
Open Research Online
The Open University’s repository of research publications
and other research outputs

Extracting ontologies from software documentation: a
semi-automatic method and its evaluation
Conference or Workshop Item
How to cite:

Sabou, Marta (2004). Extracting ontologies from software documentation: a semi-automatic method and its
evaluation. In: Workshop on Ontology Learning and Population (ECAI-OLP), 22-23 Aug 2004, Valencia, Spain.

For guidance on citations see FAQs.

c© [not recorded]

Version: [not recorded]

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Open Research Online

https://core.ac.uk/display/293?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://oro.open.ac.uk/help/helpfaq.html
http://oro.open.ac.uk/help/helpfaq.html#Unrecorded_information_on_coversheet
http://oro.open.ac.uk/help/helpfaq.html#Unrecorded_information_on_coversheet
http://oro.open.ac.uk/policies.html

Extracting Ontologies from Software Documentation:
a Semi-Automatic Method and its Evaluation

Marta Sabou 1

Abstract. Rich and generic ontologies about web service func-
tionalities are a prerequisite for performing complex reasoning tasks
with web service descriptions. However, their acquisition is time-
consuming and conditioned by the small number of web services
available in certain domains. As a solution, we describe a semi-
automatic method to extract such ontologies from software docu-
mentation, motivated by the observation that web services reflect the
functionality of their underlying implementation. Further, we report
on fine-tuning the extraction process by using a multi-stage evalua-
tion method.

1 Introduction

Machine understandable semantics augmenting web services will fa-
cilitate their discovery and integration. OWL-S [3] is a major initia-
tive in this direction: it is an ontology that provides basic concepts
to describe web services. However, OWL-S provides only a generic
frame for description which must be filled in with appropriate do-
main knowledge such as the type of offered functionality, the types
of the corresponding input/output parameters and domain specific
preconditions and effects. Such knowledge is provided by domain
ontologies (DO) usually containing a hierarchy of tasks and several
concepts which can participate as inputs/outputs in these tasks.

The quality of the used domain ontologies influences the com-
plexity of reasoning tasks that can be performed with the semantic
descriptions of web services. For many tasks (e.g. matchmaking) it
is preferable that web services are described according to the same
DO. This implies that the used DO should begenericenough to be
used by many web service descriptions. By being generic, we do not
mean that this ontology should contain all the knowledge needed by
any possible web service, but rather that it can easily be extended
with new domain knowledge whenever it is needed. Besides general-
ity, DOs formally depict the complex relationships that exist between
the domain concepts. Suchrich descriptions allow performing com-
plex tasks such as flexible matchmaking. We conclude that building
quality DOs is at least as important as designing a generic web ser-
vice description language such as OWL-S.

Building quality DOs is a real challenge since in many domains
only a few web services are available. These are not sufficient for
building generic and rich ontologies.

Our approach to the problem of building quality DOs is motivated
by the observation that, since web services are simply exposures of
existing legacy software to web-accessibility, there is a large over-
lap (often an one-to-one correspondence) between the functionality
offered by a web service and that of the underlying software. There-
fore we propose to build DOs by analyzing software programming

1 Vrije Universiteit, Amsterdam, The Netherlands email: marta@cs.vu.nl

interfaces (APIs). We wish to answer the following questions:

1. Are APIs rich enough to serve as sources for building ontologies?
2. How to (semi-)automatically extract ontologies from APIs?
3. How to evaluate and fine-tune ontology extraction?

We have conducted our work in the domain of RDF based ontol-
ogy storage tools. Section 2 investigates the first question reporting
on a manually built ontology from the APIs of three ontology stor-
age tools. We regard this ontology as a “Golden Standard” for the
extraction process which is described in Section 3. To enhance the
extraction process we built a multi-stage evaluation method. Section
4 details this method, reports on how we have applied it in a specific
case and shows how it helped us to fine-tune the extraction process.
We present related work in Section 5, then conclude and point out
future work in the last Section.

2 The Golden Standard

Tools for storing ontologies are of major importance for any semantic
web application. While there are many tools offering ontology stor-
age (a major ontology tool survey [4] reported on the existence of 14
tools), only very few are available as web services (two, according
to the same survey). Therefore, in this domain it is problematic to
build a good DO by analyzing only the available web services. Nev-
ertheless, a good DO is clearly a must since we expect that many of
these tools will become web services soon. Driven by this need, as
well as willing to verify our hypothesis, we attempted to build a DO
by analyzing the APIs of three tools in this domain: Sesame [1], Jena
[7], KAON RDF API[8].

