
This document is downloaded from the
VTT’s Research Information Portal
https://cris.vtt.fi

VTT
http://www.vtt.fi
P.O. box 1000FI-02044 VTT
Finland

By using VTT’s Research Information Portal you are bound by the
following Terms & Conditions.

I have read and I understand the following statement:

This document is protected by copyright and other intellectual
property rights, and duplication or sale of all or part of any of this
document is not permitted, except duplication for research use or
educational purposes in electronic or print form. You must obtain
permission for any other use. Electronic or print copies may not be
offered for sale.

VTT Technical Research Centre of Finland

A fuel cell power unit and hydrogen storage for the research vessel
Aranda
Pohjoranta, Antti; Ihonen, Jari; Tommola, Fredrik ; Hannesen, Uwe ; Kajava, Mikko ; Turcer,
Filip ; Ferrara, Silvia ; Karimäki, Henri ; Grand-Clément, Laurence; Pajala, Jukka

Accepted/In press: 01/01/2020

Document Version
Peer reviewed version

License
Unspecified

Link to publication

Please cite the original version:
Pohjoranta, A., Ihonen, J., Tommola, F., Hannesen, U., Kajava, M., Turcer, F., Ferrara, S., Karimäki, H., Grand-
Clément, L., & Pajala, J. (Accepted/In press). A fuel cell power unit and hydrogen storage for the research
vessel Aranda. Paper presented at 8th Transport Research Arena, TRA 2020 - Conference cancelled, Helsinki,
Finland.

Download date: 28. Apr. 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by VTT Research System

https://core.ac.uk/display/292602843?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://cris.vtt.fi/en/publications/d537a5bd-e9d7-470e-af72-8f7d5bfe7e1c


 

Proceedings of 8th Transport Research Arena TRA 2020, April 27-30, 2020, Helsinki, Finland 

A fuel cell power unit and hydrogen storage for the research 

vessel Aranda 

Antti Pohjorantaa*, Jari Ihonena, Fredrik Tommolaa, Uwe Hannesenb, Mikko Kajavac, 

Filip Turcerc, Silvia Ferrarad, Henri Karimäkie, Laurence Grand-Clémentf, Jukka 

Pajalag 

aVTT Technical Research Centre of Finland, Tietotie 4C, Espoo, 02150, Finland 
bSwiss Hydrogen, Passage du Cardinal 1, CH-1700 Fribourg, Switzerland 

cABB, Merenkulkijankatu 1, Helsinki, 00980, Finland 
dOMB Saleri, 38c Rose di Sotto, 25126, Brescia, Italy 

ePowerCell Sweden, Ruskvädersgatan 12, SE-418 34, Gothenburg, Sweden 
fPersEE, 83 rue Pierre Corneille, Lyon, FR-69003, France 

gFinnish Environment Institute, Latokartanonkaari 11, 00790 Helsinki, Finland  

Abstract 

The development and technical aspects of a hydrogen fuel cell power system and accompanying hydrogen fuel 

storage intended for maritime applications is presented. The fuel cells are proton exchange membrane (PEM) type 

and the power unit has a nominal net AC power output of 165 kW. The hydrogen storage capacity is ca. 80 kg, at 

a designed 300 bar maximum storage working pressure. For development, testing and safety reasons the fuel cell 

power system, the related electrical equipment and the hydrogen storage are constructed in a modular fashion, into 

two modified sea containers with dedicated compartments for each of these three functions. The system is tested 

both on land as well as on-board the research vessel Aranda, while operating on the Baltic Sea.    
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1. Introduction and background 

Striving to meet the IMO (International Maritime Organization) targets for 50% CO2 emission reduction by 2050 

(Talanoa dialogue, 2018), the shipping industry is looking towards zero-emission propulsion technologies. Power 

production based on fuel cells (FCs) and hydrogen (H2) is considered to offer a viable technology for this purpose. 

 

The research project MARANDA - Marine application of a new fuel cell powertrain validated in demanding arctic 

conditions  - was launched in 2017 to evaluate the feasibility of hydrogen-based production of power and heat on-

board a sea-going vessel (MARANDA (2017)). In this project, a 165 kW (AC net) fuel cell system and an 

accompanying hydrogen storage of 80 kg capacity are installed on-board the marine research Aranda, which 

operates regularly on the Baltic Sea. At the time of writing in October 2019, system build has started and the 

approval process is on-going with the Finnish flag state authority Traficom. The system will be deployed on-board 

Aranda during May 2020, after build and testing on-land.  

