-chamber, 4-chamber 

and LV outflow tract views). Cine images are acquired for each of these three long-

axis orientations. Finally a short-axis cine stack is planned on the 4-chamber HLA 

cine image (E). A short-axis image is acquired of the base of the LV (F), from which 

slice position is advanced at 10mm intervals from base to apex, creating a short-axis 

cine stack (G). 
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3.5 Contrast imaging 

 

3.5.1 First-pass perfusion imaging 

 

The visualisation of first-pass myocardial perfusion following bolus contrast injection 

requires ultra-high speed MR imaging. A balanced single-shot turbo fast low angle-shot 

(FLASH) sequence with a saturation recovery pre-pulse before each slice was employed. 

This typically allowed 3 SA slices (copied from the cine SA stack) to be acquired per 

heart-beat. No breath-hold was required. The weight-adjusted dose of gadolinium-DTPA 

was delivered into a peripheral vein via the Medrad power injector at a constant rate of 

6ml/s, followed by 0.9% sodium chloride flush. The first-pass protocol was as follows: 

 

Protocol: first-pass single-shot turbo-FLASH sequence with Saturation recovery 

preparation, 3 slices per heartbeat. Non-breath-hold, controlled respiration. Settings: field 

of view = 340mm, field of view phase = 81.3%, slice thickness = 8mm, TR = 183ms, TE 

= 0.99ms, flip angle = 8
o
, averages = 1, measurements = 60, time to inversion (TI) = 

100ms 

 

3.5.2 Imaging of early microvascular obstruction 

 

At 2 to 5 minutes after contrast injection, images were acquired for the determination of 

“early” MVO. This required a single-shot steady-state free precession sequence with a 
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non-selective inversion pulse. No breath-hold was required. Typically three to five SA 

slices per heartbeat were acquired, copied from the SA cine stack. A single-shot sequence 

was acquired at each of four time-points: 2, 3, 4 and 5 minutes after contrast injection. 

The protocol for early MVO imaging was as follows: 

Protocol: ECG trigger, 100 lines field of view = 270 x 360, slice thickness = 8mm, 

interslice gap = 2mm, flip angle 30
o
, TE 1.2ms, TR 2.7ms, TI 200-350ms, bandwidth/ 

pixel = 980 Hz, matrix 256. 

 

3.5.3 Late gadolinium-enhancement imaging 

 

15 minutes after bolus contrast injection in all scans, ceCMR images were acquired. This 

utilised a contrast-sensitive segmented inversion recovery sequence to acquire a second 

stack of SA images (positions copied from the SA cine stack). Images were also acquired 

in three long axis views, with orientations copied from the cine 4-chamber, 2-chamber 

and LVOT views. Adequate breath-holding was essential for each acquisition. The 

protocol was as follows: 

 

Protocol: Breath-hold segmented re-phased Turbo-FLASH sequence with non-selective 

inversion pulse with non-slice selective inversion-recovery.  

 

Constant settings: field of view = 340mm, field of view phase = 81.3%, slice thickness = 

8mm, interslice gap = 2mm, TE = 4.3ms, flip angle = 30
o
, averages = 2, segments = 25, 



124 

 

phase resolution = 65%, trigger delay = 0, trigger pulse = 2 (but dependent to an extent 

on heart-rate: trigger on pulse 1 if bradycardic, or pulse >2 if tachycardic). 

 

Variable settings 

 

The acquisition window was set greater than RR-interval and TR just under to allow for 

diastolic imaging. TI was 220ms (for initial scan) and adjusted according to image quality 

by 10ms steps within the range 200-300ms to optimise image quality. The TI was often 

varied between image acquisitions, and if the quality of the preceding image was poor it 

was repeated until an image of adequate quality was obtained. Optimal TI and TR 

produced a diastolic image with black (nulled) myocardium and bright late enhancement 

area (Figure 3.5 A). If late MVO was present, it appeared as a dark hypoenhanced core 

within the bright hyperenhanced area (Figure 3.5 B). 

 

 
 

Figure 3.5  Mid-ventricular short-axis slices acquired using a contrast-sensitive 

segmented inversion recovery sequence 15 minutes after injection of gadolinium-

DTPA, from two separate patients admitted with anterior STEMI. (A) 

Subendocardial region of hyperenhancement affecting the anteroseptal wall of the 

LV, surrounded by normal (nulled, dark) myocardium; there is no MVO present. 
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(B) Full-thickness infarction of the anteroseptal wall of the LV reveals 

hyperenhancement throughout wall, from endocardium to epicardium, with a 

hypoenhanced core – this core represents (late) MVO. 
 

 

 

 

3.6 CMR analysis methodology 
 

 

3.6.1 LV volumes and ejection fraction 

 

 

Post-processing was performed using commercially-available Argus software (Siemens, 

Erlangen). The number of slices required to cover the LV in end-diastole and end-systole 

varied from scan to scan dependent on the long axis diameter of the LV. End-systole was 

chosen as the point where the total LV blood pool was smallest and end-diastole as the 

point where it was largest. The most basal LV slice at both end-systole and end-diastole 

was defined as that in which the blood pool was surrounded by 50% or more of 

ventricular myocardium; papillary muscles were excluded from the LV volumes and 

included in the LV mass. Manual digital planimetry was performed on endocardial and 

epicardial contours using the short axis cine images at both end diastole and end systole 

in random order by a single observer (RM) blinded to the pressure wire results. The scans 

were anonymised and randomised prior to analysis. Simple addition of the individual 

slice volumes in this stack of contiguous slices covering the entire LV allowed 

calculation of LVESV and LVEDV (ml), therefore allowing the calculation of LV 

ejection fraction (LVEF). LV myocardial mass (LVM) was estimated to be the mean of 

the total difference between the inner and outer circumferences of the LV myocardium in 
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end-diastole and end-systole, multiplied by the myocardial density (taken as 1.05 g/cm
3
). 

All CMR measurements were adjusted for total body surface area.  

 

3.6.2 “Early” Microvascular Obstruction 

 

“Early” MVO previously known as simply microvascular obstruction “MO” is the term 

used for assessment of MVO in the early stage following gadolinium-DTPA injection.  

Quantitative analysis of the size and extent of both the first-pass defect and early MVO 

can be imprecise as it requires multiple geometric assumptions due to the limited number 

of SA slices acquired during ultra-fast imaging. However although less evidence is 

available regarding this the mass of hypo-enhanced tissue could be calculated by 

multiplication of the volume following digital planimetry by the myocardial density 

factor (1.05g/cm
3
). Early MVO was also graded as present or absent. 

 

More recently literature comparing “early” MVO with “late” or persistent MVO has 

emerged suggesting that in contrast to early MVO, the presence and extent of late MVO 

is a strong independent predictor for the occurrence of death, non-fatal MI, myocardial 

reinfarction and congestive heart failure after STEMI.
106, 173

 

 

3.6.3 Late gadolinium enhancement, infarct volumes and late/ persistent MVO 

 

Analysis of the delayed enhancement images was also performed using Argus software 

(Siemens, Erlangen). Again the scans were anonymised and randomised and the 
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perimeter of the hyper-enhanced region on each SA slice was traced by a single observer 

(RM) blinded to the pressure wire results. Acute infarction was considered present only if 

LGE was confirmed on both the short and long axis acquisitions and corresponded with a 

wall motion abnormality on cine imaging. The myocardial mass of LGE (grams) was 

quantified by a semi-automatic detection method using a signal intensity threshold of >2 

SD above a remote reference region. Argus software also facilitated summation of the 

volume of enhanced tissue from each slice, producing a measure of infarct volume (ml). 

The mass of hyper-enhanced tissue could be calculated by multiplication of the volume 

by the myocardial density factor (1.05g/cm
3
).  

 

One major issue relevant to analysis of late hyper-enhanced images pertains to partial 

volume effect. The thickness of each slice is 8mm, but within this the pattern of late 

hyper-enhancement is not necessarily homogeneous. This irregularity can result in 

blurring of the infarct border. In some slices, towards the periphery of the hyper-

enhanced area, regions are occasionally seen wherein the brightness level is intermediate 

between normal (black, nulled) myocardium and bright, hyper-enhanced myocardium. 

There is a lack of universal consensus on whether (and how) to account for this partial 

volume effect in the quantitative measurement of late hyper-enhanced tissue.  In this 

study, in order to maintain consistency in our results, we decided to include everything 

that was hyper-enhanced, taking no account of partial volume effects.  

 

Late MVO was defined as an area of hypo - enhancement (black) within the area of 

hyper-enhanced (bright) infarcted tissue. The perimeter of the dark area within the hyper-
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enhanced was traced using digital planimetry on each short axis slice using the same 

method as described above for infarct volumes. In cases of doubt about the nature of the 

hypo-enhanced area on short axis slices, the long axis slices were used, to differentiate 

late MVO from partial volume effects. The mass of hypo-enhanced tissue could be 

calculated by multiplication of the volume by the myocardial density factor (1.05g/cm
3
). 

Evidence thus far has simply indicated that the presence of MVO is associated with 

adverse outcomes therefore
15

, as with early MVO the presence or absence of MVO was 

also recorded. The presence of MVO was recorded by two experienced and blinded 

observers (AP, RM). When there was disagreement between the two observers a third 

experienced observer (CB) had the final say. As stated above late or persistent MVO is 

now associated with adverse clinical outcomes and is becoming the method of choice for 

assessment of MVO in this patient group given that it also allows further characterisation 

of the infarct with the images being coincident late gadolinium images.
174

  

 

3.6.4 Site of myocardial infarction 

 

The anatomical location of the infarct was based on the AHA standardised 17-segment 

model.  Site of myocardial infarction was defined as anterior, inferior or lateral 

depending on the area in which the highest percent of infarcted tissue was visualised. The 

right ventricular insertion points were used as anatomical markers. 
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Figure 3.6: The 17 segment American Heart Association model for anatomical assessment of 

myocardial infarction in the ventricular short axis CMR images 

 

3.6.5 Transmural extent of myocardial infarction 

 

This was visually graded on a segmental basis of transmural extent of hyperenhanced 

tissue according to the following scheme: 0, no infarction; 1, 1% to 25% of LV wall 

thickness; 2, 26% to 50% of LV wall thickness; 3, 51% to 75% of LV wall thickness; and 

4, 76% to 100% of LV wall thickness. This number was them divided by the number of 

affected segments to give a mean, or transmurality score.
175, 176

 

 

3.6.6 Assessment of LV remodelling 
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LV remodelling is defined as the change in left ventricular end systolic volume, indexed 

to body surface area (LVESVI), over time.  An increase in LVESVI over time is termed 

adverse ventricular remodelling.
100

  

 

3.6.7 Timing of CMR scans 

 

Animal studies have shown that MVO whether early or late as assessed by CMR can 

increase in size up to 48 hours.
113

 A further study in the canine model has shown that 

MVO remains essentially unchanged at 2 days and 9 days post infarct.
114

 However 

further work by Albert et al revealed that in 96 patients imaged on different days 

following acute MI, MVO prevalence fell dramatically beyond 48 hours from the infarct 

(with a decrease in prevalence of greater than 50% within the first 7 days). 
174

 Therefore 

there is as yet no consensus on the optimal timing for imaging in this patient group. 

Given the evidence available our aim was to perform all ceCMR scans at around 48h 

following reperfusion. 
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3.7 Assessment of “traditional” indices of microvascular 

and myocardial damage 

 

3.7.1 Electrocardiographic assessment  

 

ST segment resolution (STR) was calculated as the percent resolution in the single lead 

with the maximum baseline ST segment elevation in the pre and post reperfusion ECGs.
43

 

If thrombolysis was achieved successful ECG and symptomatic reperfusion the 

diagnostic ECG and the 90 minute ECG were used. If rescue or primary PCI was needed 

the diagnostic and post catheter laboratory ECGs were used.  

 

3.7.2 Assessment by corrected Thrombolysis In Myocardial Infarction Frame Count 

(cTFC) 

 

Corrected TIMI frame count was calculated as the number of frames for dye to reach a 

standardised distal landmark in each angiographic territory. The first frame taken for the 

measurement was the frame in which dye touched both borders of the coronary artery in 

question and moved forward with at least 70% of the vessel lumen opacified. The 

standardised distal landmarks were taken as the first branch of the postero-lateral artery 

for the right coronary artery, the most distal branch of the obtuse marginal for the 

circumflex, and the distal bifurcation of the LAD. The number of frames from the first 
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frame to the last frame when the dye entered the standardised distal landmark was 

counted. 

 

A standard image acquisition speed of 30 frames per second was used. The correction 

factor used to account for the increased length of the LAD compared to the right and 

circumflex arteries was 1.7 thereby giving a “corrected TIMI frame count”.   

 

3.7.3 Biochemical assessment 

 

Troponin I concentration in cubital venous blood was measured 12 - 24 h post-MI using 

an automated analyser (Advia Centaur, Bayer Diagnostics). The limit of detection was 

<0.2 µg/L 

 

3.8 Statistical methods 

 

A sample size of 50 patients was calculated to have a power of (1-beta) 0.90 to detect a 

minimally significant correlation coefficient (R) of 0.45 between IMR and infarct size by 

ceCMR with a type 1 error rate of 0.05.  

 

Invasive markers of microvascular function (coronary wedge pressure, fractional 

coronary collateral supply and the index of microcirculatory resistance) were non-

normally distributed and are summarised with the median value and inter-quartile range 

(IQR). The Mann Whitney test was used to compare these data between patients with or 
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without MVO as revealed by ceCMR. An elevated IMR was defined as > than the median 

value.  

 

Log transformed invasive markers of microvascular function and other clinical features 

were compared to ceCMR outcomes using univariate regression analysis.  The variance 

in each model was expressed using the coefficient of determination, r
2
. The univariable 

predictors with a p value of less than 0.1 were entered into a multivariate model. Since 

our focus was to evaluate the predictive value of IMR compared to other clinical 

characteristics which were available at the time of primary PCI, only variables which 

were clinically available at that time, such as time-to-reperfusion but not troponin 

concentration, were included in the multivariable models.  A p value <0.05 was 

considered statistically significant. Statistical analyses were performed on MINITAB 14 

software and NCSS 2007. 

 

3.9 Funding of the study 

 

This work was funded by a project grant from the Chief Scientists Office Scotland 

(CZB/4/572). 

 

3.10 Sponsoring of the study 

 

The trial was sponsored by the North Glasgow University Hospitals NHS Trust. 
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Chapter 4: Demographics, admission 

data, angiographic 

and cardiac MRI results 
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4.1 Patient screening and recruitment 

 

A total of 77 patients were consented for the study between 04/01/2007 and 28/02/2008. 

Of these 8 patients were deemed not suitable for pressure wire study, in each case 

because no percutaneous coronary intervention was needed or possible. (3 patients with 

severe 3 vessel disease, 2 patients with small side branch occlusion only and 1 with 

calcified vessels unable to wire and 2 with no overt coronary artery disease). Therefore 

69 patients had successful coronary physiological studies at the time of PCI. Of these 12 

patients did not have cardiac MRI imaging. Five patients refused and did not give a 

reason, 4 were stated they were claustrophobic and 3 were deemed to be unstable due to 

runs of non-sustained ventricular tachycardia.  

 

This left 57 patients with successful physiological assessment and a baseline cardiac MRI 

scan. Of these, 47 had complete follow up scans. In addition a total of 47 patients had 

complete pre and post stenting physiological assessment.  

 

4.2 Demographics 

 

Of the 69 patients who underwent physiological assessment with pressure wire at the 

time of PCI, 60 (87%) were male and the mean (standard deviation [SD]) age was 58 

(10.6). The majority (97%) were of Caucasian origin. 
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Within the study population cardiovascular risk profile included hypertension in 20 

(29%), dyslipidaemia (defined as serum total cholesterol >5mmol/l and/or on lipid-

lowering therapy prior to admission) in 17 (25%), current smoking at the time of 

admission in 36 (52%) and a family history of premature coronary artery disease (defined 

a myocardial infarction in a first degree relative <60 years) in 10 (14%) of patients. Past 

medical history included myocardial infarction in 5 (7%), angina in 6 (9%), previous PCI 

in 4 (6%), cerebrovascular disease in 4 (6%), diabetes (type 2) in 4 (6%) and peripheral 

vascular disease in 1 patient.  No patients in the study had previously document left 

ventricular systolic dysfunction.  

 

4.2.1 Index event 

 

The reason for PCI in the study population (n=69) was primary PCI in 32 (46%) patients, 

rescue in 21 (31%) and prognostic (defined as PCI within 24 hours of successful 

reperfusion by thrombolysis) in 16 (23%). In total 37 patients received thrombolysis, with 

tenectaplase being used in every instance. 
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Figure 4.1: ECG defined site of MI. Anterior = 36, inferior = 29, posterior = 3, 

lateral = 1 (n=69). 

 

 

4.2.2 Admission blood results 

 

 

 

 Mean (Standard deviation) 

Haematology (n=69)  

             Haemoglobin (g/dl) 14.1 (1.4) 

             White cell count x 10
3
/µL 11.5 (2.8) 

             Platelets x 10
3
/µL 251 (82) 

Biochemistry  (n=69)  

             Sodium (mmol/l) 138 (2.8) 

             Potassium (mmol/l) 4.0 (0.4) 

             Urea (mmol/l) 5.4 (1.5) 

             Creatinine (mol/l) 92.4 (15.9) 

             Glucose (mg/dl) 7.2 (2.1) 

             C – Reactive Protein (mg/dl) 21.1 (24.1) 
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Table 4.1: Laboratory values on admission to hospital with index event 

 

 

 

4.2.3 Timescale of presentation and treatment 

 

The median [interquartile range] time from symptom onset to presentation was 120 [66 – 

240] minutes and the range within the study population was 0 minutes (for a patient who 

was already an inpatient) to 1620 minutes. The median [interquartile range] time from 

symptom onset to reperfusion by thrombolysis or PCI was 300 minutes [150 – 438] with 

the range being 30 minutes to 1740 minutes. 