2.1 Manually Building the Domain Ontology

Method hierarchy. We identified overlapping functionality offered
by the APIs of these tools and modelled it in a hierarchy (see Fig. 2).
The process of building this domain ontology consisted in analyzing
all methods of the three APIs, and introducing a main functionality
category if at least two APIs offered methods with such functional-
ity (for example KAON RDF API does not offer querying methods).
Functionalities offered just by a single API were added as more spe-
cialized concepts with the goal of putting them in the context of gen-
erally offered functionality (for example the RQL querying is only
provided by Sesame).

The classMethod depicts one specific functionality (similar to
the service Profile from OWL-S). According to our view, there are
four main categories of methods for: adding data (AddData), remov-
ing data (RemoveData), retrieving data (RetrieveData) and querying
(QueryMethod).

Naturally, several special-
izations of these methods
exist. For example, depend-
ing on the granularity of
the added data, methods
exist for adding a single
RDF statement (AddState-
ment) or a whole ontology
(AddOntology). Note, that
this hierarchy reflects our
own conceptualization and
does not claim to be unique.
Indeed, from another per-
spective, one can regard
query methods to be a
subtype of data retrieval
methods. We have chosen
however to model them as a
separate class as they require
inputs of type Query. Be-
sides the method hierarchy
several domain concepts,
in this case kinds of data
structures, are described.
We describe elements of
the RDF Data Model (e.g.
Statement, Predicate, Ob-
ject, ReifiedStatement) and Figure 1: The Method hierarchy.

their relationships.
Ontology richness.To enrich our ontology we identified knowl-

edge useful for several reasoning tasks. We enhanced the definition
of methods in the following ways.

Characterizing methods by restricting their parameters.We define
our methods by imposing restrictions on the type and cardinality of
their parameters. For example,AddOntologymethods are defined as
methods which should accept an input ofOntologytype. Similarly,
any method returning a boolean is considered to be aTestmethod.
Note that a method instance which adds an ontology and returns a
boolean value stating the success of the transaction will belong to
both classes of methods (AddOntologyandTest). Formalizing these
restrictions is straightforward.

Characterizing methods by their effect.For each method we have
identified its effect. For example, adding a statement S to an ontology
O will result in O containing that statement. Or adding an ontology
O1 to an empty ontology O2 results in O1 and O2 having the same
content. Finally,RemoveAllapplied on an ontology causes that on-
tology to become empty.

Some methods expose special behavior. For example,idempotent
methods produce the same effect independently of the number of
sequential executions. Such areAddData, RemoveAll, RemoveState-
mentetc. Further, there exist pairs of methods which executed to-
gether result in a null operation, i.e. they cause no changes. For ex-
ample adding and then removing the same data to an ontology leaves
the ontology unchanged.

Methods which have the same effect areequivalent. While a cor-
rect formalization of the effects of each method should be enough to
automatically deduce the equivalent methods, for now we have iden-
tified some equivalent pairs manually. For example,RetriveAllState-
mentsreturns all the RDF statements of an RDF ontology. TheRe-
triveGenericStatementaccepts three inputs for theSubject, Predicate
andObjectof the statement to be retrieved. If any of these inputs has

the value null it acts like a wildcard. Calling this method with all its
inputs null results in retrieving all statements of the ontology, which
is the same effect as we get with the first method. Therefore the first
method type is equivalent to a certain execution of the second one.

Our ontology allows us to declare functionality that is not directly
provided but can be achieved with special values supplied to cer-
tain methods. For example, Sesame offers a single method for data
retrieval which returns the whole ontology. In contrast, Jena offers
many methods to retrieve data with different granularity. However,
using Sesame’s Query method with certain queries most of the re-
trieval functionality available in Jena can be achieved by Sesame as
well. For example the effect of two method types of Jena can be
achieved by using two Sesame queries: one retrieves a certain state-
ment allowing wildcards, the second retrieves all statements.

RetrieveGenericStatement(S, P, O) <=>
SeRQLQueryMethod(SELECT * FROM{X} Y {Z} where X=S, Y=P, Z=O)

RetrieveAllStatements()<=>
SeRQLQueryMethod(SELECT * FROM{X} Y {Z})

From our analyzes it yielded that it ispossibleto build rich domain
ontologies from software API documentation. These DO’s contain
complex relationships between the types of defined methods rep-
resenting much stronger semantics than simple concept hierarchies
of method types. Ideally one would want to automatically extract
as much of these ontological relationships as possible. For now, our
current efforts, presented next, address identifying the main types of
method functionalities.