 

This paper reports the technical design and selected features of the system. The purpose of the paper is to illustrate 

the challenges related to deploying a hydrogen-carrying fuel cell power system, which is subject to strict safety 

requirements and is sensitive to particular ambient conditions such as saline marine air, and to present potential 

technical solutions to them.  

 

As the scope of this paper is restricted to the case in question, readers looking to investigate the general status of 

hydrogen and fuel cells in waterborne and maritime applications are requested to see recent reviews by e.g. EMSA 

(2017), DNV-GL (2019), LR (2019), SANDIA (2017), IEA (2019) and MCT (2019).  

 

2. Technical system overview 

The rated net output power of the fuel cell (FC) 

power plant is 165 kW. The FC output power is 

supplied to the Aranda vessel as 660 V three-

phase AC electricity and is used to power 

auxiliary devices, when considered appropriate 

by the ship operating crew. The hydrogen (H2) 

fuel is stored as compressed gas, in a storage 

pressure up to 300 bar under normal conditions. 

The maximal capacity of the hydrogen storage 

system is 80 kg of hydrogen, which enables 

operating the fuel cell plant on maximum power 

for ca. eight hours. Thus, the continuous 

operation of the plant per re-fill is limited to only 

several hours at a time due to the system 

structure. 

2.1. Fuel cell power system 

The FC system is built into a 20-foot modified 

container. However, a gas-tight wall splits the 

container into two compartments with the FC 

system occupying only one compartment 

(denoted FC space). The other part of the FC 

container holds the equipment space (EQ space), described further in Section 2.3, below. This compartment 

arrangement is made due to reasons of gas safety (discussed in Section 3). An illustration of the FC system 

container is shown in Fig. 1.  

 

The FC space contains the fuel cell stacks and the process equipment immediately required to support the power 

production in the stacks. In addition, there are the relevant ventilation and safety systems (Sect. 3). The FC power 

equipment are constructed into two identical fuel cell power modules (FCPMs), which each contain one fuel cell 

stack, an air compressor and humidifier, the primary cooling subsystems, the instrumentation and actuators. Each 

Fig. 1 - A CAD illustration of the fuel cell container. A gas-tight wall is 

between the fuel cell space and the equipment space compartments. 
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FCPM is mounted on a dedicated support frame. The 

fuel cell space has an explosion relief panel in its 

roof and the container floor is made of steel.  

2.2. Hydrogen storage 

The hydrogen storage container is a modified 10-

foot container. This container, illustrated in Fig. 2 

forms a single compartment, which holds the high-

pressure storage cylinders for storing the hydrogen 

fuel. In addition, there are the hydrogen supply 

system as well as the fully redundant ventilation and 

safety systems relevant for this container. Electrical 

devices in the container which are intended to remain 

operable at all times (e.g. ventilation blowers, 

solenoid valves, pressure sensors, hydrogen 

detectors) are EX-rated. The hydrogen pipeline 

running from the H2 storage container to the FC 

space is routed via the ambient (through the roofs of 

both containers). The H2 container has an A60-grade 

fire insulation in its walls and roof and the container 

floor is made of steel. Explosion relief panels are 

installed on the roof of the container. 

2.3. Power electronic and control equipment 

The EQ space (illustrated in Fig. 1) holds the 

automation and control devices, the signal input/output interface devices, FC power converters and filters, the 

auxiliary power supply distribution and a cooling unit for the power electronics. Under normal conditions, no 

hydrogen enters the EQ space.  

 

All cables and pipes, which run between the FC space and the EQ space, are led via the ambient and thus no direct 

through-holes between the two spaces exist. This approach is taken to ensure that the high-voltage equipment 

located in the equipment space may be operated safely as thorough EX-proofing of all devices in the EQ space is 

not possible for the time being.  

2.4. Interfacing with Aranda 

The fuel cell relies on the Aranda vessel in terms of auxiliary power, cooling, as well as the fire alarm system. In 

addition, the power produced by the fuel cells is fed from the system to the Aranda power network, and to this 

end, the fuel cell system power production and the Aranda power management system (PMS) communicate via a 

data link. The location of the containers on the deck of Aranda is illustrated in Fig. 3. All cooling, power and data 

connection points are located towards the rear of the vessel from the containers where a dedicated site for gas-tight 

lead-through of cables and pipes below deck is prepared. 