 

4.2.4 Angiographic and PCI data 

 

The culprit artery as defined by the primary operator at the time of PCI was the left 

anterior descending (LAD) in 37 (54%) cases, the right coronary artery (RCA) in 28 

(40%) and the circumflex (Cx) in 4 (6%) of patients. 

Culprit artery 
*
  n (%) 

LAD 37 (54%) 

RCA 28 (40%) 

LCx 4 (6%) 

Stent type  n (%) 

Bare metal 45 (69%) 

Drug eluting 19 (28%) 

Balloon angioplasty 5 (7%) 

Stent data 
 

mean (SD)
†
 

Number of stents 1.4 (0.74) 
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Stent diameter (mm) 3.2 (0.45) 

Stent length (mm) 26.9 (16) 

Adjunctive therapy 

 

n (%) 

Aspirin (300mg) 69 (100%) 

Clopidogrel (300mg) 69(100%) 

  Glycoprotein 2b3a inhibitor 52(75%) 

Aspiration thrombectomy 31(45%) 

 

Table 4.2: Angiographic data for the study population. Data are presented as mean 

(SD) for continuous variables and number (%) for categorical variables. 
*
 Branch 

artery occlusions ie diagonal/obtuse marginal were categorised with the main 

epicardial artery. 
†
 n=64 

 

 

 

4.2.5 Medication on discharge 

 

 

The discharge medication of the study population is outlined in the table below. 

 

 

 n (%) 

Aspirin 69 (100%) 

Clopidogrel 69 (100%) 

Beta Blocker 58 (84%) 

ACE - Inhibitor 66 (96%) 

Statin 69 (100%) 

 

Table 4.3: Summary of standard cardiovascular secondary prevention medication at 

discharge from hospital in the study population. 
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4.3 Physiological assessment using pressure wire at the time of PCI 
 

The protocols and timings of these measurements are described in the chapter 3. All 

patients had measurements taken at the end of the procedure and 47 (69%) patients also 

had pre stenting measurements. In one patient the distal coronary wedge pressure tracing 

was unsuitable for analysis and was not included. As this patient was treated only with 

balloon angioplasty we did not feel it was appropriate to perform a further balloon 

inflation in an attempt to re-record the coronary wedge pressure. A summary of the 

pressure wire data is detailed below: 

 

 Pre-stenting (n=47) Post-stenting (n=69) 

Pw
*
 (mmHg) 21 (15–26.3) 23 (16.3-30) 

Mean transit time 

at rest (s) 
0.95 (0.63-1.60) 0.73 (0.45-1.22) 

Mean transit tine at 

hyperaemia (s) 
0.71 (0.47-1.02) 0.47 (0.33-0.70) 

FFR (units) 0.79 (0.73-0.86) 0.89 (0.79-0.94) 

CFR (units) 1.3 (1.11-1.45) 1.55 (1.31-1.72) 

CFIp
*
 (units) 0.25 (0.2-0.31) 0.27 (0.2-.0.34) 

IMR inc Pw
* 
(units) 36.55 (24.7-62.6) 32.0 (22.3-52.3) 

IMR (units) 41.3 (28.3-66.9) 34.8 (22.9-53.8) 
 

 

Table 4.4. A summary of pressure wire data pre and post stenting in the study 

population. All data are expressed as median (intra-quartile range). IMR inc Pw 

was calculated from the following equation “Pa.Tmn [(Pd-Pw)/(Pa-Pw)]” and IMR 

was calculated using Pd.Tmn as mentioned previously. 
*
 n=68. 
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4.4 CMR data and analysis 
 

 

4.4.1 Overview 

 

 

Of the study population 57(83%) patients in total consented for CMR imaging. Of these 

54 patients had complete scans as per protocol described in the methods section. 

Scanning was stopped early in 4 patients as these patients felt they were no longer able to 

tolerate the examination. Of these 4 patients, complete cine images were taken in all 

allowing analysis for LV volumes and ejection fraction. Gadolinium was administered in 

only one of these patients and “early MVO” images were taken prior to the patient 

requesting to finish the examination. 

 

In summary 57 had complete cine images, 54 had “early MVO” sequences taken and 53 

had “late gadolinium” sequences allowing assessment of infarct volume and “late MVO” 

 

All patients were invited back for the follow up scan at 3 months. Fifty (88% of the initial 

CMR group) attended. Of these one gentleman was under the influence of alcohol on 

attendance and was therefore excluded from the study on safety grounds. Forty nine 

patients (87% of the CMR group) underwent a further ceCMR examination, all 

completing cine sequences. Two patients did not receive gadolinium, one as a 

consequence of a deterioration in renal function post MI and one because they felt unable 

to continue with the scan. 
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The mean (SD) time from PCI to scan one was 34 (16.1) hours. The mean (SD) time 

between the baseline scan and the follow up scan was 91.3 (5.4) days.  The mean (SD) 

time for scan 1 was 41 (10.7) minutes and for scan 2 39.3 (9.4) minutes. Forty four 

patients were deemed to by Killip score 1 and the remaining 13 were Killip score 2 at the 

time of the initial CMR scan.  

 

4.4.2 Analysis of baseline and follow up ceCMR scans 

 

All scans were analysed as described in the chapter 3. The results are summarised in the 

table below 

 

 

CMR variables 2 days post-MI 3 months post-MI 

LV ejection fraction (%) 55.2 (11.9) 61.9 (10.8) 

LV end-diastolic volume (ml) 130 .5 (29.3) 147.1 (32.9) 

LV end-systolic volume (ml) 58.1 (21.0) 57.1 (24.4) 

LV mass (g) 133.1 (32.8) 136 (29.7) 

LV end-diastolic volume index (ml/m
2
) 68.2 (13.6) 74.3 (17.8) 

LV end-systolic volume index (ml/m
2
) 30.5 (10.8) 28.9 (12.4) 

LV infarct volume (ml)
 

23.1 (22.6) 12.1 (11.2) 

LV infarct mass (g) 24 .2 (23.7) 12.4 (11.7) 
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LV mass/infarct ratio (%) 17.3 (14.8) 9.16 (8.94) 

Transmurality score 2.25 (0.86) 1.89 (0.74) 

“Early” MVO;  n (%) 27 (50) - 

“Early” MVO volume (ml) 9.2 (7.4)  

“Early” MVO mass (g) 9.6  (7.8)  

LV mass/ “early” MVO ratio (%) 6.7  (4.9)  

“Late” MVO; n (%) 27 (51) - 

“Late” MVO volume (ml) 6.6 (7) - 

“Late” MVO mass (g) 6.8 (7.1) - 

LV mass/ “late” MVO ratio (%) 4.7 (4.5) - 

 

Table 4.5. Summary of CMR data at baseline and follow-up.  Data are expressed as 

mean (standard deviation). 
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4.5 The influence of anatomical site of myocardial infarction and 

therapeutic interventions at the time of emergency PCI on coronary 

pressure wire derived indices of microvascular obstruction. 
 

 

Following electrocardiographic analysis 32 infarcts were defined as inferior/posterior and 

37 as anterior/lateral at the time of presentation. Pressure wire data following PCI were 

grouped by these criteria and compared in the table below. 

 

 Inf/post STEMI Ant/lat STEMI P value 

Median IMR [IQR] 29.2 [22.7-52.6] 37.8 [26.4-54.6] 0.43 

Median CFIp [IQR] 0.30 [0.22-0.36] 0.26 [0.19-0.31]
* 

0.13 

Median Pw [IQR] 24.0 [17.0-30.8] 22.5 [16.0-26.8]
* 

0.47 

 

Table 4.6: Comparison of pressure wire data post PCI by ECG site of STEMI at 

presentation. Non-normal data compared using the Mann Whitney test. 
* 

(n=36) 

 

There was no significant difference in the pressure wire data post PCI by site of STEMI. 

 

4.6 A comparison of pressure wire data by primary operator’s choice of 

treatment at the time of emergency PCI. 

 

All patients in the study were loaded with 300 mg aspirin and 300mg of Clopidogrel prior 

to emergency PCI. It was the primary operator’s preference whether to use a glycoprotein 

2b3a inhibitor in the peri-procedural period, to use aspiration thrombectomy or to use 
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drug eluting stents at the time of PCI. These are compared in the table below. 

 

 n 

Median IMR 

[IQR] 

Median CFIp 

[IQR] 

Median Pw 

[IQR] 

GP2b3a 52 36.1 [23.4-54.2] 0.28 [0.2-0.33] 22 [16-30] 

No GP2b3a 17 34.1 [17.4-52.2] 0.28 [0.21-0.34] 24.5 [17.3-30.5] 

P value  0.46 0.99 0.61 

Aspiration 31 30.6 [23.1–41.5] 0.27 [0.19-0.34] 22 [16-30] 

No aspiration 38 37.3 [22.8-54.7] 0.29 [0.22-0.34]
* 

23 [16.5-29.5]
* 

P value  0.55 0.75 0.81 

DES 19 34.3 [20.1-47.8] 0.27 [0.23-0.35] 25 [20-32] 

BMS/POBA 50 35.2 [23.2 56.6] 0.28 [0.19-0.33]
† 

25 [20-32]
† 

P value  0.39 0.61 0.25 

 

Table 4.7: Comparison of physiological indices for microvascular dysfunction taken 

following PCI by primary operator’s therapeutic choices in the peri-procedural 

period. The Mann Whitney test was used for comparison of non-normal data. 

*(n=37) †(n=49)  
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4.7 Discussion - Demographics, admission data, angiographic and 

cardiac MRI results 

 

4.7.1 Demographics and patient characteristics 

 

 

In any study looking at STEMI it’s useful to put the patient population into the context of 

historical and contemporary work. The mean age of patients in this study was just under 

60 and the overwhelming majority were male, findings consistent with  contemporary 

AMI studies.
177

 Furthermore the demographics are in keeping with the Scottish STEMI 

population.
3
 The patient population is this study was therefore in keeping with the study 

population in wider international AMI studies as well as being representation of the 

STEMI population in a national basis. 

 

Although only a small number of previous studies have taken coronary physiological 

assessment using pressure wire in the AMI population, the patient population in this 

study is in keeping with these.
45

 In particular, Fearon et al reporting a mean age of 62 

and the majority of subjects male although the small numbers in this patient population 

contained a larger proportion of patients with hypertension and dyslipidaemia and a lower 

number of tobacco smokers. Broadly speaking the patient population is this study was 

similar to others in this field.
47
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Again small numbers of studies using the pressure wire at the time of STEMI had been 

done by the time of this work but again the proportion of successful physiological 

measurements was in keeping with previous work in this area.
47, 141

  

 

I am not aware, at this point, of any previous studies which have enrolled patients prior to 

emergency PCI and then re-consented the patients after physiological assessment but 

prior to CMR scanning. Given the clinical uncertainties within this patient group I feel 

that 57 patient undergoing baseline MRI scan is satisfactory from 69 whom had given 

initial consent. A successful follow up MRI scan rate of around 80% is also in keeping 

with previous MRI studies with the AMI population.
15

  

 

The study population were discharged from hospital with high levels of uptake of 

secondary preventative medications, with 100% on statin therapy, 84% on beta-blockers 

and 96% on ACE – inhibitors. Given that all of the study patients had underwent 

emergency PCI in the context of STEMI then anti-platelet therapy uptake of 100% on 

discharge is to be expected. 

 

The study population under investigation in this thesis therefore represents a very well-

treated cohort whose demographics, successful pressure wire and MRI scan rates are in 

keeping with previous studies within these fields. 

 

4.7.2 Pressure wire data in comparison with previous studies 
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There have been increasing numbers of studies published looking at pressure wire indices 

for microvascular dysfunction, principally IMR, in recent years and to a lesser extent 

CFIp.  

 

One study in which CFIp was performed in 28 patients a mean of 3.3 days following first 

acute myocardial infarction treated with thrombolysis the mean value was 0.17 

units.
145

Previous work performed by Balachandran et al in the West of Scotland found a 

mean CFIp of 0.25 units when perform during rescue PCI following failed thrombolysis. 

141
 The median value in my mixed (primary, rescue and prognostic) study was 0.27 units 

following PCI and 0.25 units prior to PCI. This is in keeping with the limited body of 

work in this area. CFIp in my study is higher than in the work by Sezer et al but this 

could be explained by the 3.3 day time lapse between thrombolysis and pressure wire 

study in the Turkish group’s study. 
145

 

 

There are more studies in the literature looking at IMR in acute myocardial infarction. 

Within these there are variations in the timing of the pressure wire studies in relation the 

emergency PCI. Furthermore some studies are limited to looking only at anterior 

myocardial infarctions. I have summarised these in the table below including my own 

data. 
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Authors Year 
Number of 

patients 
Site of MI Timing 

Median 

IMR 

Fearon et al
47

 2007 29 All At PCI 32 

Ito et al
137

 2009 40 All At PCI 26 

Sezer et al
178

 2010 35 All 
48h post 

PCI 
29 

Lim et al
179

 2009 40 
Anterior 

only 
At PCI 33 

McGeoch et 

al
180

 
2010 57 All At PCI 35 

Table 4.8: Comparison median IMR in this study with contemporary work in this 

field. 

 

The median IMR in my study was slightly higher than those in previous work in the field. 

It is not surprising that it is higher than the study by Sezer at al as you may expect IMR to 

decrease in the days following the acute event. I also included a significant proportion of 

patients whom had underwent rescue PCI and this increased the median IMR.  

 

Overall I feel that the invasive coronary physiological measurements in my study were 

similar the contemporary work in this field.  

 

4.7.3 CMR results in comparison with previous studies 

 

As discussed previously contrast enhanced CMR is a well validated and robust technique 

for assessment of left ventricular ejection fraction, MVO and infarct sizes following 

myocardial infarction. In order to improve the validity of my work it is however 

important that my study is not taken in isolation and that my CMR analysis was in 

keeping with contemporary CMR studies in this area. 
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One of the landmark studies linking CMR findings with prognosis following myocardial 

infarction was the work by Hombach et al
15

 published in 2005. They studied 110 patients 

a mean of 6.2 days after AMI. Infarct size was 12% of total LV muscle mass and MVO 

was detected in 47% of patients.  I think that these results are in keeping with my own 

work, infarct size of 17% and MVO in 51% of patients. I think that the differences 

between the two studies can be explained by the time differences between myocardial 

infarction and scanning.  

 

Infarct size shrank from 12% to 7.8% at follow up (mean 225 days) and no MVO was 

seen at follow up. Again this is similar to the decrease in infarct size in my study which 

fell to 9% at follow up, with no MVO found. In addition similar to my own work LVEF 

and LVEDV increased and LVESV decreased during follow up. 

 

A more recent study by Cochet et al published in 2009 which again looked at the 

prognostic significance of MVO following re-perfused myocardial infarction found the 

aforementioned present in 47% of patients.
106

 

 

Wu et al
181

 studied 122 patients whom underwent CMR scanning within 1 week of 

myocardial infarction and follow up at 3 months. Similar to this work the mean age was 

57 and 83% were male. In this patient population the mean infarct size was 22% of the 

LV mass and the mean ejection fraction was 41%. They found that follow up infarct size 
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decreased by 22%. They also noticed an increase in LVEF and LVEDV and a decrease in 

LVESV. 

  

It can therefore be seen that although natural variations will apply, the CMR analysis data 

for my study cohort is in keeping with contemporary work in this area. 

 

4.8 Conclusion 

 

The raw data on which this thesis is based, patient population, coronary physiological 

data and CMR analysis is in keeping with contemporary work in each of these areas. 
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Chapter 5: The relationship between 

coronary pressure wire derived indices of 

microvascular dysfunction at the time of 

emergency PCI with microvascular and 

myocardial damage on cardiac MRI 
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5.1 Introduction 

 

Emergency percutaneous coronary intervention (PCI) is the established treatment for ST 

elevation myocardial infarction (STEMI). Despite achieving normal epicardial artery 

flow in the majority of patients up to one third of patients do not achieve myocardial 

microvascular reperfusion.
26, 182

Microvascular dysfunction in this setting is associated 

with an adverse prognosis.
15, 16, 54

 However, there is no established method for evaluating 

the coronary microcirculation in STEMI patients in the cardiac catheterisation laboratory. 

 

The index of microcirculatory resistance (IMR) is a novel pressure/temperature tipped 

guide-wire based quantitative measure of coronary microvasculature function. IMR has 

been validated in animal models and tested in stable patients,
130, 131, 137

 and in a recent 

study of acute STEMI patients, IMR was a better predictor of left ventricular function 3 

months post-MI than current standard methods for evaluating the microcirculation.
47

 

 

Contrast enhanced cardiac magnetic resonance imaging (ceCMR) is the gold standard 

non-invasive technique for assessment of the coronary microcirculation.
183

Microvascular 

obstruction (MVO) on ceCMR following STEMI is associated with an adverse 

prognosis.
111, 184

 However, for safety reasons, ceCMR is generally not performed until 2 

or more days after hospital admission, limiting its clinical utility in the initial post-MI 

period.  
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In a broad range of STEMI patients, we aimed to determine whether IMR and other 

invasive physiological markers of microvascular dysfunction acquired immediately after 

stent deployment in emergency PCI for STEMI might predict the nature and severity of 

myocardial injury using ceCMR as the gold standard comparison. Specifically, we first 

hypothesized that an elevated IMR at the time of reperfusion would be associated with 

the nature of MI, as revealed by the occurrence of MVO on ceCMR. Secondly, we 

hypothesized that IMR would be independently predictive of the severity of MI, as 

subsequently revealed by infarct size and LV function on ceCMR during long term 

follow-up. 