3 The ontology extraction method

The ontology extraction process consists of the following steps and
involves the following data structures:

Data0 - The Corpus.Each document in the corpus contains the
javadoc description of one method. Typically, the javadoc documen-
tation of a method consists of a general description of the method
functionality, followed by the description of the parameters, result
type and exceptions to be thrown. See for example theadd method
of the Jena API. We exclude the syntax of the method because it
introduces many irrelevant, technical terms such asjava, com, org.

add
Add all the statements returned by an iterator to this
model.

Parameters:
iter - An iterator which returns the statements to be
added.

Returns:this model
Throws: RDFException - Generic RDF Exception

Step 1 - Tokenise/POS tag the corpus - Automatic.After tokeni-
sation we use the QTAG2 probabilistic POS tagger to determine the
part of speech of each token.

Step2 - Pair Extraction - Automatic. Using the POS tagged doc-
uments, we identify verb-noun pairs. We filter out these pairs using
the regular expression identifier offered by the java.regex package.
The choice for such a pattern is straightforward since in javadoc
style documentation verbs express the functionality offered by the
methods and their object usually identifies the data structure which
is involved in this functionality. In a next step we lemmatize both
verbs and nouns and present only the lemmatized pairs (if “removes
model” and “remove models” are extracted, after lemmatization the
resulting pair is “remove model”). This step results in a set of pairs
extracted from the corpus.

2 http://web.bham.ac.uk/o.mason/software/tagger/index.html

Step3 - Identifying
Significant Pairs -
Manual, with some
support. We regard
a pair significant for
our task if it reflects
the functionality of
the method from
whose description it
was extracted. The
ontology-engineer has
to decide by himself
which of the extracted
pairs are significant.
We support this deci-
sion in two ways. First,
we provide an intuitive
display of the pairs in
which the engineer can
inspect the method de-
scriptions from which
each pair was extracted
and therefore decide on
the significance of that
pair. Second, we have
experimented with
several pair ranking
schemes to determine

Figure 2: The Extraction process.

the most significant pairs and to present the end-user with the
pairs sorted according to their significance. These schemes range
from measuring pair frequency to combining information about the
weight of the constituting terms as well as the number of APIs in
which a pair appears. Describing these schemes is beyond the scope
of this paper. Step 3 filters out all the significant pairs.
Step4 - Ontology Building - Manual with support. The ontology
engineer attributes a concept to each significant pair. It is often the
case that different pairs represent the same concept. For example,
both “load graph” and “add model” can be attributed the same
semantic category,AddOntology. The set of derived concepts is a
basis for building the domain ontology. Arranging these concepts in
a hierarchy is still a manual process.

3.1 Results

We applied the extraction mechanism on the collection of all meth-
ods of the three tools. The corpus consisted of 112 documents and
resulted in the extraction of 180 pairs (80 distinct) from which 31
distinct concepts were derived. Table 1 shows all the individual ex-
tracted concepts (the number between brackets represents the num-
ber of times the corresponding concept was derived), divided in con-
cepts that correspond to the ones in the manual ontology and con-
cepts that were newly introduced because they were neglected while
building the manual ontology. Eighteen concepts from the manual
ontology were identified (out of 36).

A number of new concepts were extracted as well, which were not
considered during the manual ontology building due to several rea-
sons. First, concepts that denote implementation details (related to
transactions, repositories) are tool specific functionalities and were
not interesting for our task to determine RDF based functionality.
Second, concepts related to the creation of ontology elements were
ignored because only Jena offers such methods. Finally, “Modify-

Model” actually denotes the effect of many methods and we over-
looked it during modelling.