 

 

3. Technical details of main subsystems 

3.1. Fuel cell power modules 

The purpose of the fuel cell power module (FCPM) is to convert hydrogen fuel and oxygen in the air into 

electricity. To this end, the module contains a fuel cell stack and an array of auxiliary (so-called balance-of-plant, 

BoP) components. The fuel cell stack in the module consists of 455 proton exchange membrane fuel cells separated 

from each other by metallic bi-polar plates. Hydrogen fuel is supplied to each cell in the stack by pressure gradient-

driven flow, from the H2 storage. Air is supplied to the stack by an air compressor, driven by an electric motor.  

 

To maintain suitable operating conditions in the stack, the air fed to the stack is humidified in a pre-humidifier and 

Fig. 2 - A CAD illustration of the H2 storage container. Four gas 

cylinder bundles ("bottle packs") can be seen inside the container. 
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the air pressure is adjusted by a back-pressure valve. Additionally, to adjust the stack temperature a cooling system, 

circulating a coolant inside the stack exists in the module. Heat from the stack is extracted by this cooling system 

to a heat exchanger, through which the heat is further transferred to the Aranda main space heating circuit.  

 

Power from the stack is extracted by leads connected to the very first and last cells in the stack. The net power 

output produced by the FC power module may be adjusted between 15-100% of its nominal power, which in this 

case is ca. 100 kW. As the nominal parasitic power consumption of the BoP components in the module is ca. 15 

kW, this equals ca. 85 kW net power output from the module. As the power drawn from the FCPM is adjusted, the 

internal control equipment of the module manipulate the fuel feed, air feed, cooling and other process parameters 

to maintain the module in good operating conditions. 

 

In the Aranda FC system there are two identical FCPMs. Each FCPM can be operated independently of the other, 

which adds redundancy of the system and enable studying various operating profiles. The FC power modules were 

delivered by Swiss Hydrogen SA / Plastic Omnium, Switzerland and they are based on the S3 stack by PowerCell 

Sweden (PowerCell S3, 2019). 

3.2. H2 storage 

The function of the H2 storage is to hold the gaseous hydrogen fuel. In order to facilitate a sufficient fuel storage 

capacity, the H2 storage is designed to support a nominal gas storage pressure of 300 bar. With this rating, the 

Aranda H2 storage system capacity amounts up to ca. 80 kg of hydrogen gas. 

 

The Aranda H2 storage consists of 72 composite cylinders (Type IV) split into four 18-cylinder bundles. In each 

bundle, the cylinders are connected in parallel by a collector line. Each bundle has a manual valve for closing the 

line to the bundle external connector (VTI Ventil Technic, K50-1.0-S12, stainless-steel body diaphragm valve). A 

H2 cylinder bundle weighs ca. 640 kg when empty (+20 kg when full), resulting in a total weight of ca. 2700 kg 

for the four full gas storage bundles. The cylinder bundles to the Aranda H2 storage are provided by Carbotainer 

S.L., Spain (Carbotainer, (2019)). 

 

The cylinders and the bundles both are TPED-approved (EU TPED, 2010) and the bundle structure as well as 

functions abide to standard multi-element gas container (UNMEGC) characterization according to the regulations 

in ADR (2017). This enables either transferring the cylinder bundles to a re-fill site by truck or simply exchanging 

the bundles for a compatible replacement delivered at the port. Swapping of the empty cylinder bundles to filled 

ones may be carried out by the ship crew on the deck of Aranda, and lifting bundles to/from ground can be done 

by the crane installed on Aranda. 

Fig. 3 - An illustration of the Aranda vessel and the FC and H2 containers’ site on its deck. (N.B., in this illustration both containers are 

generic 20-foot containers.) 
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3.2.1. Take-aways from the H2 storage development effort 

During the early stages of the work, also other arrangements than modestly-sized, detachable TPED-approved 

cylinder bundles were investigated for implementing the hydrogen storage system. Due to lack of a hydrogen 

bunkering site at Aranda’s home harbor, Helsinki, the direct re-filling of a fixed hydrogen storage by a hose from 

a land-side re-fill system was quickly considered infeasible. However, as an alternative, a movable mid-size 

hydrogen storage module option was designed during the project but eventually also found infeasible for reasons 

discussed below. 