 

5.2 Methods 

 

Patients who met the pre-specific criteria and gave informed consent were included. 

During emergency PCI, a coronary pressure/temperature sensitive guidewire was 

advanced into the culprit artery and baseline means transit times (Tmn) were obtained 

following bolus intra-coronary injection of 3 ml of saline. Tmn and distal coronary 

pressure (Pd) were obtained under conditions of peak hyperaemia achieved by 

intravenous adenosine infusion (140 mcg/kg/min). IMR was calculated as PdxTmn. 

Patients underwent baseline ceCMR 24-48h later and at 3 months follow up. Left 

ventricular dimensions were assessed using retro-gated (trueFISP) cinematographic 

breath-hold sequences and MVO was defined as a dark core of hypoenhancement within 

the area of hyperenhanced infarcted tissue using breath hold turboFLASH sequences 

following an intravenous bolus of gadolinium (0.1mmol/kg). 
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5.3 A comparison of patients with and without microvascular 

obstruction on contrast enhanced cardiac MRI 

 

5.3.1 Demographics, cardiac risk factors, admission information and angiographic 

variables 

 

As stated above there are two CMR sequences following gadolinium injection which can 

be used to elucidate the presence of microvascular obstruction. Fifty four patients had 

“early MVO” sequences taken and 53 had “late gadolinium” sequences allowing 

assessment of infarct volume and “late MVO”. Microvascular obstruction was noted on 

blinded analysis in 27 (51%) of 53 patients. This number is in keeping with previous MRI 

studies. There was no MVO noted on follow up CMR scanning. The breakdown of 

demographics and patient characteristics are noted in the table below.  

 

 
MVO present 

(n=27) 

MVO absent 

(n=26) 

Age (years[SD]) 56.9 (10.2) 58.6 (11.7) 

Male (%) 89 88 

Smoker (%) 56 46 

Hypertensive (%) 30 19 

Dyslipidaemia (%) 37 12 

Diabetes (%) 4 4 

Haemoglobin (g/dl)[SD] 13.9(1.7) 14.3(1.1) 

White cell count x 10
3
/µL 11.7 (2.4) 11.5(3.6) 
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Platelet count x 10
3
/µL 260.3 (107.3) 249.3(55.3) 

Troponin I ng/ml 79.1 (113.9) 26.1 (18.1) 

Time to reperfusion (h) 8.03 (6.8) 4.39 (3.3) 

Aspirin (%) 100 100 

Clopidogrel (%) 100 100 

GP2b3a inhibitor (%) 89 62 

Aspiration thrombectomy (%) 41 50 

Drug eluting stent use (%) 19 38 

 

Table 5.1: Comparison of demographic data, cardiac risk factors, admission blood 

results, time to reperfusion and peri-procedural therapy in each group. 

 

 

There was no significant difference in age and gender between the two groups. The MVO 

group contained significantly more patients with a history of dyslipidaemia and 

hypertension. Peak troponin I was significantly elevated in the patients with MVO vs 

those without MVO: 79.1 (113.9) vs 26.1(18.1); p=0.024.Time from symptom onset to 

reperfusion was also longer in those in whom MVO was present: 8.03 (6.8) vs 4.39(3.3); 

p=0.018. 

 

There were no significant differences in the peri-procedural therapy initiated in each 

group. 

 

5.4 A comparison of pressure wire data in patients with and without 

MVO on ceCMR 
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The median IMR (IQR) in patients with MVO was higher (38.1 (29.4 – 54.6) units) 

compared to in patients without MVO (26.9 (18.9 – 36.9) units; p = 0.003, Figure 5.1). 

The pressure-derived collateral flow index and distal coronary wedge pressure were 

similar in both groups.  The full results are outlined in the table below. 

 

 

MVO present 

(n=27) 

MVO absent 

(n=26) 

p value 

Median Pw (IQR) 25 (17-32) 21 (15.5-25) 0.14 

Median CFIp (IQR) 0.28 (0.2-0.35) 0.26 (0.19-0.34)* 0.41 

median IMR(IQR) 38.1 (29.4-54.6) 26.9 (18.9-36.9)* 0.003 

 

Table 5.2: Comparison of pressure wire data in the MVO present and MVO absent 

groups. * n=25 
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Figure 5.1: IMR box-plots dichotomised according to presence or absence of MVO 

 

5.5 Comparison “early” and “late” MVO volumes, mass and ratio 

 

Twenty five patients were noted to have both “early” and “late” MVO on blinded 

analysis. One patient was noted to have “early” MVO but did not have “late” gadolinium 

sequences taken due to claustrophobia. One patient was thought to have “early” MVO but 

no “late” MVO and two patients were thought to have “late” MVO but no “early” MVO. 

In these 25 patients the mean (SD) “early” MVO volume was 9.4 (7.6) ml, the mean (SD) 

mass was 9.8 (8.0) grams and the ration of MVO mass the left ventricular mass was 6.8% 

(4.9). The mean (SD) “late” MVO volume was 7.1 (7.1) ml, the mean (SD) mass was 7.4 

(7.5) grams and the ratio of MVO mass the left ventricular mass was 5.1% (4.7). The 
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correlation between calculation of MVO volumes, mass and ratio was very close as can 

be seen in the table and graph below. 

 

 R value P value 

MVO volume 0.96 <0.001 

MVO mass 0.96 <0.001 

MVO/LV mass ratio 0.95 <0.001 

  

Table 5.3: Correlations and P values of “early” and “late” MVO volumes, mass and 

ratio calculated using digital planimetry. (n=25) 
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Figure 5.2: Correlation of “early” MVO mass with “late” MVO mass. R=0.96; 

p=<0.001 

 

 

5.6 The relationship between pressure wire data and MVO volumes, 

mass and ratio on CMR scanning 

 

Given the very close correlation between the results for “early” and “late” MVO, I have 

compared the invasive physiological data taken following PCI with the “late” MVO data 

as only “late” MVO has been shown to be an adverse prognostic indicator.  

 

Twenty seven patients were found to have “late” MVO and the volumes, mass and ratio 

to left ventricular mass were calculated as described previously. The demographics of 

these patients are as described above. There was no correlation between the invasive 

pressure wire measurements and either MVO volumes, mass or ratio to left ventricular 

mass.  

 

5.7 The relationship between IMR and LVEF at baseline and follow up 

 

In univariable analyses, an elevated IMR was a negative predictor of left ventricular 

ejection fraction (p=<0.001) [figure 5.3] and a positive predictor of left ventricular end-

systolic volume index (LVESVI, p=0.035) at 2 days. IMR was the most significant 
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independent predictor of left ventricular ejection fraction at 2 days (<0.001) Full results 

of the multivariate analysis are shown in table 5.4. 
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Figure 5.3: Scatterplot of IMR (log transformed) against left ventricular ejection 

fraction at 2 days as assessed by ceCMR. In univariable analyses, an elevated IMR 

was a negative predictor of left ventricular ejection fraction (P=<0.001)  

 

IMR continued to be a univariate predictor of ejection fraction at 3 month (p = 0.007, 

Figure 5.4]. CFIp and Pw were not found to predict ejection fraction at 3 months. IMR 

was a significant predictor of ejection fraction a 3 months in the multivariate model (p = 

0.028). (see table 5.4) 



162 

 

log IMR

L
V

E
F

5.55.04.54.03.53.02.52.0

80

70

60

50

40

30

 

 

Figure 5.4: Scatterplot of IMR (log transformed) and left ventricular ejection 

fraction at 3 months. Index of microcirculatory resistance continued to be a 

predictor of ejection fraction at 3 month (p = 0.007) 
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 Univariate R
2
 

(%) 

Univariate 

P value 

Multivariate 

P value 

Predictors of LVEF at day 2 
   

Cigarette smoking 5.4 0.08 0.37 

Diabetes 12.1 0.008 0.025 

IMR 29.1 <0.001 <0.001 

Time to reperfusion 9.5 0.02 0.096 

ST segment resolution > 70% 7.7 0.037 0.21 

Predictors of LVEF at 3 months 
   

    

Glycoprotein IIbIIIa inhibitor 10.8 0.02 0.031 

IMR 14.5 0.007 0.028 

Time to reperfusion 9.1 0.035 0.446 

ST segment resolution > 70% 12.3 0.013 0.175 

Culprit artery 16.8 0.003 0.039 

 

Table 5.4: Results of multivariable regression analyses for left ventricular ejection 

fraction measured by ceCMR performed 2 days and 3 months post-MI. 

 

The P values for the univariable models for LVEF measured by ceCMR at 2 days and 3 

months follow-up respectively were: age (P=0.23; P=0.97); male gender (P=0.23; 

P=0.34); cigarette smoking (P=0.08; P=0.37), dyslipidaemia (P=0.94; P=0.34), 

hypertension (P=0.63; P=0.56), diabetes (P=0.008; P=0.34), glycoprotein IIbIIIa inhibitor 

therapy (P=0.15; P=0.02), aspiration thrombectomy (P=0.31; P=0.22), IMR (P<0.001; 

P=0.007), CFIp (P=0.54; P=0.81), Pw (P=0.93; P=0.95), location of culprit artery 
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(P=0.19; P=0.003) time to reperfusion (P=0.02; P=0.035), ST-segment resolution > 70% 

(P=0.037; P=0.013), and cTFC (P=0.26;P=0.13). The strongest univariate predictors with 

a P value less the 0.1 were entered into the multivariate model to determine independent 

predictors. The rise in R
2
 value for each multivariate model including IMR as compared 

to all other variables was 37.1% to 50.8% at 2 days and 54.5% to 58% at 3 months. 

 

5.8 The relationship between IMR and infarct volumes at baseline and 

follow up 

 

In univariate analysis IMR is a predictor of infarct mass (R
2
=18.6%; P<0.001) at 2 days . 

The other physiological markers of microvascular dysfunction were not predictors of 

infarct size. In the multivariate model IMR was the most significant independent 

predictor of infarct size at 2 days (P = 0.01). Full results of the multivariate analysis are 

found below in table 5.5. At 3 months IMR remained an independent predictor of infarct 

volume on univariate analysis ( R
2
 = 15.6%; P = 0.006). Again CFIp and Pw were not 

predictors of infarct volumes. In the multivariate regression model IMR was again a 

significant predictor of infarct volumes however culprit artery (LAD) was the most 

significant predictor. (table 5.5) 
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 Univariate 

R
2 

(%) 

Univariate 

P value 

Multivariate 

P value 

Predictors of infarct volume at day 2  
   

Glycoprotein IIbIIIa inhibitor 5.3 0.09 0.29 

IMR 18.6 <0.001 0.01 

Time to reperfusion  11.1 0.016 0.32 

ST-segment resolution > 70% 14.7 0.005 0.06 

Culprit artery 14.2 0.006 0.03 

Predictors of infarct volume at 3 months 
   

Dyslipidaemia 9.1 0.04 0.112 

IMR 15.6 0.006 0.048 

ST-segment resolution > 70% 9.9 0.031 0.384 

Time to reperfusion 6.0 0.097 0.545 

Culprit artery 21.3 0.001 0.021 

 

Table 5.5: Results of multivariable regression analyses for myocardial infarct 

volume measured by ceCMR performed 2 days and 3 months post-MI. 

 

The P values for the univariable models for myocardial infarct volumes measured by 

ceCMR 2 days and 3 months post-MI, respectively, were: age (P=0.87; P=0.84); male 

gender (P=0.62; P=0.49); cigarette smoking (P=0.33; P=0.52), hypercholesterolaemia 

(P=0.18; P=0.04), hypertension (P=0.25; P=0.55), diabetes (P=0.77; P=0.52), 

glycoprotein IIbIIIa inhibitor therapy (P=0.09; P=0.11), aspiration thrombectomy 

(P=0.43; P=0.26), IMR (P<0.001; P=0.006), CFIp p=0.53, p=0.67), Pw (P=0.82; P=0.72), 

time to reperfusion (P=0.016 ; P=0.097), ST-resolution >70% (P=0.005; P=0.031), culprit 
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artery (P=0.006; P=0.001) and cTFC (P=0.19; P=0.23). The strongest univariate 

predictors with a P value less the 0.1 were entered into a multivariate model to determine 

independent predictors. The rise in R
2
 value for each multivariate model including IMR 

as compared to all other variables was 51.3% to 53.9% at 2 days and 40.7% to 45.1% at 3 

months. 

 

5.9 The relationship between IMR and LV Volumes at baseline and 

follow up 

 

In univariate regression analysis IMR was the strongest predictor of LVESVI in the 

ceCMR scan 2 days following myocardial infarction (R
2
 = 15.5%; p = 0.002) [see figure 

5.5]. Pw and CFIp were not predictors of LVESVI ( R
2
 = 1.3%; p = 0.4) ( R

2 
= 2.0% ; p = 

0.29) respectively. The 4 other most significant predictors of LVESVI on univariate 

analysis were entered into the multivariate model (see table 5.6). 

 



167 

 

log IMR

L
V

E
S

V
I

5.55.04.54.03.53.02.52.0

70

60

50

40

30

20

10

 

 

Figure 5.5: Scatterplot of IMR (log transformed) against left ventricular end systolic 

volume indexed for body surface area on ceCMR at 2 days.  

 

In univariate regression analysis IMR was the strongest predictor of high LVESVI in the 

ceCMR scan 2 days following myocardial infarction (R
2
 = 15.5%; p = 0.002) 

 

 Univariate R
2 

(%) 

Univariate 

P value 

Multivariate 

P value 

LVESVI at day 2  
   

IMR 15.5 0.002 0.009 

Culprit artery 15.1 0.003 0.02 

ST segment resolution < 70% 9.8 0.01 0.12 

Time to reperfusion 4.5 0.11 0.78 

Hypertension 4.3 0.12 0.16 
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Table 5.6: Results of multivariable regression analyses for increased left ventricular 

end systolic volume index measured by ceCMR performed 2 days 

 

The following variables which did not reach significance when entered into the univariate 

model were not included in the multivariate model: age, gender, smoking, 

hypercholesterolaemia, diabetes, glycoprotein 2b3a use, aspiration thrombectomy at the 

time of PCI, CFIp, and Pw.  

 

Using the same variables as above the five most significant predictors of left ventricular 

end diastolic volume corrected for body surface area (LVEDVI) were age, 

hypercholesterolaemia, CFIp, Pw and culprit artery. None of these variables reached 

statistical significance on the multivariate model (see table 5.7). 

 

 

 

 Univariate R
2 

(%) 

Univariate 

P value 

Multivariate 

P value 

LVEDVI at day 2  
   

Age 5.7 0.07 0.12 

Hypercholesterolaemia 4.9 0.99 0.09 

CFIp 11.3 0.01 0.16 

Pw 5.9 0.07 0.81 

Culprit artery 8.6 0.03 0.09 

 

Table 5.7: Results of multivariable regression analyses for increased left ventricular 
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end diastolic volume index measured by ceCMR performed 2 days 

 

The only significant univariate predictors of increased LVESVI on follow up ceCMR 

were electrocardiographic ST segment resolution of less than 70% ( R
2
 = 14.4% ; p = 

0.007) and culprit artery location  ( R
2
 = 20.9% ; p = 0.001).  On entering the five most 

significant variables into the multivariate model the strongest predictor of LVESVI was 

culprit artery location (LAD). 

 

 Univariate R
2 

(%) 

Univariate 

P value 

Multivariate 

P value 

LVESVI at 3 months 
   

GP2b3a 6.3 0.08 0.009 

No aspiration thrombectomy 4.0 0.17 0.013 

IMR 6.8 0.07 0.49 

ST segment resolution < 70% 14.4 0.007 0.027 

Culprit artery 20.9 0.001 0.005 

 

Table 5.8: Results of multivariable regression analyses for increased left ventricular 

end systolic volume index measured by ceCMR performed at 3 months 

 

 

The following variables were also entered in the univariate model but were less 

significant predictors than those about hence not entered into the multivariate model ; 

age, gender, smoking, dyslipidaemia, hypertension, diabetes, CFIp, Pw and time to 

reperfusion.  

 

On univariate analysis for predictors of LVEDVI at 3 months of the variables stated 

above only the culprit artery was a predictor of increased volume ( R
2
 = 8.2%, P = 0.05). 
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On entering the four other most significant predictors of increased LVEDVI into the 

multivariate model none were significant (table 5.9) 

 

 Univariate R
2 

(%) 

Univariate 

P value 

Multivariate 

P value 

LVEDVI at 3 months 
   

Age 5.3 0.11 0.15 

Gender 2.4 0.28 0.14 

Diabetes 3.5 0.19 0.96 

ST segment resolution < 70% 7.3 0.06 0.2 

Culprit artery 8.2 0.05 0.12 

 

Table 5.9: Results of multivariable regression analyses for increased left ventricular 

end diastolic volume index measured by ceCMR performed at 3 months 

 

The following variables were entered into the univariate analysis model but were less 

statistically significant for increased LVEDVI than those above; smoking, dyslipidaemia, 

hypertension, CFIp, Pw, IMR and time to reperfusion. 