Nr. Concept New Concept
1 AddData AbandonChanges
2 AddOntology (2) BeginTransaction
3 AddStatement(2) CommitTransaction
4 ContainsStatement CreateOntology
5 ContainsTriple CreateProperty
6 QueryMethod CreateResource
7 RDQLQueryMethod CreateStatement (2)
8 RQLQueryMethod GetURL
9 SerQLQueryMethod GetUsername
10 RemoveAll ModifyModel
11 RemoveOntology RetrieveRepositories
12 RemoveStatement(2) SupportSetOperations
13 RetrieveAllStatements SupportsTransactions
14 RetrieveData (2)
15 RetrieveObject(2)
16 RetrieveOntology(2)
17 RetrieveProperty
18 RetrieveResource

Table 1. Extracted Pairs - Original Corpus

To verify the validity of the extraction process we applied it to a
different corpus than the one which inspired its design. The new cor-
pus contains the methods of four other ontology tools: InkLing3, the
completely rewritten API of Sesame, the Standford RDF API4 and
the W3C RDF model5. The corpus containing 75 methods resulted
in 79 pairs (44 individual pairs) synthesized in 14 concepts shown
in Table 2. We conclude that our method worked on a new corpus
and allowed us to extract methods from each four main categories
identified by the Golden Standard.

Nr. Concept New Concept
1 AddData(4) CreateOntology
2 AddOntology VerifyData
3 AddStatement
4 ContainsTriple
5 QueryMethod (3)
6 RemoveAll
7 RemoveStatement(3)
8 RetrieveAllStatements
9 RetrieveData
10 RetrieveObject
11 RetrieveProperty
12 RetrieveSubject

Table 2. Extracted Pairs - New Corpus

One of the inconveniences of the extraction method is that many
of the extracted pairs were not significant and did not lead to any
concepts. Inspecting all these pairs (as in step S3) becomes a huge
overhead. Therefore we wish to maximize the number of extracted
significant pairs in comparison to the insignificant ones.

3 http://swordfish.rdfweb.org/rdfquery/
4 http://www-db.stanford.edu/ melnik/rdf/api.html
5 http://dev.w3.org/cvsweb/java/classes/org/w3c/rdf/

4 Fine-tuning by Evaluation

Addressing the conclusion of the previous Section, our goal is to fine-
tune the extraction process so that the output contains a minimum
number of insignificant pairs. The success of the ontology extraction
process as a whole depends on the success of all the individual steps
of the process. These steps are: 1) extracting pairs from the corpus
(S1 and S2), 2) filtering out significant pairs (S3) and 3) attributing
a concept to each significant pair (S4). Therefore we have devised
an evaluation method to assess the quality of each extraction step.
This helped us not only to provide a better output, but also to get an
understanding of the process’ performance and to improve it from
other perspectives as well.

In this Section we present the main evaluation stages (4.1) and
their employment for fine-tuning the extraction process (4.2).

4.1 A three stage evaluation process

We distinguish several stages of evaluation.
Stage 1 - evaluating pair extraction.At this stage we evaluate

the quality of the first two steps of the ontology extraction process,
i.e. the POS tagging (S1) and the pair extraction (S2) steps. We use
the following terminology:

• allpairs - all the manually identified pairs that we wish to extract
with the pattern applied in S2.

• validpairs - all pairs that fulfill the extraction pattern and were
extracted from the corpus.

• invalidpairs - all pairs that do not fulfill the extraction pattern but
were extracted from the corpus.

Further, we define the following metrics, adapted from the well-
known information retrieval measures: recall and precision.

Recall =
validpairs

allpairs

Precision =
validpairs

validpairs + invalidpairs

Quality criteria. We consider a pair extraction successful if both
metrics have a high value: high recall indicates that many valid pairs
are extracted from the corpus, while high precision indicates the pre-
dominance of valid pairs.

Stage 2 - evaluating pair significance.Evaluating the extraction
process from the point of view of pair significance targets the im-
provement of the third step of the ontology extraction process. We
use the following terminology:

• all significantpairs - all valid pairs that were classified as sig-
nificant during the manual inspection of the corpus.

• significantpairs - all extracted significant pairs.
• insignificantpairs - all extracted insignificant pairs.

Similar to the previous evaluation stage, we will compute recall
and precision for the significant pairs. We define two metrics:

SRecall =
significantpairs

all significantpairs

SPrecision =
significantpairs

significantpairs + insignificantpairs

Quality criteria.An extraction is successful if the ontology builder
is presented with a high ratio of significant pairs from those existent
in the corpus (high SRecall), and if there are only few insignificant
pairs (high SPrecision) in the set of all extracted pairs.