 

For compatibility with the land-side hydrogen infrastructure, it would have been beneficial to be able to fill the 

hydrogen storage from automotive hydrogen re-fill stations (HRSs). To this end, the hydrogen storage module was 

designed to consist of multiple EC79-approved (EC79 (2009)) automotive fuel cylinders with EC79-approved 

functional components for hydrogen supply and re-fill.  

 

For operating on the Baltic Sea under potentially icing conditions, the hydrogen storage was designed to be housed 

in a modified container, which is otherwise gas-tight except for the motorized ventilation. Furthermore, such a 

containerized module could be transported with a standard logistics truck from the Aranda vessel to the re-fill site 

and back.  

 

In the course of the work it became clear that such a containerized hydrogen storage module consisting of ad-hoc 

componentry could be assessed for safety and approved for use at sea on-board the Aranda vessel. However, in 

order to receive approval for use on road in Europe according to the ADR regulation or the TPED directive, the 

module design and construction would not benefit from an on-sea approval but would also have to undergo 

significant destructive test programs particular to on-road transport. Subsequently, the mismatch between 

application-specific on-sea requirements and the general on-road freight and automotive requirements was 

highlighted in many ways, for instance:  

- Whereas a gas-tight, ventilated compartment is required for on-sea use under icing conditions, on the road 

a naturally ventilated, open or tarpaulin-covered frame structure is preferred for flammable gas freight 

- While the EC79 automotive hydrogen storage cylinders are certified to a working pressure of 350 or 700 

bar, the TPED pressure ratings are usually lower or higher, thus mandating either an interim pressure-

regulator for re-fill or an over-dimensioned storage vessel, respectively 

o Additionally, the temperature range for TPED approval may be narrower (e.g. -20…+65°C) than 

that for EC79 (e.g. -40…+85°C). The EC79 temperature range reaches lower due to generally 

less controllable operating conditions of automotive solutions, but it goes higher due to the 

requirements of re-filling at HRS’s. Thus utilizing TPED cylinders with land-side HRS 

infrastructure is again complicated 

- Whereas low weight is beneficial in movable hydrogen storages, and thus composite material storage 

cylinders are preferred for this purpose, the TPED (and ADR) are principally intended for application 

only to metallic vessels (although recently exceptions are becoming common) 

Because of such technical and regulatory complications, the hydrogen storage and re-fill solution was designed 

and built so that the on-sea and on-land operation can essentially be separated on the deck of the vessel, and the 

regulations relevant to the two modes of transport may be abided to. 

3.3. H2 supply subsystem 

The hydrogen supply system ensures that hydrogen is provided to the fuel cell in the correct pressure. Furthermore, 

several components, which are elementary structural parts of the H2 supply system, include safety features aiming 

to guarantee that hydrogen flows only where intended to and only when intended to. 

 

The hydrogen supply system consists of four identical hydrogen pre-conditioning and safety units (“units”) where 

each unit is independently connected to one of the four H2 storage bundles. Each unit contains a filter, two pressure 

sensors (high and low pressure side), a two-stage pressure reduction by pressure regulating devices, a thermally 

activated pressure relief device (TPRD) and an overpressure relief valve at both regulated pressure levels as well 

as two solenoid-operated hydrogen feed shut-off valves. A collector line for hydrogen feed from the H2 storage 

container to the fuel cell container exists only after each pre-conditioning unit.  

 

In the collector line, there are manual valves for the manual shut-off of the H2 supply system in case of 

maintenance or other decommissioning, requiring separation of the H2 container and the FC container. A solenoid-
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operated shut-off valve (normally open) for enabling bleed of the H2 supply line to a controlled location in case 

of malfunction of the H2 supply shut-off valves is positioned after the two shut-off valves in the H2 supply unit. 

Additionally, there is a hydrogen feed line shut-off valve on the receiving side. This valve arrangement constitutes 

a so-called double-block-and-bleed set-up in the H2 feed line, as required by safety regulations. The H2 supply 

subsystem components are designed and manufactured for marine use particularly, and delivered by OMB Saleri, 

Italy. 