 

5.10 The relationship between IMR and infarct transmurality at 

baseline and follow up 

 

Fifty three patients had transmurality scores calculated as described in chapter 3. The 

mean (SD) value was 2.25 (0.86) with arrange of 0 to 3.9. Forty seven patients had 

transmuraity score calculated from the follow up CMR scans. The mean (SD) was 1.89 

(0.74) and the range was 0 – 3.3. On univariate analysis using the various variables 
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mentioned above as predictors for increased transmurality score at baseline the 

significant predictors were IMR (R
2
 = 26.7% ; p = < 0.001) [see figure 5.6], 

electrocardiographic ST segment resolution > 70% (R
2
 = 22.1% ; p = <0.001), time to 

reperfusion (R
2
 = 22.1% ; p = 0.004), use of GP2b3a inhibitor (R

2
 = 10.1% ; p = 0.02) 

and culprit artery (R
2
 = 7.5% ; p = 0.047).  
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Figure 5.6 : Scatterplot of IMR (log transformed) against transmurality score at 

baseline ceCMR imaging at 2 days. IMR was the most significant predictor of 

increased transmurality score at baseline (R
2
 = 26.7% ; p = < 0.001). 

 

The five most significant univariate predictors for increased transmurality score were 

entered in to the multivariate analysis model. IMR was again the most significant 

predictor of increased transmurality score at baseline (p = 0.001). Electrocardiographic 
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ST segment resolution index > 70% was also statistically significant (p = 0.006). The 

complete results are seen in table 5.10.  

 

 Univariate R
2 

(%) 

Univariate 

P value 

Multivariate 

P value 

Transmurality score at baseline 
   

GP 2b3a 10.1 0.02 0.08 

IMR 26.7 < 0.001 0.001 

Time to reperfusion 15.3 0.004 0.14 

STR > 70% 22.1 < 0.001 0.006 

Culprit artery 7.5 0.047 0.22 

 

Table 5.10: Results of univariate and multivariate regression predictive models for 

increased transmurality score at 2 days post myocardial infarction 

 

The following variables were entered into the univariate analysis model but were less 

significant than those above: age, male gender, cigarette smoking, dyslipidaemia, 

hypertension, diabetes, aspiration thrombectomy, CFIp, distal coronary wedge pressure, 

corrected TIMI frame count. 

 

On univariate analysis using the various variables described as predictors for increased 

transmurality score at baseline the significant predictors were IMR (R
2
 = 15.2% ; p = 

<0.009) [see figure 5.7], electrocardiographic ST segment resolution > 70% (R
2
 = 14.8% 

; p = 0.008), time to reperfusion (R
2
 = 21.7% ; p = 0.001), use of GP2b3a inhibitor (R

2
 = 

17.2% ; p = 0.004) and culprit artery (R
2
 = 5.8% ; p = 0.005).  
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Figure 5.7: Scatterplot of IMR (log transformed) against transmurality score at 

baseline ceCMR imaging at 3 months. IMR was a significant predictor of increased 

transmurality score at baseline (R
2
 = 15.2%; p = 0.004). 

 

In the multivariate model GP2b3a use was the most significant predictor of transmurality 

score at 3 months (p = 0.007). Electrocardiographic ST segment resolution > 70 % and 

increased IMR were also significant predictors (p = 0.008 and p = 0.01 respectively). See 

table 5.11 below. 
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 Univariate R
2 

(%) 

Univariate 

P value 

Multivariate 

P value 

Transmurality score at follow up 
   

GP 2b3a 17.2 0.004 0.007 

IMR 15.2 0.009 0.015 

Time to reperfusion 21.7 0.001 0.115 

STR > 70% 14.8 0.008 0.008 

Culprit artery 16.3 0.005 0.073 

 

Table 5.11: Results of univariate and multivariate regression predictive models for 

increased transmurality score at 2 months post myocardial infarction 

 

The following variables were entered into the univariate analysis model but were less 

significant than those above: age, male gender, cigarette smoking, dyslipidaemia, 

hypertension, diabetes, aspiration thrombectomy, CFIp, distal coronary wedge pressure, 

corrected TIMI frame count. 

 

5.11 The relationship between IMR and LV remodeling 

 

The mean LVESVI (SD) decreased from 30.5 (10.8) ml/m
2
 to 28.9 (12.4) ml/m

2
 during 

the three month follow up period in the larger patient group. Forty nine patients had 

complete ceCMR scans at baseline and follow up and pressure wire studies performed at 

the time of PCI. In these patients the mean left ventricular end systolic volume index 
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(SD) decreased from 31.0 (10.7) ml/m
2 

to 28.0 (12.4) ml/m
2
 over the three month follow 

up period.  

 

In the patient group with an IMR value greater than or equal to the median (35 units) the 

mean (SD) decrease in LVESVI was 3.04 (8.8) ml/m
2
 vs 1.2 (9.7) ml/m

2 
in those with an 

IMR of less than the median (p = 0.49). 

 

In the patient group with a CFIp value of greater than or equal to the median (0.28 units) 

the mean decrease in LVESVI was 3.83 (8.7) ml/m
2
 vs 0.4 (10.1) ml/m

2 
in those with 

CFIp less than the median (p = 0.2). 

 

In the patient group with a Pw of greater than or equal to the median (23 mmHg) the 

mean decrease in LVESVI was 0.31 (9.3) ml/m
2
 vs 4.13 (8.7) ml/m

2
 in those with Pw 

less than the median (p = 0.15). 

 

 
Δ LVESVI (SD) 

≥  median (ml/m
2
) 

Δ LVESVI (SD) 

< median (ml/m
2
) 

P value 

IMR - 3.04 (8.8) - 1.2 (9.7) 0.49 

CFIp - 3.83 (8.7) - 0.4 (10.1) 0.2 

Pw - 0.31 (9.3) - 4.13 (8.7) 0.15 

 

Table 5.12 : A comparison of Δ LVESVI defined by pressure wire data. There is no 

significant difference between the groups. 
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5.12 Discussion 

 

5.12.1The comparison of different cardiac MRI methods of MVO assessment in 

AMI 

 

Researchers have commonly used different CMR methods for assessment of MVO. I 

compared the presence and extent of “early” MVO with “late” MVO. MVO can also be 

assessed by gadolinium enhanced first pass perfusion sequences. The conventional 

sequence for this affords only about half of the spacial resolution of the other methods 

available at the time of my work. It typically does not cover the entire heart but transects 

the LV on three predefined perpendicular planes. For this reason I did not include this in 

this thesis, although since my work has finished, a higher resolution first pass sequence 

has been developed.
104

 

 

I found a very close correlation between “early” and “late” MVO. The fact that the LV 

mass/MVO ratio decreases between “early” and “late” MVO supports the suggestion that 

gadolinium passively diffuses into areas of microvascular damage over time following 

gadolinium injection and that the apparent size of MVO may decrease over a relatively 

short time period. However the differences between the two are minimal and indeed I 

think my work could help to refute the suggestion that localised areas of MVO may be 

missed by “late” MVO in comparison with “early”.  
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Given that the majority of the previous work linking prognosis with MVO has looked at 

“late” MVO
15, 106

 and given the minimal differences between the two groups in my own 

study I think my work supports the assessment that the most appropriate method for 

assessment of MVO at the time of this thesis was the “late” MVO method. Furthermore I 

feel this supports the use of this method in this thesis. 

 

5.12.2The relationship between pressure wire indices of microvascular obstruction 

and CMR data at baseline and follow-up 

 

Microcirculatory injury is a determinant of left ventricular function
16, 185

 and prognosis 

following acute MI.
15, 111

 While emergency PCI represents one of the first opportunities 

to evaluate and treat an acute MI patient the optimal method for evaluating the 

microcirculation in this setting is uncertain.
23

 

 

The key findings in this aspect of my thesis are as follows: 

 

Firstly, in a broad range of STEMI patients undergoing emergency PCI, an invasive 

measure of microvascular function, the IMR calculated immediately after PCI, was 

linked with the pathological nature of MI, since IMR was higher in patients with “late” 

MVO compared to those without “late” MVO, as revealed by ceCMR.  

 

Secondly, IMR independently predicted the severity of MI as revealed by infarct volume 

and left ventricular function 2 days and 3 months post-MI.  
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Thirdly, IMR, but not coronary wedge pressure or pressure derived collateral flow index, 

independently predicted infarct size 2 days and 3 months post MI. 

 

Fourthly, IMR, but not coronary wedge pressure or pressure derived collateral flow index 

independently predicted transmurality score at baseline and follow up. 

 

Finally, no pressure wire indices of microvascular injury were associated with adverse 

ventricular remodeling.  

 

As discussed previously IMR has been subject to preclinical and clinical validation, and 

these studies have demonstrated that IMR measurement is largely independent of 

variations in haemodynamic state.
130, 131, 137

 The seminal study by Fearon et al 
47

 

confirmed the IMR to be superior to other commonly used clinical markers of 

microvascular dysfunction for predicting left ventricular function assessed by 

echocardiography. 

 

This study is the first to compare invasively acquired measurements of microvascular 

injury using the coronary pressure wire with left ventricular function and MVO assessed 

by paired ceCMR studies obtained acutely and after longer-term follow-up.  

 

Contrast enhanced CMR is recognized as the current non-invasive gold standard for 

assessment of coronary microvascular damage and left ventricular function and 
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dimensions.
183

 A more recent study by Hirsch et al 
186

 quantified coronary blood flow 

characteristics using an intracoronary Doppler wire and related these findings to 

microvascular injury assessed by ceCMR. Twenty-seven anterior STEMI patients 

underwent repeat cardiac catheterization 4 - 8 days post primary PCI with ceCMR 

performed the preceding day. This study demonstrated that the extent of MVO was a 

multivariable predictor of abnormal coronary flow velocity characteristics, providing 

further functional evidence of the validity of ceCMR as a non-invasive tool to assess 

microcirculatory function. These observations complement those in the current study. 

 

My findings complement those of the other previously published studies in this field in a 

number of important ways. My study had a larger sample size and included patients with 

a broader range of acute MI types (e.g. non-anterior STEMI). The time to presentation 

from the onset of symptoms for patients in our study was less restricted than in previous 

studies which excluded patients with symptoms > 12 h. 
47, 141, 187

 

 

This work is also the first to compare the pressure wire indices of microvascular 

dysfunction with myocardial damage at two distinct time points using ceCMR as the gold 

standard reference point. That IMR remained a significant independent predictor of 

decreased ejection fraction and increased infarct volume out to 3 months follow up 

further adds weight to the validity of the measurement.  

 

This is the first study to compare pressure wire indices of microvascular damage with 

transmurality score assessed by ceCMR. Given that IMR is an independent predictor of 
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infarct volumes at baseline and follow up. Again I feel that the relationship of IMR, but 

not distal coronary wedge pressure or pressure derived collateral flow index, to 

transmurality score strengthens the case that IMR is a potential marker of subsequent 

myocardial injury which is available at the time of emergency PCI.  

 

The pressure wire indices of microvascular dysfunction showed no relationship with 

adverse ventricular remodeling as assessed by ceCMR. The study was however powered 

to assess a difference in each MVO group and to look principally at the relationship 

between the pressure wire indices of microvascular dysfunction with ejection fraction and 

infarct volumes at baseline and follow up. There is nothing in the published literature 

about the relationship of IMR with adverse ventricular remodeling. The majority of 

patients in this study as with the other published literature had an improvement in their 

left ventricular systolic volume index. Therefore, given the small numbers of patients 

whom developed adverse ventricular remodeling, it is perhaps predictable that there was 

no relationship. I feel that a much larger patient population would be needed to try and 

exhibit such a finding.  

 

Overall I think that these results extend the potential clinical relevance of IMR 

measurement to a larger group of patients with myocardial infarction and compliment the 

work that has gone before looking at IMR in the STEMI population. The median IMR in 

my study population was 35 units which is similar to that reported by Fearon et al 

(median IMR 32 units). My findings are consistent with and extend the results of these 

earlier studies and support the notion that standardized measurement of IMR may be 
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valid in clinical practice. Consequently, my results support the notion that invasive 

measures of microvascular function, specifically IMR, may be useful clinical tools to 

predict the initial severity of myocardial injury.   

 

Only a minority of patients had a history of hypertension or diabetes and patients with 

previous MI in the culprit artery territory were not included. Therefore, the microvascular 

dysfunction observed in our patients was most likely influenced by the effects of acute 

coronary thrombosis and reperfusion, rather than the effects of chronic microvascular 

disease related to pre-existing cardiac disease.  

 

5.13 Limitations 

 

There are also some important limitations in this aspect of the study. MVO is a dynamic 

phenomenon following coronary reperfusion and MVO which may be apparent on 

ceCMR initially may resolve by 48 h. In fact, MVO which is detectable 2 days post-MI is 

more correctly termed ‘persistent’ MVO. The dynamic nature of MVO may in part 

explain why elevated IMR values >35 may occur in some patients with no visible MVO 

on ceCMR scanning two days later.
188

 Serial ceCMR up to 48 h post-MI would be 

required to answer this question. The time point used to assess MVO by ceCMR is 

consistent with other studies in this subject and MVO measured at this time-point is an 

adverse prognostic marker .
15
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The study is limited by its small sample size, however IMR remains a significant 

predictor of myocardial damage. A larger sample size may have resulted in other 

predictors becoming significant. Larger studies will be needed to determine whether IMR 

can predict clinical outcomes (see Appendix V). 

 

5.14 Conclusions 

 

The IMR is a simple wire based technique that can provide a quantitative assessment of 

microvascular function at the time of emergency PCI. We have shown that an elevated 

IMR is linked to MVO as revealed by ceCMR. MVO independently predicts long term 

prognosis following myocardial infarction. Accordingly we suggest measurement of IMR 

represents a new approach to risk assessment at the very earliest stage of acute MI 

management, and potentially, therefore enables triage of higher risk patients to more 

intensive therapy. 
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Chapter 6: A comparison of Index of 

Microcirculatory resistance prior to and 

following stent implantation in emergency 

PCI for STEMI 
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6.1 Introduction 

 

Emergency percutaneous coronary intervention (PCI) is established as the treatment of 

choice in patients with ST segment elevation myocardial infarction (STEMI). Restoration 

of epicardial arterial flow and tissue level perfusion are the twin goals of this treatment. 

However despite achieving epicardial arterial patency in the majority of patients a 

significant proportion do not achieve complete myocardial reperfusion
26, 182

.  The 

coronary microvasculature has been recognised as an important determinant of 

myocardial perfusion in the setting of STEMI. A variety of pathophysiological factors are 

thought to contribute to coronary microvasculature injury,
25, 36

 including downstream 

microembolization of plaque material and thrombus at the time of balloon angioplasty or 

stenting, which if severe can lead to the phenomenon of no reflow. Autopsy studies have 

suggested that “clogging” of the microvasculature does occur during PCI as a result of 

downstream embolisation. 
29, 182

 

 

The status of the coronary microvasculature at the time of emergency PCI for STEMI can 

be assessed by measuring the index of microcirculatory resistance (IMR) using a pressure 

and temperature sensing coronary guidewire. IMR measured at the time of emergency 

PCI has been shown to be a predictor of the extent of subsequent myocardial damage.
180

 

When coronary wedge pressure is included in the calculation of IMR, accounting for 

collateral flow, it has been shown to be independent of any residual epicardial stenosis 

137
. Accordingly any change in IMR pre and post stenting will reflect changes in 

microcirculatory resistance rather than any effect of stenting on the target epicardial 
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artery stenosis. For example, an increase in IMR post stenting could potentially result 

from downstream embolisation. We therefore investigated whether stent implantation at 

the time of emergency PCI for STEMI altered IMR and whether any changes in IMR pre 

and post stenting correlated with the extent of myocardial damage assessed using 

biomarkers and cardiac MRI. 

 

6.2 Methods 

 

The study population included patients with STEMI referred to our institution for either 

primary PCI or rescue PCI after failed thrombolytic therapy or convalescent PCI within 

24 h of successful thrombolytic therapy. Patients were prospectively enrolled when the 

following inclusion criteria were present: (1) age  18 years with electrocardiographic 

and symptomatic evidence of acute STEMI and in whom emergency stenting was 

intended, (2) written informed consent. Exclusion criteria were: (1) contraindications to 

adenosine, (2) cardiogenic shock. (3) Previous MI in the index territory (4) pregnancy. 

The research protocol was approved by the Institutional Review Board and informed 

consent was obtained from each patient. 

 

6.2.1 Physiological assessment 

 

PCI was performed in line with current international guidelines with glycoprotein IIb/IIIa 

inhibitors and aspiration thrombectomy used at the discretion of the primary operator. In 

the majority of cases the coronary pressure/temperature sensitive guidewire  was used as 
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the primary guide-wire. The guide-wire was calibrated outside the body, equalized within 

the guide catheter with the pressure sensor positioned at the ostium of the guide catheter, 

and then advanced into the distal third of the culprit artery. When indicated the guide-

wire was disconnected from the analyser to allow the delivery of the various catheter 

devices used during the PCI and wiped with a damp sterile swab before reconnection.  