Stage 3 - evaluating ontology coverage.At this stage we com-
pare the extracted ontology with the manually built ontology. There
has been little work in measuring similarity between two ontologies,
one of the recent advances being the work published in [6]. We are in-
terested to know how many of the concepts contained in the Golden
Standard could be extracted, and therefore a simple lexical overlap
measure suffices. We have adopted this measure from [2]. LetLO1

be the set of all extracted concepts andLO2 the set of concepts of
the Golden Standard. The lexical overlap (LO) equals to the ratio of
the number of concepts shared by both ontologies and the number of
concepts we wish to extract:

LO(O1, O2) =
|LO1 ∩ LO2 |

|LO2 |

Human ontology building is not perfect. We encountered cases
when the extraction process prompted us to introduce new concepts
which were overlooked during the manual process (see some exam-
ples in 3.1). Let us therefore introduce an ontology improvement (OI)
metric which equals to the ratio of new pairs (expressed as the set
difference between extracted and desired pairs) and all pairs of the
manual ontology.

OI(O1, O2) =
|LO1 \ LO2 |

|LO2 |

As a quality criteria we aim to increase the value of both metrics.

4.2 Fine-tuning the Ontology Extraction Process

Methodologically, there are three main steps in a fine tuning pro-
cess. First, we evaluate the performance of the extraction process
for the evaluation metrics defined (4.2.1). Second, according to its
performance we decide on several modifications that could enhance
the performance of the extraction (4.2.2). Finally, we evaluate the
enhanced process (on the original and a new dataset) to check if the
predicted improvements took place, i.e. if the fine-tuning process was
successful (4.2.3).

4.2.1 Evaluating the extraction process

We ran our extraction process on all the available javadoc documen-
tation for a method. We used an extraction pattern to identify all verb-
noun pairs, where the verb is in present tense, past tense or gerund
(ing-form). Between the verb and the noun(phrase) there can be any
number of determiners(e.g. “the”, “a”) and/or adjectives.

To fine-tune this extraction process we wanted to determine how it
performs in the two different parts of the method description. Our ob-
servation was that the first textual description of the method (referred
to as “text”) was grammatically much more correct than the rest of
the method description dealing with the parameters of the method
(referred to as “parameters”). We have also observed that the text part
contains the pairs describing the functionality of the method, while
in the parameters part of the descriptions verbs mostly describe the
parameters of the method. Another observation was that the predom-
inant number of verbs are in their base (present) form, especially
those that describe the method functionalities. Accordingly, to verify
our observations, we have evaluated the ontology extraction process

in these two different parts of the method description and for the three
different verb forms.

Stage 1 - evaluating pair extraction.To perform this evaluation
step we manually counted the number of extractable pairs in the cor-
pus, in both parts of the description (text and parameter) and for all
three verb tenses.

Doc part/verb form Text Parameters Corpus
Present 130 41 171(88%)

Past Tense 0 1 1(1%)
Gerund 10 12 22(11%)
Total 140(72%) 54(28%) 194(100%)

Table 3. Distribution of pairs over description parts and verb forms.

Analyzing the results depicted in Table 3, we conclude that there
are much more pairs in the textual description (72% of all pairs in
the corpus) compared to the parameter section (28%). Also, most
pairs contain verbs in present form, in both areas of the documents.
Globally, pairs with present tense verbs represent 88% of the pairs
in the corpus, compared to 1% for pairs having a past tense verb and
11% for gerund based pairs.

After the extraction process, we have counted the valid and invalid
pairs and computed the precision and recall of the pair extraction, as
shown in Table 4.

Text Parameter Corpus
Valid 85 28 113

Present Invalid 8 1 9
Recall 0.65 0.68 0.66

Precision 0.91 0.96 0.93
Valid 0 1 1

Past Invalid 19 11 30
Tense Recall - 1 1

Precision 0 0.08 0.03
Valid 9 12 21

Gerund Invalid 1 3 4
Recall 0.9 1 0.95

Precision 0.9 0.8 0.84
Valid 94 41 135

Total Invalid 28 15 43
Recall 0.76 0.67 0.69

Precision 0.73 0.77 0.76

Table 4. Evaluation of the extraction process for stage 1.

We derive several observations. First, the recall of pairs with
present tense verbs is quite low (0.66 globally). This is due to the
fact that, often, present tense verbs appear on an unusual position -
the first word in the sentence - a position being attributed to nouns.
The used POS tagger often fails in such cases, especially when the
verbs can be mistaken for nouns (e.g. lists, uploads). Second, the
precision of extracting present tense verbs is high (0.93 globally). Fi-
nally, both the recall (0.69) and the precision(0.76) of the extraction
on the corpus as a whole are low. The decrease of recall is caused by
the existence of many present tense verbs which are often mistaken
for nouns. The precision is lowered by the past tense verbs. We con-
clude that, to increase recall we need a specialised POS tagger that
would recognise verbs on the first position in a sentence. Second, to
increase precision we can simply give up filtering past tense verbs.