3.4. Power electronics and control 

The main elements of the power electronics subsystem are the FCPM-specific DC/DC converters, the DC/AC 

inverter and the filters on both input and output sides of the converter train, illustrated in Fig. 4. In the direction of 

power flow, first a remote-operated, mid-voltage (~500 VDC) contactor separates the power electronics from the 

voltage source (the fuel cell stack). Then, a choke-type filter is used to protect the fuel cell stack from the possible 

current ripple caused by the DC/DC converter next in line. The DC/DC converter regulates the DC voltage from 

the stack to a constant level, which is suitable for subsequent conversion by the DC/AC inverter. Finally, after the 

DC/AC inverter there is a filter and an isolation transformer to reduce possible disturbances towards the vessel 

power system. The power is fed to the vessel system as three-phase 640 VAC power (without neutral). The power 

electronics subsystem is provided by ABB. 

 

 

To ensure operability of the FC power converters, a dedicated cooling system for the power electronics devices, 

in particular the DC/DC converters is installed in and on the roof of the equipment space. The cooling system 

transfers the low-temperature heat generated in the power electronic devices to a liquid-to-air heat exchanger, from 

where the heat is dissipated to the ambient. 

 

The FCPM-specific DC/DC converters are used to control the load per each FCPM, based on a power requirement 

from the Aranda vessel side. To administrate both the fuel cell process as well as the top-level system control, 

multiple controllers are deployed, each with their specific tasks as follows: 

1) Process control of the FCPM is carried out by programmable logic controllers (PLCs), with one controller 

for each FCPM. These controllers manipulate the FCPM actuators in order to maintain suitable operating 

conditions for the fuel cell stack and so reach sufficient power production at each module. 

2) System level control is carried out by a dedicated PLC, which communicates with the FCPM-level PLCs, 

the power electronics devices, the H2 storage system as well as the Aranda vessel automation system.  

3.4.1. Considerations on power electronics for retrofit integration 

The Aranda vessel does also have a high-capacity battery energy storage system. Thus it would be fully feasible 

to connect the fuel cell power to the DC bus of the vessel. This arrangement would make the DC/AC inverter, the 

filter after it as well as the isolation transformer, a large and heavy component, unnecessary. In addition, conversion 

losses (esp. when charging the battery with the fuel cell) could be smaller. However, such an integration of the FC 

power source with the existing vessel DC bus would require seamless integration with the battery control system, 

which in a retrofit case may be complicated to realize. 

Fig. 4 - A line diagram illustrating the power electronics train of the FC power plant from the fuel cell (left) towards the vessel (right). 
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The power conditioning arrangement chosen in this work minimizes risks related to integrating the fuel cell power 

source with the Aranda on-board power system. Connecting to the power system via the main switchboard with a 

standard AC power connection is possible on the ship power management and integrated automation system 

(PMS/IAS) level, without direct integration with the battery control system or the diesel generator governors.  

3.5. Nitrogen subsystem 

The system includes a dedicated nitrogen gas storage and supply system to provide improved system operability 

and safety. The nitrogen gas is stored in a standard metallic compressed gas bottle (C-type container), at a 

maximum rated storage pressure of 200 bar. Nitrogen is supplied from the bottle through remote-operated solenoid 

valves in order to purge the fuel cell power module of hydrogen gas, when the system is not in operation. 

Furthermore, nitrogen is also used to purge the H2 feed line in order to minimize the components containing 

hydrogen gas in the system when it is not in use. 

 

 

4. System safety and operability at sea 

The safety of the FC and H2 system is based on several mechanisms: (i) continuous monitoring for gas leakage 

and fire, (ii) controlled ventilation of potentially H2-containing spaces, (iii) EX-proof installation of electrical 

devices potentially in contact with H2-containing atmosphere, (iv) an intrinsically safe system normal-state and 

(v) passive protection measures such as fire insulation and explosion relief hatches. In addition, the active safety 

systems, i.e. gas and fire detection, ventilation as well as fire suppression systems are equipped with continuous 

electronic self-monitoring to ascertain their proper functioning. 

 

As the deployed FC technology is already validated for automotive applications, the main item considered to create 

a hazard for FC operability and lifetime is the saline marine environment. To counteract this, a multi-phase intake 

air filtering solution was developed. 