 

After successful guide-wire passage into the infarct related artery beyond the 

stenosis/occlusion either balloon angioplasty or aspiration thrombectomy was performed 

as indicated. If the operating cardiologist did not think aspiration thrombectomy was 

indicated Pw was recorded during balloon pre-dilatation. If aspiration thrombectomy was 

performed Pw was recorded immediately following this by occlusive balloon inflation 

within the vessel at the site of proposed stenting. Immediately thereafter and before 

stenting thermodilution  derived mean transit times were recorded at hyperaemia as 

previously described 
131

. Adenosine 140 μg/kg/min was used to induce maximal 

hyperaemia via a large peripheral vein. Meticulous attention was paid to guide catheter 

engagement. Mean aortic pressure (Pa) and mean distal coronary pressure (Pd) were 

measured simultaneously during hyperaemia.  

 

Ten minutes following stent delivery thermodilution derived mean transit times were 

measured again, Pa and Pd were recorded and Pw was obtained following inflation of a 

non-compliant balloon within the stented segment. 

 

IMR was calculated using the following equations; 
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1. IMR true =Pa.Tmn [(Pd-Pw)/(Pa-Pw)] 
137

 

2. IMR app= Pd.Tmn 
130

 

 

6.2.3 CMR protocol 

 

As described in the chapter 3. 

 

6.2.3 CMR analysis 

 

Left ventricular mass, volume and function analyses were performed by a cardiologist 

experienced in CMR who was blinded to all clinical and pressure wire data. Results were 

obtained using Argus Dynamic Signal software (Siemens, Erlangen, Germany) as 

previously described.  

 

6.2.4 Angiographic analysis 

 

TIMI flow grade was recorded pre and post stenting and corrected TIMI frame count 

(cTFC) after stenting by an experienced independent observer(JL).  

 

6.2.5 Statistical analysis 
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Statistical analysis was performed on MINITAB 16 software. The IMR data was non-

normally distributed therefore is expressed as median [IQR] and was log transformed 

prior to statistical comparison. FFR, cTFC, TIMI flow grade, peak troponin I and LVEF 

were normally distributed and described as mean (standard deviation). The paired t test 

and the two sample t test were used to test for differences in the normally distributed 

data. A p value of less the 0.05 was taken as significant. 

 

6.3 Results 

 

6.3.1 Patient characteristics 

 

Forty seven patients were enrolled in this study and their demographics and clinical 

characteristics are presented in Table 6.1. Successful physiological measurements were 

made all patients.  

 

Variable  

Mean Age (SD) 58.7 (10.5) 

Male Gender 
* 
(%) 44 (88) 

Smoker 
*
(%) 28 (56) 

Hypertension 
* 
(%)

 
15 (30) 

Dyspilidaemia 
* 
(%)

 
14 (28) 

Diabetes 
* 
(%)

 
2 (4) 
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Table 6.1: Patient demographics. 
* 
n = 47 

 

The culprit artery was the right coronary in 17 cases, the left anterior descending in 26 

cases and the circumflex in 4 cases. The indications were primary PCI in 25 cases, rescue 

PCI in 12 cases and convalescent PCI (defined as PCI within 24h of successful 

thrombolytic therapy) in 10 cases. The median time from onset of pain to reperfusion (by 

stenting or thrombolysis) was 4.3 hours.  

 

All patents were preloaded with 300mg of Clopidogrel and aspirin. Aspiration 

thrombectomy was performed in 22 (46%) cases and glycoprotein 2b3a inhibitor was 

given in 31 (66%) cases. The mean number of stents implanted was 1.4 per patient. In 32 

cases bare metal stents were inserted, drug eluting stents in 15 cases. 

 

6.3.2 IMRtrue , IMRapp and TIMI flow grade pre and post stenting (table 6.2) 

 

There was a reduction in IMRapp following stenting (41.3[28.3-66.9] to 32.3[52.6]; p = 

0.02) but when collateral flow was accounted for (IMRtrue) there was no change (36.5 

[24.7 – 62.6] to 30.5 [22.4 – 51.5] ; p = 0.35). When collateral flow was accounted for 

only prior to stenting but not afterwards following the resolution of the epicardial arterial 

stenosis the change reduced further (36.5 [24.7 – 62.6] to 32.3[52.6] ; p = 0.82). 

 

However FFR improved significantly following stenting from 0.78 (0.14) to 0.91 (0.07); 

p = < 0.001, as did TIMI flow grade from 1.3 (1.2) to 2.8 (0.4); p <0.001.   
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 Pre stenting Post stenting P value 

IMR app 41.3 [28.8 – 52.6] 32.3 [22.8-52.6] 0.02 

IMR true 36.5 [24.7 – 62.6] 30.5 [22.4 – 51.5] 0.35 

IMR true/IMR app 36.5 [24.7 – 62.6] 32.3 [22.8 – 52.6] 0.82 

FFR 0.78 (0.14) 0.91 (0.07) >0.001 

TFG 1.3 (1.2) 2.8 (0.4) >0.001 

 

Table 6.2: The comparison of pressure wire data and TIMI flow grade before and 

after stenting. IMR is presented a median [IQR] and FFR and TFG mean (SD) 

 

 

6.3.3 Influence of adjunctive therapy on change in IMR 

 

There were no significant differences in IMR pre or post stenting in those who did 

(p=0.73) or did not receive GP2b3a inhibitors (p=0.11). Similarly there were no 

differences in IMR pre and post stenting in those who did (p = 0.83) or did not undergo 

aspiration thrombectomy (p=0.9).  

 

6.3.4 Influence of change in IMR on evidence of myocardial damage (Table 6.3) 

 

The IMR decreased in 24 patients and increased in 23 patients. Forty three patients 

underwent baseline CMR at 2 day and 37 had follow up scanning at 2 months. The LVEF 

at 2 days was significantly lower in those in whom IMR increased (p=0.001) but this 

difference had resolved by 2 months. There was a trend towards higher infarct volumes in 
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the group in which IMR increased both at baseline and at follow up but this did not meet 

statistical significance. Peak troponin I was significantly higher in those in whom IMR 

increased (p = 0.03) but there was no difference in ECG ST segment resolution index (p 

= 0.36) or cTFC (p = 0.23). 

 IMR increase IMR decrease P value 

LVEF at baseline (%) 49.5 (9.4) 60.9 (11.6) 0.001 

LVEF at 3 months (%) 58.9 (13.3) 62.4 (12.3) 0.41 

Infarct size at baseline (%) 22.6(17.4) 15 (13.4) 0.15 

Infarct size at 3 months (%) 13.7 (13) 9.4(10.2) 0.31 

Troponin I (units) 67 (65) 34.6(25) 0.03 

STR index (%) 63.6(36.6) 73.4(31.4) 0.23 

cTFC 20.1(12.4) 16.4(6.4) 0.23 

 

Table 6.3: The differences between indicators of myocardial damage grouped 

according to change in IMR following emergency PCI for STEMI. All values are 

mean (SD). 

 

 

6.3.5 The influence of angiographic no reflow in change in IMR 

 

 

I defined angiographic no reflow as a reduction in TIMI flow grade at any point during 

the emergency PCI procedure. This occurred in 11 cases altogether. The mean change in 

IMR in that group was 5.3 (29.4) and the change in those with no angiographic evidence 

of no-reflow was minus 2.6 (16.6). There was no significant difference between the two 

groups (p=0.46) 
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6.4 Discussion 

 

Myocardial microvascular obstruction was first described as no – reflow phenomenon in 

1974
24

 . Distal embolisation of atherosclerotic material has been recognised as an 

important factor in decreased myocardial perfusion in the setting of ST elevation 

myocardial infarction. This has been shown by the injection of microspheres to represent 

atherosclerotic debris in the experimental canine setting 
27

 and was first noted in autopsy 

of 25 cases of sudden death due to acute coronary thrombosis. Falk noted that in 73% of 

cases there was fragmentation of the proximal thrombus with peripheral embolisation 

causing micro-embolic occlusion of the small intra-myocardial arterioles associated with 

microinfarcts.
28

 A further autopsy study confirmed this in patients who died within 30 

days of thrombolysis or balloon angioplasty for treatment of ST – elevation myocardial 

infarction.
29

Initial studies using  distal protection devices confirmed high number of 

patients in whom this was present and suggested improvement in surrogate markers of 

microvascular perfusion.
30

 

 

Hence it was hypothesized, distal protection devices that prevent embolisation during 

primary PCI may improve distal perfusion and improve patient outcomes
140

. This concept 

however has not been proven in the numerous randomised controlled trials which 

remained inconclusive despite capture of atheromatous material and the DEDICATION 

study further confirmed that the routine use of distal protection by a filterwire system 

during primary PCI did not seem to improve microvascular perfusion, limit infarct size, 

or reduce the occurrence of MACCE.
32-34
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Our study is the first to compare invasive assessment of the coronary microvasculature at 

the beginning and end of an emergency PCI procedure, prior to and following mechanical 

reperfusion. This study therefore suggests that stenting itself does not have a detrimental 

effect on the coronary microvasculature despite a significant improvement in TIMI flow 

grade.  Given that the postulated detrimental effect of mechanical revascularisation in this 

patient population is caused by downstream embolisation 
30

 this may explain why 

previous studies looking at distal protection devices have not met their predefined 

endpoints. Furthermore, given that there is not a significant improvement in 

microvascular resistance following revascularisation of the epicardial artery despite a 

significant improvement in TIMI flow grade, we feel our study adds to the body of 

evidence that revascularisation alone is not sufficient to achieve optimal myocardial 

tissue level reperfusion following STEMI. 
140

  

 

Our findings are broadly in keeping with two recent studies, in stable patients, which 

have shown that when collateral flow is accounted for prior to PCI IMR does not change 

following stent implantation.
138, 189

 An interesting observation is that IMR was higher in 

our study reflecting the complex pathophysiological influences on the coronary 

microvasculature in the setting of STEMI as opposed to the stable setting.  

 

We have previously shown that IMR is a powerful independent predictor of myocardial 

damage assessed by CMR
180

. We have shown here that although a peri-procedural 
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increase in IMR is associated with a higher peak troponin I it is not associated with 

longer-term left ventricular damage as assessed by CMR.  

 

6.5 Limitations 

 

There are some important limitations in our study. Firstly the authors recognise that 

microvascular damage in this context is a complex pathophysiological process which is 

most likely a dynamic phenomenon around the peri-infarct period. Our study only looked 

at two time-points within this process. We are therefore only able to provide a “snapshot” 

rather than an overview of the status of the microvasculature, and therefore leave 

questions unanswered. However, given that coronary stenting is the cornerstone of our 

treatment of STEMI
13

 we feel that knowledge that this important intervention does not 

significant change the invasive indices of microvascular function is useful information. 

 

This study was powered to look for an overall change in IMR prior to and following stent 

implantation for emergency PCI. Although the sub group analysis such as angiographic 

evidence of no reflow indicates some interesting trends this aspect of the paper is limited 

by the small numbers involved in each sub-group. A larger patient population would be 

needed to be able to make definitive statements regarding the sub group analysis. 

 

We included 3 patient groups in our study. We found that the IMR was significantly 

lower in those who had PCI within 24h of successful thrombolytic therapy than in the 
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rescue or primary PCI groups. This may represent to time lapse between the acute event 

and the invasive physiological assessment. 

 

6.6 Conclusions 

 

Microvascular resistance does not change significantly following emergency stenting in 

patients with ST elevation myocardial infarction. This suggests that stent deployment 

itself does not significantly alter the status of the coronary microvasculature, and 

furthermore, that mechanical reperfusion of the infarct related epicardial artery does not 

achieve optimal treatment of the coronary microcirculation.  
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7.1 Background 

Independent interrogation of the coronary microvasculature is possible by the 

measurement of IMR. But, correlations between IMR and other more conventional and 

validated indices associated with microvascular and myocardial dysfunction following 

myocardial infarction is limited. We therefore investigated relationship between IMR and 

tradition indices of microvascular perfusion and myocardial injury in patients with re-

perfused STEMI treated with emergency PCI  

 

7.2 Methods 

Patients underwent comprehensive physiological assessment using a coronary 

pressure/temperature tipped guide-wire following emergency PCI for STEMI. IMR was 

calculated using Pd x Tmn, Pw was recorded and CFIp was calculated using Pw/Pa. 

Corrected TIMI frame count, TIMI flow grade and ST segment resolution index were 

calculated by a blinded observer(JL). Peak troponin I was recorded. 

 

 

7.3 Results 

 

7.3.1 A comparison of pressure wire data with TIMI flow grade prior to PCI 

 

TIMI flow 

grade 
n 

Median IMR 

[IQR] 

Median CFIp 

[IQR] 

Median Pw 

[IQR] 

0 28 37.6 [26.4-56] 0.27 [0.2-0.33] 23 [15.3-30.7] 
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1 20 36.3 [23.8-64.4] 0.26 [0.21-0.36] 21 [17-25.7] 

2 11 30.0 [15.3-49] 0.28 [0.16-0.34]
* 

25 [16.2-27.7]
* 

3 10 24.9 [17.7-34.8] 0.28 [0.19-0.35] 23 [16-33] 

 

Table 7.1. Pressure wire indices following PCI grouped by TIMI flow grade prior to 

PCI. 
* 

(n=10) Comparison between each group using the Mann Whitney test for 

comparison on non-normal data. 

 

IMR was significant lower in patients with TIMI 3 flow compared to those with TIMI 0 

flow (p=0.009) and those with TIMI 1 flow (p=0.04). There were no other significant 

differences between groups. There were no significant differences in CFIp or distal 

coronary wedge pressure according to TIMI flow grade. 

 

7.3.2 A comparison between the invasive physiological indices of MVO and 

corrected TIMI frame count immediately after emergency PCI 

 

Increased IMR correlated closely with cTFC, r = 0.36, p = 0.002. Both CFIp and Pw did 

not correlate with cTFC, r = -0.11, p = 0.37 and, r = -0.07, p = 0.56 respectively. 
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Figure 7.1: Scatterplot with regression of cTFC vs IMR.
* 

IMR was log transformed 

prior to analysis. 

 

7.3.3 A comparison of pressure wire data with ECG ST segment resolution index 

 

ST segment resolution (STR) was calculated as the percent resolution in the single lead 

with the maximum baseline ST segment elevation as described in the methods section. 

These data were divided into ST segment resolution of greater than or less than 70% as 

previously described. Electrocardiographic data was available for 69 patients.  The mean 

(SD) per cent STR was 68.8 (30.1) with 30 (43%) patients having an STR of less than 

70% and 39 (57%) having STR greater than 70% following reperfusion.  

 

These results are contained in table 7.2 below. 



200 

 

 

 STR < 70% STR > 70% P value 

Median IMR [IQR] 38.7 [30.1-55.5] 28 [20.1-43.4] 0.03 

Median CFIp [IQR] 0.26 [0.19-0.31] 0.28 [0.2-0.34] 0.51 

Median Pw [IQR] 22 [16.7-27] 24 [16-30.3] 0.56 

 

Table 7.2: Pressure wire data assessed by ST segment resolution index. The Mann 

Whitney test was used to compare non normal data. A p value of <0.05 was taken as 

significant. 

 

IMR was significantly lower in those with an ST segment resolution index of greater than 

70%. There were no significant differences in CFIp or Pw. 

 

7.3.4 Comparison between physiological assessment of MVO following PCI and 

peak troponin I 

 

In total 69 patients had their peak troponin I measured as described. The range was 1.39 

to 606 ng/ml and the median [IQR] was 33 [16.9-67.0]. Given the non-normal 

distribution of the data all was log transformed prior to comparison. Peak troponin I did 

not correlate with either distal coronary wedge pressure (r = 0.16;p = 0.2) of CFIp (r = 

0.09;p = 0.45). However IMR post procedure did correlate with TnI (r=0.46;p<0.001).  
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Figure7.2: Scatterplot of IMR vs peak troponin I (r=0.46;p<0.001) 

 

 

7.3.5 The influence on time to presentation and reperfusion on pressure wire data 

 

There were no significant correlations between IMR, CFIp and Pw and the time to 

presentation; r=0.14 p=0.26, r=0.09 p=0.49 and r=0.06 p=0.64 respectively. When total 

time from symptom onset to reperfusion (either by thrombolysis or PCI) was taken into 

account IMR, but not CFIp or Pw correlated significantly, r=0.25 p=0.039. 

 

7.3.6 A comparison of pressure wire data with method of AMI reperfusion 
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Median IMR (IQR) was 39.8 (30 -55) in those whom underwent rescue PCI, 35.5 (21-60) 

in those whom underwent primary PCI and 24.4 (17-35) in those in whom PCI was 

performed within 24 hours of successful reperfusion therapy (prognostic). There was a 

significant difference between the rescue and prognostic groups (p=0.009) and the 

primary and prognostic groups (p=0.04) 

 

Median CFIp [IQR] was 0.27 [0.20 – 0.33] in those whom underwent treatment for 

STEMI with rescue PCI, 0.27 [0.23 – 0.33] and 0.28 [0.18-0.34] in those in whom PCI 

was performed within 24 hours of successful reperfusion therapy (prognostic). There was 

no significant difference between the groups. 