Stage 2 - evaluating pair significance.As a first step of this stage
we have identified all significant pairs in the corpus, for all of the six
categories of verbs. The value between brackets in Table 5 shows the
ratio of significant and all pairs in the corresponding categories. We
refer to it as significance.

Doc part/verb tense Text Parameter Corpus
Present 109(0.84) 20(0.49) 129(0.75)

Past Tense 0(0) 0(0) 0(0)
Gerund 5(0.5) 3(0.25) 8(0.36)

Total 114(0.81) 23(0.43) 137(0.7)

Table 5. Significance of different pair categories.

We can derive a set of observations based on this data. First, the
significance in the category of pairs based on present tense verbs
is much higher than for pairs containing verbs in other forms. This
is true for both parts of the description, and for the whole corpus
as well. Second, the significance in the textual description (0.81) is
much higher than in the parameter part (0.43). Third, the significance
of the corpus is affected by the low significance in the parameter
section.

Given that only a few significant pairs have past tense and gerund
verbs, we have decided to measure the significance recall and preci-
sion only for the text and parameter part of the description, this time
taking all verb forms globally into account (see Table 6).

Text Parameter Corpus
Significant 73 16 89

SRecall 0.64 0.69 0.65
SPrecision 0.59 0.28 0.5

Table 6. Evaluation of the second stage.

Low significance recall (0.65) shows that a lot of significant pairs
are not extracted from the corpus. This is a direct consequence of
the low extraction recall of pairs in general (i.e. many of the pairs
which are not extracted are significant). The significance precision is
almost double in the textual description (0.59) versus the parameter
description (0.28). This reflects that pairs extracted from the textual
part are much more likely to be significant than pairs extracted from
the parameter part. Globally, the significance precision of the corpus
is quite low (0.5), mostly due to the low significance precision of the
extraction from the parameter part.

Stage 3 - evaluating ontology coverage.The individual extracted
concepts are presented in Table 1. Eighteen concepts from the man-
ual ontology were identified (out of 36). This yields in an lexical
overlap ofLO = 0.5, a very good result given the fact that lot of sig-
nificant pairs were not extracted at all from the corpus. Besides this,
13 new concepts were identified, therefore resulting in an ontology
improvement ofOI = 0.36. In other words we were able to extract
half of the concepts that we extracted manually and we suggested
improvements that could enlarge the manual ontology with 36%.

4.2.2 Conclusions for Enhancements

Based on the performance of the extraction process we decided to
perform two major modifications in order to achieve our fine-tuning

goal. First, we decided to ignore the parameter section, because it
contains a small number of verbs (28%), and only 43% of the exist-
ing pairs are significant. This translates in a negative influence over
the significance recall of the corpus. Also, we will only extract pairs
with present tense verbs, because they represent the majority of verbs
(88%) and are predominantly significant, especially in the text sec-
tion. These measures serve the decrease of insignificant pairs but do
not solve the recall problem. For that we need to train the POS tagger,
a task regarded a future work.

4.2.3 Quality increase of the enhanced process

The particularities of the corpus influenced the fine-tuning of the pro-
cess. Therefore we check the improvement of the performance both
on the original corpus and a new corpus. Table 7 summarizes the
evaluation results for the original and then the enhanced extraction
process applied on the two data sets.

Original Corpus New Corpus
Ev.Step Ev. Matrics Orig. Enh. Orig. Enh.

1 Recall 0.69 0.65 - -
Precision 0.76 0.98 - -

2 SRecall 0.65 0.62 - -
SPrecision 0.5 0.78 0.48 0.67

3 LO 0.5 0.39 0.3 0.25
OI 0.36 0.36 0.05 0.03

Table 7. Comparison of extraction performance of the original and the
enhanced process for two data sets

For the first corpus, the enhanced process did not improve the re-
call. However the precision of the output was highly increased in
both evaluation stages: 22% for the first stage and 28% for the sec-
ond. This serves our goal to present the ontology engineer with as
few insignificant pairs as possible. Despite the heavy simplifications
the ontological loss was minimal (11%). The enhanced process only
missed 4 concepts because their generating pairs appeared in the pa-
rameter section (QueryMethod) or had verbs in past tense form (Re-
trieveObject, RetrieveProperty, RetrieveResource).