4.1. Systems for hydrogen gas safety  

Hydrogen safety is based on (i) continuous monitoring of hydrogen in the containers, (ii) automatic shut-off valves 

(iii) container ventilation mechanisms and (iv) dedicated relief devices and venting routes to prevent uncontrolled 

release of gas due to system overpressure. The hydrogen detection and alarm system monitors the hydrogen content 

in the hydrogen storage container and in the fuel cell space. The system can continuously measure the hydrogen 

content in air within the range of 0-4% and thus detect any hydrogen leakage in said spaces. The warning limit for 

hydrogen leakages is 4000 ppm corresponding to 10% of H2 LFL (Lower Flammability Limit). The alarm limit is 

at 8000 ppm / 20% of LFL. Detectors in the hydrogen storage container and the fuel cell space are redundant and 

connected to the gas detection system (GDS) control unit by redundant cabling, so that no single fault in the 

detection hardware installed within the H2 and FC system will render the detector system inoperable. Faults in the 

hydrogen detection system are monitored and a fault signal is given if the hydrogen detection system is not 

operating correctly. The GDS is based on Salwico products and provided by Consilium Marine, Finland. 

 

In case of gas alarm, a safety relay mechanism is used to trigger the pre-defined safety precautions, in particular, 

system shut-off and de-energization of all non-EX-rated devices, close of H2 feed valves (automatically due to 

power-off), ventilation of spaces by using EX-rated devices, a visible and audible alarm (i.e. beacon and siren). 

 

Ventilation of the hydrogen and fuel cell system is dimensioned to provide full space air volume change of a 

minimum 30 times per hour. For example, in the hydrogen storage container (10 ft container), this corresponds to 

ca. 480 m3/h (8000 dm3/min), which allows a very significant H2 leakage of ca. 320 dm3/min without reaching 

hydrogen’s lower flammability limit of 4% in air. 

4.2. Systems for fire safety 

Fire safety is based on active and passive measures including (i) continuous fire detection and a related fire alarm 

system, (ii) fire suppression flaps in ventilation channels, (iii) fire insulation in H2 container. Additionally a 

manually triggered fire suppression system is installed in each compartment. 
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The fire detection and alarm system monitors the fuel cell and hydrogen container compartments for the case of 

fire. In particular, both smoke and heat detection is used in all sensors. The fire detectors in the H2 container and 

in the fuel cell space are redundant and installed in such a manner that no single component failure can lead to 

inoperability of fire detection system. In the equipment space, only a single detector is installed. 

 

The fire detection system (FDS) for the FC & H2 system uses the existing FDS control unit installed on-board 

Aranda. The existing FDS control unit is extended with appropriate input/output communication modules, but 

utilizing the existing control unit enables tested and streamlined integration of the FC & H2 system fire safety with 

the existing Aranda fire safety system. The FDS is based on Salwico products and provided by Consilium Marine, 

Finland. 

 

In case of fire detection the FDS signals the fuel cell system where a safety relay mechanism is used to trigger the 

pre-defined safety precautions for fire, in particular, system shut-off and de-energization, shut down of space 

ventilation, close fire suppression flaps (automatically, by power-off), a visible and audible alarm (i.e. beacon and 

siren). Additionally, the crew may initiate fire suppression inside the FC and H2 containers manually. In order to 

guarantee operability of the fire suppression system also in sub-zero conditions, it is based on release of high-

pressure inert gas mixture (Inergen®) and not e.g. carbon dioxide or other liquid suppression media. The fire 

suppression system is provided by AGIS Fire & Security, Finland. 

4.3. Other safety systems 

In addition to automatic gas and fire safety systems, the FC & H2 system is equipped with the following safety 

devices and features: 

- Emergency stop button for manual emergency stop of system, which enables a human operator to halt the 

operation of the system, leading to hydrogen feed shut-off and system power-off, at any time. 

- Explosion relief panels in the H2 container roof and the FC space roof (provided by RSBP, Czech 

Republic). 

4.4. Filtering of intake air for salinity 

To insure that the intake air for the fuel cell and the ventilation is clean of salt particles or salt dissolved in micro-

droplets, a three-phase air filtering arrangement was sourced, tested and verified suitable for this purpose. The 

filtering arrangement is illustrated in Fig. 5 (a) and consists of (i) a weather guard, (ii) a pre-filter and (iii) a main 

filter. The filter assembly is provided by Camfil, Sweden. 