 

Median Pw [IQR] was 23 [14.5-30] in those whom underwent rescue PCI, 22[17.5-30.2] 

in those whom had primary PCI and 25 [16.0-30] in those in whom PCI was performed 

within 24 hours of successful reperfusion therapy (prognostic). There was no significant 

difference between the groups. 
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Figure 7.3: Median IMR and Pw in each of the PCI groups 

 

 

 

Nature of PCI Median IMR (IQR) Infarct volume (SD) mls 

Primary 35.5 (21-60) 25 (24) 

Rescue 39.8 (30-55) 29 (24) 

Prognostic 24.4 (17-35) 13 (15) 

 

Table 7.3: median IMR and with mean infarct volumes at 48h by type of PCI 
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7.4 Discussion 

 

7.4.1 The relationship between IMR and other indices for microvascular damage 

available directly after emergency PCI 

 

Interrogation of the coronary microvasculature is possible by the measurement of 

IMR.
131, 137

 But, correlations between IMR and other more conventional and validated 

indices associated with microvascular damage in the context of STEMI is limited. In this 

aspect of my thesis I will discuss the relationship between IMR and the “traditionally” 

used indices of microvascular perfusion with patients with re-perfused STEMI treated 

with emergency PCI. 

 

Electrocardiographic ST segment resolution following reperfusion is known to be an 

indirect marker is microvascular perfusion and discussed is discussed previously in this 

work. In this thesis the median IMR was significantly higher in those who did not achieve 

ST resolution of 70%.  

 

There was a close correlation between IMR and CTFC post PCI and a close correlation 

between IMR and CFIp, and IMR and Pw following intervention.  

 

Fearon et al compared IMR, ST segment resolution, myocardial blush grade, cTFC and 

CFR in their ability to predict wall motion injury assessed echocardiographically in 29 

patients. They did not, however, directly compare these indices.
47
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Sezer at el compared IMR with Pw, CFIp, CFR, ST segment resolution and MBG in 42 

patients 48h following successful primary PCI.
190

  

 

My work in a larger group of patients found a close correlation between IMR, Pw and 

CFIp similar to Sezer et al. I believe, at the time of writing, that this is a largest study 

directly comparing IMR with these surrogate markers of microvascular damage following 

emergency PCI.  I believe that my work adds to that of Sezer et al by implying that the 

relationship between IMR and the surrogate markers for tissue perfusion indicate that the 

impairment of microvascular perfusion is most likely due to increased microvascular 

resistance or at least indicates that increased microvascular resistance following 

emergency PCI is one of the most important mechanisms in impairment of microvascular 

perfusion.  

 

I think this aspect of my thesis adds to the body of evidence that IMR could prove to be a 

valuable and robust modality in evaluating the coronary microcirculation following PCI.  

 

7.4.2 The relationship between IMR, time to reperfusion and method of reperfusion 

 

Meta-analysis has revealed that primary PCI is superior to thrombolysis in acute 

myocardial infarction.
13

 There has been a direct relationship between time to treatment 

with thrombolysis for STEMI and mortality.
191, 192

 It has been suggested that despite 

longer time to treatment seen generally with primary PCI, mortality is not as time 
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dependent as seen with thrombolysis.
193

 One suggestion is that thrombolysis is associated 

with slower and incomplete epicardial recanalisation in combination with downstream 

micro-embolisation of thrombotic and vasoactive material.
194

 

 

I therefore investigated the link between time to reperfusion and IMR and the differences 

in IMR depending on the method of reperfusion.  

 

There was a link between IMR and time to reperfusion but not with CFIp or distal 

coronary wedge pressure. Interestingly there was no link between time of symptom onset 

to time of presentation and IMR. Although the link between IMR and time to reperfusion 

is weakly significant (p = 0.039), animal models have shown that duration of coronary 

artery occlusion is directly related to infarct size
195

 therefore I feel it does further 

strengthen the link between IMR and extent of myocardial injury. 

 

Within my patient population the median IMR was higher in those whom underwent 

rescue PCI in comparison to primary PCI although this was not statistically significant. I 

think this is understandable, primarily given that by definition these patients have not re-

perfused electrocardiographically therefore have their coronary artery occluded for a 

longer period and therefore would be expected to have larger infarcts. This trend is 

confirmed by infarct volume analysis on the 48h CMR scanning. 

 

Both IMR and infarct volumes are significantly reduced in the patients whom underwent 

prognostic PCI within 24h of re-perfused STEMI with thrombolysis. The reduction in 
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IMR is most likely due to the time delay between electrocardiographic reperfusion and 

PCI. I accept this as a limitation within the study. 

 

Overall however I think this aspect of the thesis emphasizes the link between IMR and 

extent of myocardial injury. 

 

 

7.4.3 The relationship between pressure wire derived indices of microvascular 

damage and peak troponin I 

 

In my study I found a close correlation between peak troponin I and IMR. Elevated 

cardiac troponin in patients with ST elevation and non ST elevation myocardial infarction 

is associated with adverse outcomes, including a higher incidence of congestive heart 

failure, shock, and death. Large clinical trials have revealed the important prognostic role 

of troponin in this patient population. 
196-198

 The Global Utilisation of Streptokinase and 

Tissue Plasminogen Activator for Occluded Arteries (GUSTO) II reported that in patients 

with STEMI, there was a higher risk of 30-day mortality in groups of patients with a 

positive admission troponin T compared to those in whom it was negative ( 13.0% and 

4.7% respectively).
196

  This was confirmed in a GUSTO sub-study which enrolled over 

12000 patients. In this study elevated troponin T was associated with a worse early and 

long term prognosis. 
197
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The use of troponin has now become widespread in the diagnosis of myocardial 

infarction, its role as a biochemical marker of infarct size has also become well validated 

by using SPECT imaging 
199

 and more recently in a large study (n = 1237) correlating 

peak troponin T with scintigraphically determined myocardial infarct size in patients with 

STEMI undergoing contemporary primary percutaneous intervention
200

. 

 

Younger et al found that both 12 hour and 72 hour troponin I concentration correlated 

with infarct size as assessed by ceCMR (r = 0.56, p = 0.0003; r = 0.62, p<0.0001 

respectively). 

 

The close relationship between IMR and peak troponin I in my study therefore adds to 

the hypothesis that IMR is a robust marker of myocardial damage when measured 

directly after PCI. 

 

7.5 Conclusions 

 

IMR calculated following STEMI correlated closely with tradition angiographic, pressure 

wire and biochemical markers of microvascular and myocardial damage following 

STEMI. This adds to the growing body of evidence that IMR is a robust marker of 

myocardial damage following STEMI.  
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Chapter 8: Advances in cardiac imaging 

in STEMI survivors: diagnostic utility of 

cardiac magnetic resonance 
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8.1 Introduction 

Clinical guidelines recommend imaging of the heart for risk assessment after ST 

elevation myocardial infarction (STEMI)
68

, and cardiac imaging is required for the 

assessment of post MI complications including left ventricular dysfunction. 

Cardiac magnetic resonance imaging (CMR) is a powerful diagnostic method and 

provides prognostically relevant information
201

. In addition to being useful for 

quantifying heart function, volumes and viability after acute MI
85, 87, 202

, CMR can reveal 

myocardial injury characteristics, such as microvascular obstruction (MVO) and infarct 

size
15

. CMR within the first week post-MI is also safe but there is limited evidence on the 

safety and feasibility of the test in the heterogeneous group of patients who survive 

STEMI in the very early post infarct period.  

Contrast-enhanced CMR (ceCMR) provides diagnostic information which collectively 

cannot be provided by any other single imaging test. Although echocardiography is the 

standard of care for imaging post-MI it is limited by acoustic shadows and reveals little 

about extra-cardiac disease. Both forms of imaging should be performed and interpreted 

by trained individuals. Historically, CMR has generally not been feasible in STEMI 

patients because of logistical and cost issues, however it is becoming increasingly 

available in regional hospitals, including those which provide primary percutaneous 

coronary intervention (PCI). 
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In order to better understand the potential role of CMR for early risk assessment in 

STEMI, we prospectively studied the feasibility and diagnostic utility of CMR in a broad 

range of invasively managed STEMI patients treated in two different hospital settings. 

We included patients with angiographically incomplete myocardial reperfusion, heart 

failure, arrhythmia and those post thrombolysis. Furthermore we hypothesised that the 

utility of CMR might be enhanced by disclosure of clinically relevant cardiac findings in 

the early post infarct period as well as incidental non-cardiac findings
203

, provided these 

observations do not also trigger unnecessary tests or interventions. In addition we studied 

the clinical significance between early CMR findings and adverse cardiac events within 

30 days of discharge.  

 

8.2 Methods 

8.2.1 Patient population 

Two hundred patients with STEMI who underwent primary, rescue or convalescent PCI 

were referred for a CMR scan. Exclusion criteria were : lack of informed consent, lack 

scanner availability, standard contra-indications to MRI including an estimated 

glomerular filtration rate < 30 ml/min/1.73 m
2
 or on-going hemodynamic instability, 

defined as patients receiving support with intra-aortic balloon counter pulsation, 

temporary pacing wire or inotropic therapy. Patients with ventricular and supraventricular 
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arrhythmia were considered if the cardiac rhythm had been stable for > 6 hours. In all 

cases the scan was performed pre-discharge. The research was approved by the West of 

Scotland Ethics Committee and Clinical Governance office of the National Waiting 

Times Board. standard contra-indications to MRI including an estimated glomerular 

filtration rate < 30 ml/min/1.73 m
2
. 

STEMI was defined according to a history of symptoms consistent with acute myocardial 

ischemia and ST-segment elevation on the electrocardiogram (ECG) associated with a 

typical rise of troponin I (TnI) concentration
68

. Acute heart failure was diagnosed 

according to Killip class
172

. 

Acute MI management followed contemporary guidelines
68

. Aspiration thrombectomy, 

direct stenting, anti-thrombotic drugs and other therapies were administered according to 

local protocols. Pulse pressure was recorded at the beginning of the PCI. The 

Thrombolysis in Myocardial Infarction (TIMI) flow classification was used to grade 

culprit artery flow at initial angiography and at the end of the procedure
58

. 

8.2.2 Follow-up 

Patients were followed-up for 30 days from hospital discharge to detect early adverse 

events and assess for an association between cardiac events and early CMR findings. An 

adverse cardiac event was defined as death or an unplanned hospitalization for heart 

failure or an acute coronary syndrome (ACS) in line with contemporary criteria
 68

. The 

diagnosis was established based on a comprehensive review of hospital and general 
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practitioner records made by attending clinicians who were not members of the research 

team. 

8.2.3 CMR scans 

CMR was performed under medical supervision early after admission to the Coronary 

Care Unit in order to facilitate patient management as previously described.  

8.2.4 CMR image analysis and reporting 

All MR images were analyzed on a Siemens workstation by a trained cardiologist with at 

least 2 years MRI experience. Left ventricular (LV) dimensions, volumes and ejection 

fraction were quantified using computer assisted planimetry. A CMR report was written 

into the case notes immediately after the scan to facilitate early in-patient management. 

8.2.5 Incidental findings 

An incidental finding is a previously unknown medical problem which is unrelated to the 

condition being studied. In our study, we defined a clinically significant cardiac or non-

cardiac incidental finding as one which triggered a change in management (e.g. change in 

treatment) by the attending cardiologist. The field of view included the upper abdomen, 

including the liver, kidneys and spleen. We adopted a screening approach to the 

diagnostic evaluation of extra-cardiac disease based on the limitations of the scan being 

primary for assessment of the myocardium. 
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Our approach was motivated on a desire to detect clinically-significant pathology (e.g. a 

lung cancer) should ever it be present in the imaging field of view. The trade-off for this 

approach is the likelihood of reporting observations that are not clinically significant and 

the risk that such observations might trigger additional tests. Our approach to the 

interpretation of non-cardiac findings therefore involved a low threshold for a radiology 

consult and defined criteria for doing so. 

The presence of a lung nodule triggered a radiological consult. Isolated fibrotic change of 

lung parenchyma or pulmonary plaque was not considered as clinically significant. A 

liver mass > 2cm was taken as an indication for ultrasonography. Splenomegaly was 

defined as greater than 11 cm at its largest dimension and any renal mass was referred for 

a radiology consult due to the potential for renal cell carcinoma to present as an 

incidental finding at an early stage. Left ventricular thrombus was diagnosed based on 

endocardial cardiac mass which did not enhance with first pass or late gadolinium 

enhanced CMR.   

8.2.6 Biochemical assessment of infarct size 

Troponin I was measured (AxSYM; Abbott) as a biochemical measure of infarct size.  

A blood sample was routinely obtained 12 hours after hospital admission. 
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8.3 Statistical analysis 

Normality was confirmed or excluded using the Shapiro-Francia test. Mean (SD) 

values and medians (interquartile range) were calculated. All tests
 
were two-tailed. 

Between-group comparisons of normally distributed continuous data were undertaken 

using a Student’s t test. Between-group comparisons of non-normally distributed data 

were performed with a Mann Whitney test. A Fisher’s exact test was used to assess the 

difference in proportions.  The association between MRI findings and cardiovascular 

events was assessed with Log Rank test. P < 0.05 was taken as significant. The data were 

analyzed with SPSS (version 15.0). 

8.4 Results 

The mean age of the study population was 58±10 years with 78% being male. Primary 

PCI had been performed in 82% with the remainder undergoing rescue or convalescent 

PCI after thrombolysis. Killip class II – IV was present in 13% and 22% had prior 

hemodynamic instability (Table 8.1). 13 (6.5%) patients required electrical cardioversion 

for a ventricular arrhythmia. Of these, 10 (5%) were reperfusion arrhythmias that were 

treated in the catheter laboratory and 3 (1.5%) of these occurred in the coronary care unit. 

 All 

 

200 

≤ 24 h post-

admission 

128 (64%) 

> 24 h post-

admission 

72 (36%) 

P 
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Admission characteristics 
    

Age ± SD, years 58 ± 10 58 ± 10 58  ± 11 0.98 

Male gender, n (%) 157 (78) 104  (81) 53  (74) 0.21 

Previous MI, n (%) 11 (6) 5 (4) 6 (8) 0.21 

Diabetes, n (%) 10 (5) 7 (6) 3 (4) 1.00 

BMI ± SD, kg/m² 26 ± 4 27 ± 4 26 ± 4 0.60 

Killip class 

I 

II 

III 

IV 

 

174 (87) 

14 (7) 

11 (5.5) 

1 (0.5) 

 

112 (88) 

9 (7) 

7 (6) 

0 (0) 

 

62 (86) 

5 (7) 

4 (6) 

1 (1) 

 

Catheter laboratory characteristics 
    

Pain to balloon time ± SD, hours 5.4 ± 5.2 5.1 ± 5.0 5.8 ± 5.5  0.65 

TIMI grade post-PCI, n (%) 

                          0 

                          1 

                          2 

                          3 

 

1 (0.5) 

1 (0.5) 

15 (8) 

183 (91) 

 

0 (0) 

0 (0) 

8 (6) 

120 (94) 

 

1 (1) 

1 (1) 

7 (10) 

63 (88) 

 

0.21 

Hemodynamic instability prior to CMR, 

n (%) 
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Intra-aortic balloon therapy 

Non-sustained ventricular tachycardia  

Ventricular tachycardia 

Ventricular fibrillation 

BP< 90/60 mmHg 

1 (0.5) 

10 (5) 

7 (3.5) 

6 (3) 

13 (6) 

0 (0) 

5 (2.5) 

4 (2) 

3 (1.5) 

10 (8) 

1 (1.0) 

5 (2.5) 

3 (1.5) 

3 (1.5) 

3 (4) 

 

Laboratory characteristics  

Serum creatinine ± SD, mol/L 78 ± 29 76 ± 30 87 ± 19 0.42 

Troponin I ± SD, g/L 59 ± 65  59 ± 57 57 ± 77 0.83 

Drug therapy at time of MRI 
    

Glycoprotein IIbIIIa inhibitor, n (%)* 173 (85) 115 (90) 58 (76) 0.06 

Thrombolytic before CMR, n (%) 35 (18) 14 (11) 21 (29)  

I.V. diuretic before CMR, n (%) 20 (10) 12 (9) 8 (11) 0.72 

Other Imaging prior to CMR† 
    

CXR , n (%) 117 (58) 85 (66) 32 (44) 0.002 

Orbit X-Ray, n (%) 10 (5) 4 (3) 6 (8) 0.10 

Echocardiography, n (%)      45 (22) 19 (15) 26 (36)   0.001 

Table 8.I: Clinical characteristics 

MI: myocardial infarction; BMI: body mass index; LAD: left anterior descending artery; 

Cx: circumflex artery; RCA: right coronary artery; IABP: intra-aortic balloon pump; VT: 

ventricular tachycardia; VF: ventricular fibrillation; NSVT: non-sustained ventricular 

tachycardia; BP: blood pressure; TIMI grade: thrombolysis in myocardial infarction 
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grade; PCI: percutaneous coronary intervention;; CXR: chest X-ray; LVF: left ventricular 

failure Killip Class I: no heart failure; II: heart failure; III: severe heart failure; IV: 

cardiogenic shock. TIMI grade post-PCI: Grade 0: no perfusion; Grade 1: penetration 

without perfusion; Grade 2: partial perfusion; Grade 3: complete perfusion. 

 

* In patients who were being treated with intravenous glycoprotein IIbIIIa inhibitor 

therapy at the time of MRI, the infusion was stopped for the duration of the scan. 

† Imaging performed prior to CMR was prospectively documented in order to record new 

findings  

8.4.1 CMR scans 

The CMR scan was performed < 24 hours after hospital admission in 128 (64%) patients 

and the characteristics of patients who underwent very early CMR were similar to those 

imaged at a later time (Table 1). The remaining 72 patients (36%) were imaged between 

24 and 72 hours after admission. The median (inter quartile range) time from hospital 

admission to the CMR scan was 22 (16, 28) hours and the average (±SD) scan duration 

was 44 ± 10 min. Of the patients who had CMR within 24 hours of admission, 13 (10%) 

were scanned < 12 hours, 54 (42%) were scanned 13 - < 18 hours and 61 (48%) were 

scanned 18 - 24 hours after invasive management. 