For the second corpus, we did not perform any manual inspection
of the corpus and therefore could only compute the SPrecision and
the ontology comparison metrics. Similar to the previous corpus, the
pair significance increased (almost 20%) and resulted in a small de-
crease of ontology overlap (only 5%).

This Section described an evaluation method that allowed us to get
a better understanding of the corpus and the behavior of the extrac-
tion process on this corpus. The derived observations helped us to
fine-tune to extraction so that, despite heavy simplification of the in-
put and the extraction pattern, a much “cleaner” output was achieved
without loosing significant ontological information. The improve-
ments were verified on the corpus used for fine-tuning and a new
corpus as well.

5 Related Work

The problem of automating the task of web service semantic acquisi-
tion, to our knowledge, was only tackled by the work of Heß[5]. They
employ the Naive Bayes and SVM machine learning algorithms to
classify WSDL files (or web forms) in manually defined task hierar-
chies. Our work is complementary, since we address the acquisition

of such hierarchies. Also, our method does not rely on any manually
built annotation for training as the machine learning techniques do.

From the ontology learning community, the work that is method-
ologically closest to our solution is the work of Cimiano[2]. They
identify a set of verb-noun pairs with the intention to build a tax-
onomy by using Formal Concept Analysis theory. As a result, their
metrics for filtering the best pairs are different than ours. They define
and evaluate three such metrics. Finally, they compare their extracted
ontology to a manually built one. We have adopted one of the metrics
they use for ontology comparison.

6 Conclusions

The hypothesis which drove the work in this paper was that, given
the similarity in functionality between web services and their under-
lying implementation, domain ontologies used to semantically de-
scribe web services could be derived from the documentation associ-
ated with the underlying software. In this paper we show that APIs of
tools are rich sources for building complex domain ontologies. Cur-
rently we only investigated the domain of RDF based ontology stores
but, in the future, we will extend our work to other domains as well.

We also describe a low-investment method for extracting types of
method functionalities. Even if this is just a small part of the deriv-
able information from APIs, it is already a substantial support for
the ontology engineer. One of the limitations of our work is that our
corpus is very small for applying statistical techniques. To address
this issue we plan to enlarge our corpus and also to use extraction
methods better suited for small corpora.

Finally, we use a multi-stage evaluation method to asses the qual-
ity of the extraction process and to enhance it accordingly. The en-
hanced process outperforms the original process on the original and
a new corpus as well.

Our final conclusion is that the results of this work are encouraging
to further investigate ontology extraction from software APIs.

ACKNOWLEDGEMENTS

We thank P. Cimiano and J.Tane for their support with the Text-
ToOnto tool, which served as a starting point for our implementation.

REFERENCES
[1] J. Broekstra, A. Kampman, and F. van Harmelen, ‘Sesame: A Generic

Architecture for Storing and Querying RDF and RDF Schema’, in
Proceedings of the First International Semantic Web Conference, eds.,
I. Horrocks and J. A. Hendler, LNCS, Sardinia, Italy, (2002).

[2] P. Cimiano, S. Staab, and J. Tane, ‘Automatic Acquisition of Taxonomies
from Text: FCA meets NLP’, inProceedings of the ECML/PKDD Work-
shop on Adaptive Text Extraction and Mining, Cavtat–Dubrovnik, Croa-
tia, (2003).

[3] The OWL-S Services Coalition. OWL-S: Semantic Markup for Web Ser-
vices. White Paper. http://www.daml.org/services/owl-s/1.0/owl-s.pdf,
2003.

[4] A. Gomez Perez. A survey on ontology tools. OntoWeb Delieverable
1.3, 2002.

[5] A. Heß and N. Kushmerick, ‘Machine Learning for Annotating Semantic
Web Services’, inAAAI Spring Symposium on Semantic Web Services,
(March 2004).

[6] A. Maedche and S.Staab, ‘Measuring similarity between ontologies’, in
Proceedings of EKAW. Springer, (2002).

[7] B. McBride, ‘Jena: A Semantic Web Toolkit’,IEEE Internet Computing,
6(6), 55–59, (November/December 2002).

[8] D. Oberle, R. Volz, B. Motik, and S. Staab,An extensible open soft-
ware environment, chapter III: Ontology Infrastructure, 311–333, Inter-
national Handbooks on Information Systems, Springer, 2003.