 

Fig. 5 (b) illustrates the filtering capacity of the filter pack at nominal air flow (1000 m3/h) before and after a salt-

water loading test which was designed to correspond to operation in normal marine conditions for ca. 13 years. As 

seen in the picture, the filter performance is good also after the test. The pressure difference over the filter pack 

increases from ca. 150 Pa to 200 Pa during the loading test, indicating that as long as the filter remains clean of 

dust or dirt, air droplets or salt particles will not lead to filter clogging. 

4.5. System approval for operation 

As for any system deployed in a vessel operating at sea, also the Aranda FC and H2 system must be approved for 

use. A thorough description of the safety assessment and approval procedure required for the deployment of 

hydrogen systems on sea-going vessels is out of the scope of this paper but in general, the approach follows the 

IMO alternative design approval process, outlined in MSC.1/Circ.1455 (2013). The approval for the installation 

and operation of the FC and H2 system on-board the Aranda vessel is due to be obtained directly from the Finnish 

flag state authority Traficom and the approval is considered to be temporary. For the purpose of the approval, the 

FC and H2 system is assessed for safety by utilizing established formal safety assessment methods such as hazard 

and operability studies (HAZOP) and failure modes and effects analysis (FMEA), carried out by experienced 

specialists at VTT. 
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5. Operative test program for the Aranda FC & H2 system 

The system test campaign consists of two parts: tests on land and tests on-board the research vessel Aranda. The 

first part is due to start early 2020 at the VTT bioenergy piloting test facility Bioruukki, in Espoo, Finland. During 

the land tests, basic operability of the system is verified and, in particular, proper operation of safety mechanisms 

is confirmed. The on-land test period will also involve significant finalizing activities of system construction and 

in particular of the system control subsystem software. 

 

The test program on-board the Aranda vessel, scheduled to start in May 2020, is due to last for a minimum of 18 

months, with a targeted minimum 30 re-fills of the hydrogen storage (á 80 kg). During the test program, the fuel 

cell system is intended to operate as an auxiliary power unit for the Aranda vessel, supplying power and heat to 

the ship. The power will be fed to the vessel power network as alternating current through the vessel main 

switchboard. Fuel cell output heat will be recovered to the vessel space-heating network. 

 

When operated, the targeted average power output of the total fuel cell system is 100 kW, leading to ca. 8-10 hours 

of operating time between re-fills. The targeted average output power is well below maximum system power output 

and thus allows for dynamic operation of the system as well as periodically running only one half-system (i.e. one 

fuel cell power module instead of two). During system operation process data from numerous instruments is 

recorded to a data repository and behavior of individual system components, such as the fuel cell module 

efficiency, intake air filtering performance as well as the conversion efficiency of the power electronics are 

monitored. The test campaign experiences are published in several publicly released deliverables of the hosting 

MARANDA project. 

 

In addition to the complete system level tests, the fuel cell power module is tested in dedicated durability tests with 

a targeted minimum test duration of 4380 hours. These on-shore durability tests take place before system 

deployment on-board the Aranda vessel and are due to start November 2019. 

 

 

6. Conclusions 

The technical solution for a fuel cell power plant and the accompanying hydrogen fuel storage, intended for retrofit 

install on-board the marine research vessel Aranda, was presented. System safety, in terms of gas leakage and 

explosion inhibition was found to be a key determining factor for system design. In addition system operability in 

the marine conditions required several considerations on filtering of intake air both for the fuel cell as well as for 

system ventilation. The necessary modifications to the fuel cell power modules, power electronics or the hydrogen 

storage components were minor, which illustrates the maturity of the basic technology. During the work, several 

Fig. 5 - In sub-figure (a), the chosen filter pack: (1) Camfil CamVane-100 weather guard, (2) Camfil GT Aeropleat G4 preliminary 

purification filter, (3) Camfil CamGT H12 gas turbine filter. In sub-figure (b), the filter pack filtration efficiency before and after a salt-

particle and humidity loading test. 
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complications related to safety approval and the guiding regulation relevant for hydrogen installations in sea-going 

vessels were observed. Further marine applications are still necessary to establish a solid prescriptive and well-

guiding rule base to simplify the deployment of zero-emission hydrogen propulsion technologies. 
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