CMR provided complete information on LV mass and function in 195 (98%) patients and 

no complications or adverse events occurred. Infarct size and MVO were measured in 

191 (96%) patients (Table 8.2). The CMR scan was stopped before a complete 
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assessment of LV function in 5 (2%) patients and in 4 (2%) other patients ceCMR was 

not tolerated. The reasons for an incomplete CMR examination were claustrophobia (8 

(4%) patients) and back pain (1 (0.5%) patient). Two (1%) patients had real time cine 

CMR because of heart rhythm irregularity. Fifteen patients (8%) had limited ability to 

breath-hold and information on infarct scar was facilitated in these patients using single 

shot LGE CMR. 

Chest radiography and echocardiography had been performed before CMR in 117 (58%) 

and 45 (22%) patients, respectively. 

8.4.2 Cardiac findings (Table 8.2) 

Impaired LV systolic function (LVEF < 55%) was common (61% of all patients). 

Fourteen (7%) patients had a severe reduction in LVEF (<55%), 35 (18%) patients had a 

moderate reduction in LVEF (35% - <45%) and 73 (60%) patients a mild reduction in 

LVEF (45 - < 55%). Ninety eight (50%) patients had an increased LV end-systolic 

volume index. 

CMR findings in patients imaged within 24 hr of hospital admission were similar to 

CMR findings in patients imaged later suggesting that patient selection for a very early 

CMR scan was not influenced by the severity of MI. Table 8.2. MRI scans and findings 

in 195 STEMI patients who underwent CMR early after hospital admission.* 
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MRI scan  All < 24 h post-

admission 

≥ 24 h post-

admission 

 

P 

Heart rate ± SD, min 73 ± 13 73 ± 13 73 ± 13 0.7 

Duration, ± SD, min 43.87 ± 10.22 43.63 ± 9.43  44.32 ± 11.58 0.77 

Scan completed, n (%) 191 (95.5) 122 (95.3) 69 (95.8) 1.00 

Complications 0 (0) 0 (0) 0 (0) - 

LVEF± SD, % 52 ± 11 51 ± 10 53 ± 12 0.34 

LVEDV ± SD, ml: Male  

                               Female 

160 ± 33 

126 ± 34 

159 ± 30 

131 ± 38  

167 ± 41 

115 ± 22 

0.44 

0.31 

Infarct size ± SD, % of LV 22.1 ± 14.8 23.4 ± 14.3 19.6 ± 15.5 0.10 

Microvascular obstruction ± SD, % of 

LV 

2.8 ± 3.7 3.1 ± 3.8 2.2 ± 3.3 0.07 

Table 8.2: CMR results 

* Of the 200 patients who had had a CMR scan, 195 had complete information on LV 

function. Four of these patients did not tolerate CMR after contrast administration. Real 

time cine and single shot delayed enhancement CMR were done in 2(1%) and 15(8%) 

patients, respectively. 

 

LVEF: left ventricular ejection fraction; LVEDV: left ventricular end diastolic volume; 

LVESV: left ventricular end systolic volume; BSA: body surface area; infarct size and 

microvascular obstruction are recorded as a percentage of left ventricular myocardium 

 

For discrete variables χ
2
 test was used, except * (Fisher’s exact test). For continuous 

variables, 2-tailed independent samples T-test was used 
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Cine    T2 weighted CMR            Late gadolinium 

enhancement 

 

   

   

   

Figure 8.1. 

1: Transmural inferior myocardial infarction with haemorrhagic microvascular 

obstruction, (a) still image from retrospective cine; (b) T2-weighted CMR image; (c) 

LGE. 

2: Non-transmural MI in the left ventricular septum with transmural oedema and 

microvascular obstruction, (a) still image from retrospective  cine; (b) T2-weighted 

CMR image; (c) LGE. 

 

 

8.4.3 Incidental findings 

Incidental findings are described in Table 8.3. Six patients (3%) had a lung mass 

discovered which triggered respiratory investigations including chest computed 

a) 

b) 
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tomography. Three of these patients had a final diagnosis of lung cancer (2 patients had 

non-small cell lung cancer and 1 patient had an adenocarcinoma with ipsilateral 

metastases). The admission chest X-ray was normal in two of these patients and in the 

other patient the chest X-ray was independently read abnormal. The three other patients 

had benign lung disease. 

One 43 year old woman who did not smoke and had no prior history of coronary disease 

presented with an acute inferior STEMI. Coronary angiography revealed an occluded 

right coronary artery and otherwise angiographically normal coronary arteries. Following 

primary PCI, she underwent CMR directly without prior echocardiography in order to 

assess for a possible cardiac source of embolus. CMR revealed a patent foramen ovale 

and a valsalva manoeuvre supported a diagnosis of paradoxical embolus. There was no 

history of systemic illness and no other reason to suspect a non-cardiac source of 

embolus. The PFO was closed percutaneously the day after the CMR scan. One other 

patient had marked splenomegaly. This man was referred for a haematology consult and a 

new diagnosis of myeloproliferative disorder was established. Two patients had evidence 

of left ventricular thrombus revealed by CMR which had not been revealed by 

echocardiography.  

 

System Pathology Patients,  

n (%) 

Prognostic 

importance 

Management 

change 

 

Comment 
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Cardiac      

PFO^ 1 (0.5) Yes^ Yes Transcatheter closure  

LV thrombus 2 (1) Yes Yes Anti-coagulation 

Bicuspid aortic valve 1 (0.5) Yes Yes Referred to cardiology out-

patient clinic 

 Pleural effusion associated 

with pulmonary oedema 

15 (8) Yes Yes Intravenous furosemide was 

subsequently administered in the 

CCU in those not previously 

treated with iv diuretic 

Lung Pulmonary mass  3 (1.5) Yes Yes 2 confirmed as non-small cell 

lung cancer and 1 as lung 

adenocarcinoma with ipsilateral 

lung metastases 

Spleen Splenomegaly 1 (0.5) Yes Yes Myeloproliferative disorder 

Spine Vertebral crush fractures 1 (0.5) Yes Yes Referred for management of 

osteoporosis 

All  24 (12)   

 

 

Table 8.3: Incidental findings 

 

The following other abnormalities were observed which did not result in further tests or 

treatment: previous MI 14 (7%), cor triatriatum sinistrum 1 (0.5%), intra-myocardial 

lipomata 1 (0.5&), pulmonary fibrosis and/or plaque 5 (3%), hepatic cyst 3 (2%), splenic 

cyst 1(0.5%),  

 

The following other abnormalities were observed which resulted in abdominal ultrasound 

but no further treatment: liver haemangioma 3(2%), renal cyst 1 (0.5%),  
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^CMR revealed a patent foramen ovale and the aetiology of STEMI in this patient was 

paradoxical embolus. The PFO underwent percutaneous closure the day after the CMR 

scan. 
 

^^^ Pulmonary oedema was observed on T2 weighted HASTE CMR. In all of these 

patients, intravenous diuretic was administered in the coronary care unit afterward since 

pulmonary oedema was judged to be a complication of myocardial infarction. 

  

 

Figure 8.2  

1: Splenomegaly (arrow) in a patient with an undiagnosed low-grade 

hemoproliferative condition. The observation was revealed on T1 localiser imaging. 

2: HASTE MRI reveals a right upper lobe parenchymal lung tumour (arrow) with a 

second lesion in lower lobe (arrow). A diagnosis of metatstatic adeoncarcinoma was 

subsequently made.  

 

 

 

 

a) b) 
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8.4.4 CMR findings are associated with early rehospitalisation for heart failure or 

ACS 

Eight (4%) patients had an unplanned hospital readmission within 30 days of discharge 

because of heart failure (3 (1.5%) patients) or a confirmed ACS (5 (2.5%) patients), of 

whom 2 (1%) had acute stent thrombosis. All of the ACS patients had repeat angiography 

and 4 of these patients underwent PCI. Compared to patients who were not readmitted for 

heart failure or an ACS, the patients who were readmitted had a lower initial LV ejection 

fraction (40.3±11.5% vs. 52.1±10.6%; p=0.005) and higher initial LV end-diastolic 

volume index (50.5±16.7ml/kg/m
2
 vs. 37.5 ±12.7 ml/kg/m

2
; p=0.034) and infarct size 

(36.5±12.12% vs. 21.6±14.6%; p=0.006).  

8.5 Discussion 

We have described a series of 200 STEMI survivors who underwent early in-patient 

CMR. Our study describes one of the largest STEMI cohorts evaluated by CMR to-date.   

CMR was feasible, safe and informative in 98% of patients. In addition to providing 

prognostically important information, such as LV ejection fraction, infarct size and 

microvascular obstruction, CMR revealed clinically relevant incidental findings. 
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Our first aim was to evaluate the feasibility and safety of CMR in a broad range on 

STEMI survivors. Two thirds of the STEMI patients had a CMR scan within 24 hours of 

hospital admission and one fifth had a history of heart failure or hemodynamic instability. 

Ad hoc CMR was achieved by reserving the first CMR scan appointment each day for 

new admissions and by making use of the scanner when patients with elective 

appointments did not attend. CMR was performed under medical supervision and no 

complications occurred.  

Our findings extend those of Larose et al 
204

 who successfully scanned 102 patients < 12 

h post-STEMI in the Québec Heart Institute. All of their patients had undergone 

successful primary PCI (grade III TIMI flow at the end of the procedure) whereas our 

patients were higher risk. For example, in our cohort nearly one fifth of the patients had 

been initially treated with tenectaplase, some had sub-optimal catheter lab outcomes and 

patients with a history of hemodynamic instability (including one patient initially treated 

with an intra-aortic balloon pump) were included. Our findings indicate that CMR can be 

safely performed even in high risk patients supporting the potential utility of CMR in 

clinical practice. 

Finally, CMR revealed new observations of varying clinical significance. Some cardiac 

pathologies were obviously clinically significant (e.g. LV thrombus, patent foramen 

ovale associated with embolic right coronary occlusion). The LV thrombus had not been 

observed by prior echocardiography or left ventriculography. In one other patient, CMR 

revealed a PFO leading to a diagnosis of paradoxical embolus. This woman underwent 
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transcatheter closure of the PFO during the index admission. Similarly some extra-

cardiac pathologies (e.g. metastatic lung disease, splenomegaly Figure 8.2) were 

prognostically important. Chest radiography did not reveal the lung mass in two of the 3 

patients with lung cancer. Splenomegaly was observed in a patient who was subsequently 

diagnosed with a myeloproliferative disorder. Some observations had less certain clinical 

significance (e.g. pulmonary oedema) however the attending staff decided to administer 

diuretic, which we think is a pragmatic empirical decision commonly made in medicine. 

On the other hand, there were several observations which were not clinically significant, 

such as simple cysts. Simple cysts are common and even in the current study were all 

found confirmed by ultrasound as simple and did not alter management. MRI that 

includes gadolinium can characterize many of these cysts and avoid an unnecessary 

ultrasound.  

Overall, our approach to CMR was to screen for extra-cardiac findings using defined 

criteria and request a radiology opinion in selected cases as appropriate (e.g. for lung, and 

kidney masses). In this way, we sought to avoid unnecessary tests and improve diagnostic 

confidence. We accept that chest radiography and echocardiography and were not 

performed in all patients before CMR and so direct comparisons with other diagnostic 

methods is not possible. However, a formal comparative imaging study was not our aim. 

Consistent with findings by Weir et al 
203

,
 
we conclude that CMR has high diagnostic 

utility in STEMI survivors. 
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Usually, when a CMR is requested for an STEMI patient the scan is performed at least a 

few days after hospital admission in line with clinical guideline recommendations 
68

. 

Historically, CMR has been delayed in patients with recent MI because of safety 

concerns. However, STEMI patients managed invasively have a lower risk of post-MI 

complications than STEMI patients treated with thrombolysis alone. Based on our 

experience, CMR can be safely performed under medical supervision even within 12 h of 

hospital admission in stabilized patient, in line with observations from other groups 
76

  

 

In addition to providing LV ejection fraction and volumes in almost all of the patients, 

ceCMR was completed in 95% of patients delineating infarct burden and MVO. We did 

not perform a comparative study of CMR and echocardiography since the comparative 

strengths of each form of imaging are well described
 71

. Echocardiography can be 

performed at the bedside and is cheaper. Alternatively, CMR has higher diagnostic 

accuracy for assessment of LV ejection fraction and volumes
71

 and only CMR can 

provide information on prognostically-important infarct characteristics (infarct size, 

MVO) 
15, 87, 176

. 

 

The clinical utility of CMR is influenced by whether the test is feasible and if so, whether 

the diagnostic information from the scan leads to a change in management or provides 

new insights into prognosis (Table 8.3). CMR is an expensive diagnostic test and 
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therefore the health economic considerations of CMR post-MI are important. 

Increasingly, the emergency care of STEMI patients is centralised to ‘heart attack’ 

hospitals which provide primary PCI and coronary angiography for patients transferred 

after thrombolysis. These hospitals are usually resourced with advanced medical 

equipment such as MRI, meaning that the centralization of invasive cardiac services in 

hospitals potentially increases access of STEMI patients to CMR.  Even in this setting, in 

practical terms, although CMR may have the highest diagnostic accuracy for imaging 

post-MI
71

 it is unlikely to be feasible for all STEMI patients therefore its use should be 

selected to high risk subgroups in whom CMR is most likely to provide prognostically 

important information that could result in improved health outcomes. What we have 

shown is that CMR findings were associated with early readmission to hospital for a heart 

failure or recurrent ACS. We think this is because the diagnostic accuracy of CMR is 

high and the scans reveal the nature and severity of heart injury unlike echocardiography 

or chest radiography. Thus, our preliminary findings suggest that CMR may have a role 

for risk stratification. Should future studies demonstrate that CMR can identify patients at 

risk of early readmission to hospital then interventions could be tested to prevent these 

events. Going forward, we hypothesise that CMR will be most cost-effective in the 

following groups of STEMI survivors or scenarios 1) patients in whom echocardiography 

is limited (e.g. poor acoustic window), 2) availability of a future evidence-based therapy 

targeted at pathology which can be selectively revealed by MRI (e.g. MVO). Therefore, 

the cost-utility of CMR would likely increase if targeted to these patient groups.  
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8.6 Limitations 

About one third of all STEMI patients who were treated in our hospitals underwent 

CMR. When CMR was not performed it was usually for logistical reasons e.g. out-of-

office hours. Whenever an eligible patient agreed to have a scan, the MRI department 

was usually able to perform the scan ad hoc.  

CMR is not feasible in patients with some types of devices and foreign bodies meaning 

that around 5% of patients may be ineligible. Recent developments are helping to 

overcome some of these limitations. Firstly, technical developments with CMR mean that 

breath-holding is no longer mandatory and CMR can be performed in free-breathing 

patients including those with irregular heart rhythms. CMR compatible device leads are 

also now being used.  

Since rehospitalisations were uncommon we did not perform multivariable analyses for 

predictors of 30-day outcomes. 

8.7 Conclusions 

CMR is feasible and safe in the hours following emergency PCI in a broad range of 

patients following STEMI. It provides useful prognostic information in the early stages 

following revascularisation to potentially identify “high risk” patients and furthermore 

has potential to uncover clinically relevant extra-cardiac abnormalities.  
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Chapter 9 - Conclusions and clinical implications 

 

9.1 Postulated therapeutic interventions to minimize microvascular damage in 

STEMI 

 

Although the pathophysiological understanding of MVO has improved, mechanical and 

therapeutic interventions to prevent or minimize its impact have yet to be translated from 

the experimental level into hard clinical end-points.  

 

Distal protection devices effectively have been shown to effectively retrieve embolic 

debris during primary PCI but have not been shown to improve microvascular flow, 

reduce infarct size or improve event free survival. 
33

 

 

Although aspiration thrombectomy improves reperfusion on comparison with 

conventional PCI a significant number of patients continue to experience incomplete 

myocardial perfusion
205

 and indeed in my own study there was no difference in the IMR 

between each group with this operator dependent variable. 

 

Intra-aortic balloon pump counter pulsation reduced MVO in the experimental model but 

clinical studies using this intervention in the setting of STEMI have shown no 

improvement in LV ejection fraction or increased survival at follow up. 
206, 207
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Administration of intra-coronary verapamil after PCI decreased evidence of no-reflow
208

 

and glycoprotein IIb/IIIa inhibition has been shown to significantly improve 

microvascular flow in dog models and has increased the rate of ST segment resolution 

and CTFC in clinical trials.
209-211

 

 

Selective intracoronary administration of the microcirculatory vasodilator adenosine 

improved microvascular perfusion leading to improved regional ventricular function in 

the infarcted canine model. In the clinical setting, however, although infarct size was 

reduced, a three hour intravenous infusion of adenosine in re-perfused STEMI patients 

failed to show an improvement in outcome.
212

 

 

IMR recorded 48h after successful primary PCI has been used as a marker for increased 

myocardial microvascular perfusion following the administration of intracoronary 

streptokinase at the time of the procedure.
139

 The group which had the lower IMR 

following administration of the intracoronary thrombolytic were shown to have lower 

infarct volumes and higher ejection fractions at long term follow up. 
213

 

 

More recently Ito et al randomized patients whom underwent successful PCI to receive a 

bolus of intracoronary nicorandil, a vasodilator which acts both as a nitrate and on the K-

ATP channel, or a bolus of saline. There was a significant reduction in IMR following 

this in the nicorandil group, although interestingly this change was not seen it those 

whom had a low IMR at baseline.
214
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9.2Clinical implications for use of IMR in STEMI 

 

In summary, I found that IMR correlated with traditional markers for infarct size and 

myocardial damage. I found that IMR was significantly higher in those whom had 

evidence of MVO on ceCMR imaging. Increased was also a strong independent predictor 

of increased infarct volumes and low ejection fraction at baseline and follow up. The 

other postulated invasive markers of microvascular disease, CFIp and distal coronary 

wedge pressure did not correlate with myocardial damage by ceCMR. IMR can therefore 

provide an indicator of microvascular injury at the time of emergency PCI. This allows 

this at risk patient group immediately after the cornerstone of AMI treatment and could 

allow potential intervention to occur directly thereafter.  

 

It is known a significant proportion of patients who have TIMI 3 flow post PCI have 

evidence of microvascular damage. Significant microvascular obstruction post PCI is not, 

however, universal. This may in part explain why studies aimed as modifying 

microvascular damage post PCI that have recruited “all comers” have been successful on 

a theoretical basis but not in larger clinical studies. IMR has already been used at a 

marker of microvascular damage post PCI before and after therapeutic interventions. I 

think the future of IMR will be to identify the “at risk” population at the time of PCI. 

This will allow targeting of future therapies at the earliest opportunity. I think by 

targeting those who are known to have microvascular damage future studies will be more 
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likely to be beneficial. It is worth noting that in their recent study looking at Nicorandil 

Ito et al did not see any significant difference in the group who had a low baseline IMR, 

indicating that those with low levels of microvascular injury have the least to gain from 

intervention.  

 

 

The IMR is a simple wire based technique that can provide a quantitative assessment of 

microvascular function at the time of emergency PCI. I have shown that an elevated IMR 

is linked to microvascular and myocardial damage as revealed by ceCMR in the early 

post infarction period and at longer term follow up. Accordingly, I suggest measurement 

of IMR represents a new approach to risk assessment at the very earliest stage of acute 

MI management, and potentially, therefore enables triage of higher risk patients to more 

intensive therapy. 
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Appendix A 

 

Version 1.1 Oct 2006  Patient Information Sheet (1) 

 

 

You are being asked to take part in a clinical research study. It is important that you 

understand why you are being asked to take part and what it is involved for you. 

Participation in this trial in voluntary and it is entirely up to you whether you want to take 

part or not. 

 

Title of Project  

 

Correlation of invasive measurements for assessment of microvascular dysfunction with 

cardiac magnetic resonance imaging to predict those most at risk following acute 

myocardial infarction. 

 

What does this title mean and what is the purpose of the study? 

 

Heart attack (myocardial infarction) affects not only the large heart arteries but also the 

small heart arteries. We can see the large heart arteries at angiography. There is not 

currently a reliable way to measure damage to the hearts small blood vessels. There are 

new measurements which can be taken at the time of angioplasty which we now know 
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represent damage to the hearts small blood vessels. We plan to take these measurements 

during angioplasty. We will then perform a special heart scan, an MRI scan, which would 

allow us to look at the blood supply to the heart, to look at the amount of damage to the 

heart as a whole and at the amount of damage to the small blood vessels. Our aim is to 

identify patients with significant damage to the hearts small blood vessels at the time of 

angioplasty therefore allowing us to identify future patients with treatment to minimise 

damage at the earliest opportunity.   

 

What will happen to me if I take part? 

 

If you require an angioplasty (using balloons and stents to open the larger heart arteries) 

we will make measurements that represent damage to the hearts small blood vessels. This 

will add 10 minutes on to your procedure and does not pose any additional risk to you.  

 

Angioplasty involves placing tiny wires into the heart arteries that then allows us to 

inflate balloons and deploy stents (like tiny scaffolds) over the blockage restoring blood 

flow. We would use a wire with a special tip allowing us to make the measurements 

representing damage to the heart small blood vessels.  

 

In order to make these measurements accurately we will have to give you a drip of a drug 

called adenosine. This drug allows more blood to pass into the heart. Its main side effect 

is that it can cause tightness in the chest and can make you feel breathless. Although 

uncomfortable this senSAtion is harmless and does not indicate heart damage. It will pass 
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seconds after the drip is stopped.  Rarely adenosine can cause the heart to slow down but 

this again is only temporary and your heart rate will be monitored throughout the 

procedure.  

 

Adenosine can cause to become more breathless if you have asthma or COPD (smoking 

related lung disease). You will not be able to participate in the trial if you have either of 

these conditions. 

 

You will also receive a heart MRI scan during this hospital admission and in 3 months 

time. We will give you further information about this and the trial as a whole after your 

procedure when you are settled. At this point you can decide whether you wish to 

continue in the study. 

 

Thank you for taking the time to read this patient information sheet. 

 

 



276 

 

Appendix B 
 

Version 1.2 Oct 2006   CONSENT FORM (1) 

 
Title of project: 

 

Correlation of invasive measurements for assessment of microcirculatory dysfunction with 

cardiac magnetic resonance imaging to predict those most at risk following acute myocardial 

infarction. 

 

Name of researcher: Dr Ross McGeoch     Please initial box 

 

 

1. I confirm that I have read and understand patient information sheet (1) for the above 

study. I have had the opportunity to ask questions and I understand the information 

provided to me. 

 

2. I understand that my participation is voluntary and that I am free to withdraw at any time 

without giving any reason, without my medical care or legal rights being affected. 

 

3. I understand that sections of any of my medical notes may be looked at by responsible 

individuals from the research team or from regulatory authorities where it is relevant to 

my taking part in research. I give permission for these individuals to have access to my 

records. 

 

4. I agree to take part in the above study.       

.              

 

                                                                                                                                          
Name of patient         Date               Signature 

 

 

 

                

Name of Person taking consent        Date               Signature 

(if different from researcher)                                                                        

 

 

 

 

 Researcher                 Date               Signature 

 

I have witnessed the informed consent process and attest that the information contained in the patient 

information sheet was accordingly explained to the patient. I believe the explanation was understood 

and that consent to participate was freely given. 

 

 

 

Name of impartial witness            Date               Signature 
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Appendix C 

 

Version 1.3 Jan 2007                       Patient Information Sheet (2) 

 

 

You are being asked to take part in a clinical research study. Before you decide it is 

important for you to understand why the research is being done and what it will involve 

for you. Please take time to read the following carefully and discuss it with others if you 

wish. Please ask us if there is anything you are unclear about or if you would like more 

information. Take time to decide whether or not you wish to take part. 

 

Title of Project 

 

Correlation of invasive measurements for assessment of microvascular dysfunction with 

cardiac magnetic resonance imaging to predict those most at risk following acute 

myocardial infarction. 

 

What does the title mean and what is the purpose of the study? 

 

Treatment of heart attack (myocardial infarction) has traditionally concentrated on 

opening the large heart arteries, whether by “clot busting” medication or balloons and 

stents (angioplasty).  We now know that damage to the heart’s tiny blood vessels also 

occurs during heart attack and this can contribute to longer-term heart damage. We plan 
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to take measurements, which represent damage to the heart’s small blood vessels during 

treatment for heart attack with angioplasty. We will then perform a special heart scan, an 

MRI scan, which would allow us to look at the blood supply to the heart, to look at the 

amount of damage to the heart as a whole and at the amount of damage to the small blood 

vessels. We would also like to obtain a blood and urine sample at the time of each MRI 

scan in order to study some circulating cells and chemicals that may be involved in heart 

muscle and blood vessel repair. Our aim is to identify patients with significant damage to 

the hearts small blood vessels at the time of angioplasty therefore allowing us to identify 

future patients with treatment to minimise damage at the earliest opportunity.   

 

Why have I been chosen? 

 

You have had a heart attack and you require an emergency angiography procedure to 

look at the arteries that supply the heart.   

 

Do I have to take part? 

 

No, it is up to you to decide whether or not to take part. If you do decide to take part you 

will be given this information sheet to keep and will be asked to sign a consent form. If 

you decide to take part you are still free to withdraw at any time and without giving a 

reason. A decision to withdraw at anytime, or a decision not to take part, will not affect 

the standard of care you receive. 
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What will happen to me if I take part? 

 

If you require an angioplasty (using balloons and stents to open the larger heart arteries) 

we will make measurements that represent damage to the hearts small blood vessels. This 

involves injecting dye into the heart arteries under x-ray guidance allowing us to identify 

if any blockages are present. Angioplasty involves placing a tiny wire into the relevant 

heart artery allowing us to inflate balloons and deploy stents (like small scaffolds) over 

the blocked area. We will use a pressure and temperature sensitive guidewire during the 

procedure rather than a normal wire. The measurements will take an additional 10 

minutes during the procedure and do not pose any additional risk to you. While these 

measurements are being taken a drug called adenosine is used to increase the blood flow 

through the heart arteries. 

 

You will have two heart MRI scans. One will occur within 48 hours of your heart attack 

during this current hospital admission and the other will be at around two months after 

your heart attack at a time that is convenient for you.   

 

The MRI scans last approximately one hour each. The scanner is basically tunnel shaped, 

like large “polo” mint, which is open at both ends. You are slid into the centre of the 

“polo” on an electric bed and the scans are taken. Some people find it a little enclosing 

but you can come out at any time. 
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Before you go into the scanner, you will be invited to provide a urine sample. Following 

this, two small plastic cannulas (similar to that used when putting in a drip) will be 

inserted into the veins in your arms by a doctor. We would like to draw about 40 

millilitres (about 3 tablespoonfuls) of blood from one of the plastic cannulas, and also ask 

you to provide a urine sample. We will examine some routine parameters, such as blood 

platelets, but also some new markers, known as endothelial progenitor cells, that may be 

involved in heart blood vessel repair. We will also measure some of the circulating 

growth factors (small chemicals in the blood) which stimulate the release of these cells. 

We will count the number of these cells in each blood sample, and also prepare DNA and 

RNA from these cells to examine whether the genetic make-up has any connection with 

heart muscle and blood vessel repair (as assessed by MRI). Small blood and urine 

samples will be stored in a freezer to be analysed at a later stage, particularly when new 

markers of heart disease will have been developed by us or by other scientists. 

 

Following this, the cannula will permit us to inject gadolinium dye during your MRI scan 

and also to administer a drug called adenosine. 

 

Gadolinium is a clear fluid like water. It is used in MRI scanning because it accumulates 

in abnormal tissue and “lights up” that area so the scanner can detect it. It is useful in 

telling us which parts of the heart are abnormal, if any. After a short while the gadolinium 

fades away and is removed from your body (within a few hours). 
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When you are in the scanner you will need to wear a pair of headphones. These are 

necessary because of the loud knocking noise that occurs when the pictures are being 

taken. The headphones allow you to listen to music of your choice (you may bring your 

own CD) and allow us to communicate with you throughout the scan. Whilst in the 

scanner, you will be given an emergency buzzer and can very quickly be taken out should 

you feel uncomfortable. During the scan you will be asked to hold your breath at times to 

improve the quality of the pictures. 

 

Women only: The effect of MRI scans on babies is unknown- for this reason, anyone 

who is pregnant or becomes pregnant during the study will be excluded. If you think you 

may be pregnant please inform the study doctor. 

 

What are the risks? 

 

There is no additional risk by taking these extra measurements during your angioplasty. 

The MRI scanner is very safe if you have no metal implants in your body.  

 

The dye used during the cardiac MRI scans is called gadolinium. It is generally harmless 

and will be washed out of your system by your kidneys. Side effects include mild 

headache and nausea. Rarely (less than 1 % of the time) low blood pressure and light-

headedness occurs. Very rarely (less than one in a thousand), patients are allergic to the 

contrast agent. 
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Senior doctors will be present during your angioplasty procedure and a senior doctor will 

be present during your cardiac MRI scans. 

 

The amount of blood and urine drawn does not place you at any risk. 

 

What are the potential benefits of taking part? 

 

You may not benefit directly from taking part in the study but the information that we get 

may help to improve treatment of patients in the future. You will be getting special scans 

of your heart that are not usually provided as part of routine care. This will provide 

additional information about your health, which could influence your future treatment. 

While the blood and urine results may be useful for clinical research purposes, we do not 

anticipate these results to be useful for the treatment of your condition. 

 

What if something goes wrong? 

 

If you are harmed by taking part in this research project, there are no special 

compensation arrangements. If you are harmed due to someone’s negligence, then you 

have grounds for a legal action but you may have to pay for it. Regardless of this, if you 

wish to complain, or have any concerns about any aspect of the way you have been 

approached or treated during the course of this study, the normal NHS complaints 

mechanisms will be available to you. 

Will my GP be informed? 
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If you agree we will inform your GP that you have agreed to take part in this study. 

 

Will my taking part in this study be kept confidential? 

 

All information that is collected about you during the course of the research will be kept 

strictly confidential. Any information about you that leaves the hospital will have your 

name and address removed so that you cannot be recognised from it. Your personal 

information will be kept on file and stored in a secure place at the BHF Glasgow 

Cardiovascular Research Centre and in the Department of Cardiology. All examinations 

(including urine and blood results and gene data) will be labelled with a code and not 

with any personal details so that all analyses will be carried out anonymously. All 

information which is collected about you during the course or the research will be kept 

strictly confidential. Any information about you which leaves the hospital or the Clinical 

Investigation Unit will have your name and address removed so that you cannot be 

recognised from it. 

 

What will happen to the results of the research study? 

 

When the results become available they will be submitted to medical journals where they 

will be considered for publication. The final results will also be submitted to national and 

international medical conferences where they will be considered for publication. At the 
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BHF Glasgow Cardiovascular Research Centre we will have events to inform the public 

about our ongoing research and about results from this and other studies. 

 

You will not be identified in any report or publication. 

If you would like a copy of the results, please ask your study doctor. 

 

Who is organising and funding the research? 

This study is organised by doctors from the Department of Cardiology, Western 

Infirmary and scientists from the BHF Glasgow Cardiovascular Research Centre at 

Glasgow University. The study is funded by charities and researchers will not receive any 

payment for conducting this study. 

 

Who has reviewed the study? 

The West Ethics committee of the North Glasgow University Hospitals NHS Trust has 

reviewed this study. 

 

Who can I contact for further information? 

 

Study doctor:  Dr Ross J McGeoch 

   Department of Cardiology 

Western Infirmary  0141-211-8527 
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Supervisor:  Dr K G Oldroyd 
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Appendix D 

Version 1.1 Aug 2006                  CONSENT FORM (2) 

 
Title of project: 

 

Correlation of invasive measurements for assessment of microcirculatory dysfunction with 

cardiac magnetic resonance imaging to predict those most at risk following acute myocardial 

infarction. 

 

Name of researcher: Dr Ross McGeoch     Please initial box 

 

 

1. I confirm that I have read and understand the information sheet for the above study and 

have had the opportunity to ask questions. 

 

2. I understand that my participation is voluntary and that I am free to withdraw at any time 

without giving any reason, without my medical care or legal rights being affected. 

 

3. I understand that sections of any of my medical notes may be looked at by responsible 

individuals from the research team or from regulatory authorities where it is relevant to 

my taking part in research. I give permission for these individuals to have access to my 

records. 

 

4. I agree to take part in the above study.       

 

.              

 

                                                                                                                                          
Name of patient         Date               Signature 

 

 

 

                

Name of Person taking consent        Date               Signature 

(if different from researcher)                                                                        

 

 

 

 

 Researcher                 Date               Signature 
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Appendix V 

 

Prognostic Value of the Index of Microcirculatory Resistance after 

Primary Percutaneous Coronary Intervention 

 

Authors: Andy S.C. Yong, Joshua Loh, Ross McGeoch, Maulik Shah, Michael Ho, 

David Daniels, Adrian Low, Keith Oldroyd, William F. Fearon 

 

Background: The Index of Microcirculatory Resistance (IMR) is an invasive, wire-based 

method for assessing microvascular function which can predict persistent left ventricular 

dysfunction after primary percutaneous coronary intervention (PCI) in patients with ST-

elevation myocardial infarction. The aim of this prospective multicenter study is to 

evaluate the ability of IMR to predict events in patients undergoing primary PCI. 

Methods: IMR was measured immediately after primary PCI in 253 patients from 3 

institutions using a pressure-temperature sensor wire. The primary end point was rate of 

death or rehospitalization for heart failure.  

Results: The mean IMR was 40.2 ± 32.4. Patients with IMR ≥40.2 had higher 1 year 

primary end point rates compared to patients with IMR <40.2 (17.1% vs. 6.6%, P = 

0.027). During a median follow-up period of 2.8 years, 34 patients (13.4%) suffered the 

primary end point and 11 patients (4.3%) died. Using Cox proportional hazards analysis, 

IMR ≥40.2 was associated with an increased risk of death or rehospitalization for heart 

failure (hazard ratio [HR] 2.08, P = 0.033) and death (HR 3.90, P = 0.03). Survival curves 

are shown below. In multivariate analysis, independent predictors of the primary end 
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point include IMR ≥40.2 (HR 2.50, P = 0.011), age (HR 1.04, P = 0.02) and diabetes (HR 

4.24, P <0.001).  

Conclusions:  An elevated IMR at the time of primary PCI predicts poor long term 

outcomes. Measurement of IMR may identify high risk patients who will benefit from 

novel therapy. 
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